Effects of Biofermented Feed on Zophobas morio: Growth Ability, Fatty Acid Profile, and Bioactive Properties
Abstract
:1. Introduction
2. Material and Methods
2.1. Breeding Conditions of Zophobas morio Larvae
2.2. Dry Matter Content in Zophobas morio Larvae
2.3. Comprehensive Sample Preparation and Analysis for Characterizing Insect-Derived Bioactive Compounds
2.3.1. Chemicals
2.3.2. Enzymatic Hydrolysis and Dialysis Simulation for Sample Digestion: A Methodological Approach
2.4. Analysis of Fatty Acid Profile and Content Using Gas Chromatography in Feeds and Zophobas morio Larvae
2.5. Determination of Total Phenolic Content Using the Folin-Ciocalteu Method
2.6. Assessment of Antioxidant Activity in Samples Using ABTS, DPPH, and FRAP Assays
2.7. Determination of Peptide Concentration
2.8. Determination of the Ability to Chelate Metals
2.9. Determination of Anti-Inflammatory Properties of Sample Extracts Using the Cyclooxygenase Inhibitor Screening Assay Kit
2.10. Statistical Analysis
3. Results and Discussion
3.1. Impact of Biofermented Feed on the Quality of ZM
3.2. Polyphenolic Analysis of ZM: Impact of Biofermented Feed and Culinary Treatment
3.3. Antioxidant Activity of ZM: Impact of Biofermented Feed and Culinary Treatment
3.4. Chelating Activity of Cu 2+ and Fe 2+: Influence of Culinary Treatment and In Vitro Digestion
3.5. Peptide Concentration: Impact of Feed Type and Heat Treatment
3.6. COX1 and COX2 Inhibitory Activity: Impact of Heat Treatment and Biofermentation
3.7. Fatty Acids: Variation in Total Content and Impact of Heat Treatment
3.8. Analysis of Fatty Acid Composition: Effects of Feed Composition and Sample Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, C.; Yang, D.; Liao, H.; Sun, H.; Liu, C.; Wei, L.; Li, F. Edible insects as a food source: A review. Food Prod. Process. Nutr. 2019, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Van Huis, A.; Oonincx, D.G.A.B. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef] [Green Version]
- Rumbos, C.I.; Athanassiou, C.G. The Superworm, Zophobas morio (Coleoptera:Tenebrionidae): A ‘Sleeping Giant’ in Nutrient Sources. J. Insect Sci. 2021, 21, 13. [Google Scholar] [CrossRef] [PubMed]
- Adámková, A.; Kouřimská, L.; Borkovcová, M.; Kulma, M.; Mlček, J. Nutritional values of edible Coleoptera (Tenebrio molitor, Zophobas morio and Alphitobius diaperinus) reared in the Czech Republic. Potravinárstvo 2016, 10, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Deng, D.; Cui, Y.; Chen, W.; Yu, M.; Ma, X. Diet supplemented with fermented okara improved growth performance, meat quality, and amino acid profiles in growing pigs. Food Sci. Nutr. 2020, 8, 5650–5659. [Google Scholar] [CrossRef]
- Klempová, T.; Slaný, O.; Šišmiš, M.; Marcinčák, S.; Čertík, M. Dual production of polyunsaturated fatty acids and beta-carotene with Mucor wosnessenskii by the process of solid-state fermentation using agro-industrial waste. J. Biotechnol. 2020, 311, 1–11. [Google Scholar] [CrossRef]
