A Hybrid Artificial Neural Network—Particle Swarm Optimization Algorithm Model for the Determination of Target Displacements in Mid-Rise Regular Reinforced-Concrete Buildings
Abstract
:1. Introduction
2. Description of the Numerical Models
3. Structural Analysis Results
4. Artificial Neural Network (ANN)
4.1. Particle Swarm Optimization Algorithm
- Set the initial parameters and create the population;
- Identify each individual’s best solution so far (pbest) and the global best solution (gbest);
- Calculate the new velocities of each particle and swap the particles;
- Update pbest and gbest values;
- Go back to step 3 for the number of iterations.
4.2. Hybrid Model and Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kutanis, M.; Boru, O.E. The need for upgrading the seismic performance objectives. Earthq. Struct. 2014, 7, 401–414. [Google Scholar] [CrossRef]
- Yel, N.S.; Arslan, M.H.; Aksoylu, C.; Erkan, İ.H.; Arslan, H.D.; Işık, E. Investigation of the earthquake performance adequacy of low-rise rc structures designed according to the simplified design rules in TBEC-2019. Buildings 2022, 12, 1722. [Google Scholar] [CrossRef]
- Işık, E.; Ulutaş, H.; Harirchian, E.; Avcil, F.; Aksoylu, C.; Arslan, M.H. Performance-based assessment of rc building with short columns due to the different design principles. Buildings 2023, 13, 750. [Google Scholar] [CrossRef]
- SEAOC. Vision 2000, A Framework for Performance-Based Design; Structural Engineers Association of California, Vision 2000 Com mittee: San Diego, CA, USA, 1995. [Google Scholar]
- Bilgin, H.; Hadzima-Nyarko, M.; Işık, E.; Ozmen, H.B.; Harirchian, E. A comparative study on the seismic provisions of different codes for RC buildings. Struct. Eng. Mech. 2022, 83, 195–206. [Google Scholar]
- Güneş, N.; Ulucan, Z.Ç.; Erdoğan, A.S. Yakın fay yer hareketlerinin yön etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilim. Derg. 2013, 2, 21–33. [Google Scholar] [CrossRef]
- Işık, E.; Kutanis, M. Determination of local site-specific spectra using probabilistic seismic hazard analysis for Bitlis Province, Turkey. Earth Sci. Res. J. 2015, 19, 129–134. [Google Scholar] [CrossRef]
- Işık, E.; Harirchian, E. A comparative probabilistic seismic hazard analysis for Eastern Turkey (Bitlis) based on updated hazard map and its effect on regular RC structures. Buildings 2022, 12, 1573. [Google Scholar] [CrossRef]
- Isik, E.; Isik, M.F.; Bulbul, M.A. Web based evaluation of earthquake damages for reinforced concrete buildings. Earthq. Struct. 2017, 13, 387–396. [Google Scholar]
- Strukar, K.; Sipos, T.K.; Jelec, M.; Hadzima-Nyarko, M. Efficient damage assessment for selected earthquake records based on spectral matching. Earthq. Struct. 2019, 17, 271–282. [Google Scholar]
- Balun, B.; Nemutlu, O.F.; Benli, A.; Sari, A. Estimation of probabilistic hazard for Bingol province, Turkey. Earthq. Struct. 2020, 18, 223–231. [Google Scholar]
- Pavić, G.; Hadzima-Nyarko, M.; Bulajić, B. A contribution to a uhs-based seismic risk assessment in Croatia—A case study for the city of Osijek. Sustainability 2020, 12, 1796. [Google Scholar] [CrossRef] [Green Version]
- Pnevmatikos, N.; Konstandakopoulou, F.; Koumoutsos, N. Seismic vulnerability assessment and loss estimation in Cephalonia and Ithaca islands, Greece, due to earthquake events: A case study. Soil. Dyn. Earthq. Eng. 2020, 136, 106252. [Google Scholar] [CrossRef]
- Büyüksaraç, A.; Işık, E.; Harirchian, E. A case study for determination of seismic risk priorities in Van (Eastern Turkey). Earthq. Struct. 2021, 20, 445–455. [Google Scholar]
- Alpyürür, M.; Lav, M.A. An assessment of probabilistic seismic hazard for the cities in Southwest Turkey using historical and instrumental earthquake catalogs. Nat. Hazard. 2022, 114, 335–365. [Google Scholar] [CrossRef]
- Işık, E.; Hadzima-Nyarko, M.; Bilgin, H.; Ademović, N.; Büyüksaraç, A.; Harirchian, E.; Bulajić, B.; Özmen, H.B.; Aghakouchaki Hosseini, S.E. A comparative study of the effects of earthquakes in different countries on target displacement in mid-rise regular rc structures. Appl. Sci. 2022, 12, 12495. [Google Scholar] [CrossRef]
- Işık, E. Comparative investigation of seismic and structural parameters of earthquakes (M ≥ 6) after 1900 in Turkey. Arab. J. Geosci. 2022, 15, 971. [Google Scholar] [CrossRef]
- Kia, A.