- Srivastava, N.; Srivastava, M.; Ramteke, P.W.; Mishra, P.K. Synthetic Biology Strategy for Microbial Cellulases. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 229–238. ISBN 9780444635037. [Google Scholar] [CrossRef]
- Yan, J.; Lv, Y.; Ma, S. Wheat bran enrichment for flour products: Challenges and solutions. J. Food Process. Preserv. 2022, 46, e16977. [Google Scholar] [CrossRef]
- Dragojlović, D.; Đuragić, O.; Pezo, L.; Popović, L.; Rakita, S.; Tomičić, Z.; Spasevski, N. Comparison of Nutritional Profiles of Super Worm (Zophobas morio) and Yellow Mealworm (Tenebrio molitor) as Alternative Feeds Used in Animal Husbandry: Is Super Worm Superior? Animals 2022, 12, 1277. [Google Scholar] [CrossRef]
- Semjon, B.; Bartkovský, M.; Marcinčáková, D.; Klempová, T.; Bujňák, L.; Hudák, M.; Jaďuttová, I.; Čertík, M.; Marcinčák, S. Effect of Solid-State Fermented Wheat Bran Supplemented with Agrimony Extract on Growth Performance, Fatty Acid Profile, and Meat Quality of Broiler Chickens. Animals 2020, 10, 942. [Google Scholar] [CrossRef]
- Katina, K.; Juvonen, R.; Laitila, A.; Flander, L.; Nordlund, E.; Kariluoto, S.; Piironen, V.; Poutanen, K. Fermented Wheat Bran as a Functional Ingredient in Baking. Cereal Chem. 2012, 89, 126–134. [Google Scholar] [CrossRef]
- Wang, R.-F.; An, X.-P.; Wang, Y.; Qi, J.-W.; Zhang, J.; Liu, Y.-H.; Weng, M.-Q.; Yang, Y.-P.; Gao, A.-Q. Effects of polysaccharide from fermented wheat bran on growth performance, muscle composition, digestive enzyme activities and intestinal microbiota in juvenile common carp. Aquac. Nutr. 2020, 26, 1096–1107. [Google Scholar] [CrossRef]
- Klempová, T.; Basil, E.; Kubátová, A.; Čertík, M. Biosynthesis of gamma-linolenic acid and beta-carotene by Zygomycetes fungi. Biotechnol. J. 2013, 8, 794–800. [Google Scholar] [CrossRef]
- Bartkovský, M.; Sopková, D.; Andrejčáková, Z.; Vlčková, R.; Semjon, B.; Marcinčák, S.; Bujňák, L.; Pospiech, M.; Nagy, J.; Popelka, P.; et al. Effect of Concentration of Flaxseed (Linum usitatissimum) and Duration of Administration on Fatty Acid Profile, and Oxidative Stability of Pork Meat. Animals 2022, 12, 1087. [Google Scholar] [CrossRef] [PubMed]
- Slaný, O.; Klempová, T.; Shapaval, V.; Zimmermann, B.; Kohler, A.; Čertík, M. Biotransformation of Animal Fat By-Products into ARA-enriched Fermented Bioproducts by Solid-State Fermentation of Mortierella alpina. J. Fungi. 2022, 6, 236. [Google Scholar] [CrossRef] [PubMed]
- Loy, D.D.; Lundy, E.L. Nutritional Properties and Feeding Value of Corn and Its Coproducts. Corn 2019, 3, 633–659. [Google Scholar] [CrossRef]
- Pečová, M.; Pospiech, M.; Javůrková, Z.; Ljasovská, S.; Dobšíková, R.; Tremlová, B. Influence of feed on anti-inflammatory and antioxidant effects of Zophobas morio. J. Asia Pac. Entomol. 2022, 25, 102010. [Google Scholar] [CrossRef]
- Jakubczyk, A.; Karaś, M.; Baraniak, B.; Pietrzak, M. The impact of fermentation and in vitro digestion on formation angiotensin converting enzyme (ACE) inhibitory peptides from pea proteins. Food Chem. 2013, 141, 3774–3780. [Google Scholar] [CrossRef] [PubMed]
- Čertík, M.; Shimizu, S. Kinetic analysis of oil biosynthesis by an arachidonic acid-producing fungus, Mortierella alpina 1S-4. Appl. Microbiol. Biotechnol. 2000, 54, 224–230. [Google Scholar] [CrossRef]
- Gajdoš, P.; Nicaud, J.-M.; Rossignol, T.; Čertík, M. Single cell oil production on molasses by Yarrowia lipolytica strains overexpressing DGA2 in multicopy. Appl. Microbiol. Biotechnol. 2015, 99, 8065–8074. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Shen, J.; Silva, A.; Dennis, D.A.; Barrow, C.J. A Simple 96-Well Microplate Method for Estimation of Total Polyphenol Content in Seaweeds. J. Appl. Phycol. 2006, 18, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for antioxidant assays for food components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Karaś, M.; Baraniak, B.; Rybczyńska, K.; Gmiński, J.; Gaweł-Bęben, K.; Jakubczyk, A. The influence of heat treatment of chickpea seeds on antioxidant and fibroblast growth-stimulating activity of peptide fractions obtained from proteins digested under simulated gastrointestinal conditions. Int. J. Food Sci. 2015, 50, 2097–2103. [Google Scholar] [CrossRef]
- Habeeb, A.F.S.A. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal. Biochem. 1966, 14, 328–336. [Google Scholar] [CrossRef]
- Santos, J.S.; Alvarenga Brizola, V.R.; Granato, D. High-throughput assay comparison and standardization for metal chelating capacity screening: A proposal and application. Food Chem. 2017, 214, 515–522. [Google Scholar] [CrossRef]
- Čech, M.; Haščík, P.; Čuboň, J.; Herc, P.; Jurčaga, L.; Bobko, M.; Kačániová, M. Internal fats of ross 308 broiler chickens after application of grape, flax and pumpkin pomace into their diet. J. Microbiol. Biotechnol. Food Sci. 2022, 12, 5347. [Google Scholar] [CrossRef]
- Vlaicu, A.; Panaite, T.; Turcu, R.; Margareta, O. Effect of feeding flax meal on milk fatty acids profiles and performance of Holstein dairy cows. Indian J. Anim. Sci. 2020, 90, 744–748. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Bąkowska, A.; Kucharska, A.Z.; Oszmiański, J. The effects of heating, UV irradiation, and storage on stability of the anthocyanin–polyphenol copigment complex. Food Chem. 2003, 81, 349–355. [Google Scholar] [CrossRef]
- Abhay, S.M.; Hii, C.L.; Law, C.L.; Suzannah, S.; Djaeni, M. Effect of hot-air drying temperature on the polyphenol content and the sensory properties of cocoa beans. Int. Food Res. J. 2016, 23, 1479–1484. [Google Scholar]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of In Vitro Digestion on Composition, Bioaccessibility and Antioxidant Activity of Food Polyphenols-A Non-Systematic Review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, E.; Baraniak, B.; Karaś, M. Antioxidant and anti-inflammatory activities of hydrolysates and peptide fractions obtained by enzymatic hydrolysis of selected heat-treated edible insects. Nutrients 2017, 9, 970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, P.; Modi, H.A. Comparative study of DPPH, ABTS and FRAP assays for determination of antioxidant activity. Int. J. Res. Appl. Sci. Eng. Technol. 2015, 3, 636–641. [Google Scholar]
- Kim, J.-S.; Lee, Y.-S. Antioxidant activity of Maillard reaction products derived from aqueous glucose/glycine, diglycine, and triglycine model systems as a function of heating time. Food Chem. 2009, 116, 227–232. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Akgun, F. Ferric reducing/antioxidant power of Maillard reaction products in model bread crusts. J. Food Agric. Environ. 2008, 6, 56–60. [Google Scholar]
- David-Birman, T.; Raften, G.; Lesmes, U. Effects of thermal treatments on the colloidal properties, antioxidant capacity and in-vitro proteolytic degradation of cricket flour. Food Hydrocoll. 2018, 79, 48–54. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Chen, D.; Chen, S. Antioxidant Activity and Mechanism of Protocatechuic Acid in vitro. Funct. Foods Health Dis. 2011, 1, 232–244. [Google Scholar] [CrossRef]
- Nwachukwu, I.D.; Aluko, R.E. Antioxidant Properties of Flaxseed Protein Hydrolysates: Influence of Hydrolytic Enzyme Concentration and Peptide Size. J. Am. Oil Chem. Soc. 2018, 95, 1105–1118. [Google Scholar] [CrossRef]
- Yeung, C.-Y.; Lee, H.-C.; Lin, S.-P.; Yang, Y.-C.; Huang, F.-Y.; Chuang, C.-K. Negative effect of heat sterilization on the free amino acid concentrations in infant formula. Eur. J. Clin. Nutr. 2006, 60, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Baltes, W. Chemical changes in food by the Maillard reaction. Food Chem. 1982, 9, 59–73. [Google Scholar] [CrossRef]
- Jakubczyk, A.; Szymanowska, U.; Karaś, M.; Złotek, U.; Kowalczyk, D. Potential anti-inflammatory and lipase inhibitory peptides generated by in vitro gastrointestinal hydrolysis of heat treated millet grains. CYTA J. Food 2019, 17, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Caponio, F.; Pasqualone, A.; Gomes, T. Changes in the fatty acid composition of vegetable oils in model doughs submitted to conventional or microwave heating. Int. J. Food Sci. 2003, 38, 481–486. [Google Scholar] [CrossRef]
- Mridula, D.; Kaur, D.; Nagra, S.; Barnwal, P.; Gurumayum, S.; Singh, K. Growth Performance, Carcass Traits and Meat Quality in Broilers, Fed Flaxseed Meal. Asian-Australas. J. Anim. Sci. 2011, 24, 1729–1735. [Google Scholar] [CrossRef]
Week | ||||||
---|---|---|---|---|---|---|
Group | 0 | 1 | 2 | 3 | 4 | |
Length [cm] | C | 4.44 ± 0.35 | 4.68 ± 0.33 | 4.50 ± 0.35 | 5.08 ± 0.20 | 5.20 ± 0.22 ab |
FB | 4.54 ± 0.24 | 4.84 ± 0.35 | 4.55 ± 0.27 | 5.03 ± 0.22 | 5.25 ± 0.20 a | |
FMFP | 4.68 ± 0.31 | 4.69 ± 0.33 | 4.58 ± 0.32 | 5.04 ± 0.19 | 5.04 ± 0.18 b | |
Weight [g] | C | 0.69 ± 0.09 | 0.68 ± 0.10 b | 0.58 ± 0.12 | 0.78 ± 0.08 | 0.81 ± 0.11 |
FB | 0.73 ± 0.08 | 0.76 ± 0.13 a | 0.57 ± 0.06 | 0.80 ± 0.07 | 0.82 ± 0.11 | |
FMFP | 0.74 ± 0.09 | 0.67 ± 0.09 b | 0.61 ± 010 | 0.79 ± 0.07 | 0.77 ± 0.07 |
Polyphenols [mg/kg Gallic Acid] | DPPH [%] | ABTS [%] | FRAP | Cu2+ [%] | Fe2+ [%] | TNBSA [g/L] | COX1 [%] | COX2 [%] | ||
---|---|---|---|---|---|---|---|---|---|---|
[mg Trolox Equivalent/g] | ||||||||||
Samples without in vitro digestion | CN | 3.71 ± 0.23 abc | 6.53 ± 0.88 | 12.23 ± 1.00 ab | 3.47 ± 0.34 b | 71.8 ± 8.53 ad | 49.95 ± 18 bc | 180.29 ± 18.88 ab | 49.39 ± 1.95 c | 32.81 ± 2.83 a |
FBN | 4.29 ± 0.30 a | 6.94 ± 1.09 | 13.27 ± 0.17 a | 3.68 ± 0.14 b | 65.89 ± 5.56 d | 37.37 ± 2.35 c | 227.26 ± 14.08 a | 9.76 ± 4.23 a | 32.42 ± 2.83 a | |
FMFPN | 3.93 ± 0.26 ab | 6.29 ± 0.48 | 12.78 ± 0.62 a | 3.54 ± 0.23 b | 40.18 ± 5.46 b | 20.23 ± 3.48 b | 182.97 ± 7.76 ab | 44.12 ± 3.23 bc | 38.22 ± 5.28 a | |
CR | 2.45 ± 0.27 d | 7.16 ± 0.61 | 8.29 ± 0.82 b | 5.79 ± 0.51 a | 63.29 ± 5.25 d | 65.45 ± 3.12 a | 86.31 ± 1.81 c | 61.85 ± 2.04 d | 75.12 ± 15.29 b | |
FBR | 2.77 ± 0.11 bcd | 6.76 ± 0.31 | 8.22 ± 0.69 b | 5.45 ± 0.80 a | 77.7 ± 1.46 a | 20.89 ± 10.04 b | 98.26 ± 1.48 bc | 33.79 ± 5.69 b | 47.84 ± 4.66 a | |
FMFPR | 2.59 ± 0.20 cd | 6.67 ± 0.15 | 8.24 ± 1.62 b | 5.42 ± 0.68 a | 77.97 ± 0.65 a | 63.23 ± 3.09 a | 96.66 ± 4.68 bc | 91.64 ± 4.88 e | 92.08 ± 10.01 b | |
Samples after in vitro digestion | CN | 0.75 ± 0.13 b | 0.17 ± 0.24 ab | 0.51 ± 0.41 ab | 0.62 ± 0.06 abc | 42.98 ± 2.31 cd | 11.16 ± 0.96 b | 262.42 ± 20.02 | 83.39 ± 4.34 | 81.02 ± 0.64 a |
FBN | 1.11 ± 0.04 a | 0.30 ± 0.62 ab | 2.54 ± 1.43 a | 0.88 ± 0.21 a | 56.66 ± 5.78 a | 9.89 ± 1.78 a | 261.25 ± 14.09 | 98.25 ± 0.09 | 100.08 ± 4.53 bc | |
FMFPN | 0.88 ± 0.04 ab | 0.71 ± 0.62a | 0.68 ± 0.40ab | 0.63 ± 0.03ab | 56.66 ± 5.78a | 20.91 ± 7.92b | 259.19 ± 22.77 | 95.08 ± 4.53 | 91.68 ± 2.06ab | |
CR | 0.92 ± 0.15 ab | ND | 0.60 ± 0.81a b | 0.42 ± 0.12 bc | 45.57 ± 4.33 bc | 10.99 ± 1.4 b | 248.51 ± 20.85 | 106.11 ± 23.7 | 110.58 ± 10.89 c | |
FBR | 0.73 ± 0.24 b | ND | ND | 0.41 ± 0.08 c | 36.78 ± 6.73 d | 11.12 ± 2.25 b | 241.46 ± 5.68 | 104.9 ± 2.52 | 111.61 ± 1.54 c | |
FMFPR | 0.82 ± 0.07 b | ND | ND | 0.37 ± 0.02 c | 42.46 ± 4.51 cd | 10.48 ± 1.11 b | 244.16 ± 10.13 | 85.64 ± 18.93 | 112.95 ± 1.57 c |
Native Samples | Culinarily Prepared Samples | |||||
---|---|---|---|---|---|---|
CN | FBN | FMFPN | CR | FBR | FMFPR | |
Total fatty acids (%) | 31.59 ± 1.95 | 30.70 ± 2.95 | 32.39 ± 1.43 | 29.59 ± 1.75 | 27.77 ± 2.08 | 29.62 ± 1.93 |
Fatty acids (mg/g): | ||||||
C14:0 | 0.86 ± 0.35 | 1.21 ± 0.12 | 0.88 ± 0.04 | 1.26 ± 0.90 | 0.98 ± 0.08 | 0.93 ± 0.05 |
C16:0 | 83.91 ± 34.89 | 95.85 ± 10.72 | 98.11 ± 4.51 | 90.32 ± 3.80 | 83.89 ± 5.98 | 89.92 ± 5.57 |
C16:1–7c | 5.09 ± 2.27 | 6.15 ± 0.72 | 5.17 ± 0.84 | 7.00 ± 1.49 b | 5.19 ± 0.51 a | 5.92 ± 0.53 ab |
C16:1–9c | 1.66 ± 0.71 | 2.04 ± 0.16 | 2.35 ± 0.43 | 2.30 ± 0.24 b | 1.76 ± 0.29 a | 2.11 ± 0.27 ab |
C18:0 | 18.07 ± 7.40 | 19.03 ± 2.90 | 20.08 ± 2.35 | 16.93 ± 0.92 | 17.41 ± 1.34 | 18.09 ± 3.33 |
C18:1–9c | 96.08 ± 38.23 | 106.33 ± 7.06 | 122.49 ± 6.58 | 105.39 ± 8.88 | 96.86 ± 7.41 | 109.33 ± 9.14 |
C18:1–11c | 1.14 ± 0.46 | 1.01 ± 0.40 | 0.81 ± 0.34 | 2.28 ± 1.42 | 2.24 ± 0.87 | 1.85 ± 0.81 |
C18:2–9c,12c | 64.81 ± 23.05 | 71.05 ± 8.21 | 60.29 ± 2.68 | 66.71 ± 3.95 | 65.34 ± 5.90 | 59.26 ± 5.60 |
C18:3–6c,9c,12c | ND | 0.30 ± 0.08 a | 0.74 ± 0.06 b | ND | 0.39 ± 0.08 a | 0.40 ± 0.21 a |
C18:3–9c,12c,15c | 2.94 ± 1.12 a | 2.91 ± 0.59 ab | 9.42 ± 0.64 b | 2.78 ± 0.17 a | 2.73 ± 0.37 a | 6.40 ± 1.90 b |
C18:4–6c,9c,12c,15c | ND | ND | 0.06 ± 0.01 | ND | ND | 0.03 ± 0.00 |
C20:0 | 2.19 ± 4.52 | 0.45 ± 0.07 | 0.53 ± 0.04 | 0.33 ± 0.05 | 0.37 ± 0.08 | 0.42 ± 0.06 |
C20:1–11c | 0.34 ± 0.04 | 0.35 ± 0.08 | 0.31 ± 0.02 | 0.31 ± 0.14 | 0.31 ± 0.07 | 0.24 ± 0.03 |
C20:2–11c,14c | 0.18 ± 0.03 | 0.19 ± 0.04 | 0.20 ± 0.02 | 0.30 ± 0.25 | 0.14 ± 0.05 | 0.17 ± 0.02 |
C20:3–8c,11c,14c | ND | ND | 0.31 ± 0.02 b | ND | ND | 0.16 ± 0.06 |
C20:4–5c,8c,11c,14c | ND | ND | 1.72 ± 0.08 b | ND | ND | 0.80 ± 0.43 |
C20:5–5c,8c,11c,14c,17c | ND | ND | 0.27 ± 0.02 b | ND | ND | 0.12 ± 0.07 |
C22:0 | 0.09 ± 0.06 | 0.07 ± 0.09 | 0.10 ± 0.02 | ND | ND | 0.05 ± 0.03 |
C24:0 | 0.03 ± 0.04 | 0.02 ± 0.01 | 0.03 ± 0.00 | 0.01 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.00 |
C24:1–15c | 0.57 ± 1.43 | 0.03 ± 0.00 | 0.04 ± 0.01 | 0.07 ± 0.07 | 0.03 ± 0.01 | 0.03 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čaloudová, J.; Křištofová, K.; Pospiech, M.; Klempová, T.; Slaný, O.; Čertík, M.; Marcinčák, S.; Makiš, A.; Javůrková, Z.; Pečová, M.; et al. Effects of Biofermented Feed on Zophobas morio: Growth Ability, Fatty Acid Profile, and Bioactive Properties. Sustainability 2023, 15, 9709. https://doi.org/10.3390/su15129709
Čaloudová J, Křištofová K, Pospiech M, Klempová T, Slaný O, Čertík M, Marcinčák S, Makiš A, Javůrková Z, Pečová M, et al. Effects of Biofermented Feed on Zophobas morio: Growth Ability, Fatty Acid Profile, and Bioactive Properties. Sustainability. 2023; 15(12):9709. https://doi.org/10.3390/su15129709
Chicago/Turabian StyleČaloudová, Jana, Kateřina Křištofová, Matej Pospiech, Tatiana Klempová, Ondrej Slaný, Milan Čertík, Slavomír Marcinčák, Andrej Makiš, Zdeňka Javůrková, Martina Pečová, and et al. 2023. "Effects of Biofermented Feed on Zophobas morio: Growth Ability, Fatty Acid Profile, and Bioactive Properties" Sustainability 15, no. 12: 9709. https://doi.org/10.3390/su15129709
APA StyleČaloudová, J., Křištofová, K., Pospiech, M., Klempová, T., Slaný, O., Čertík, M., Marcinčák, S., Makiš, A., Javůrková, Z., Pečová, M., Zlámalová, M., Vrbíčková, L., & Tremlová, B. (2023). Effects of Biofermented Feed on Zophobas morio: Growth Ability, Fatty Acid Profile, and Bioactive Properties. Sustainability, 15(12), 9709. https://doi.org/10.3390/su15129709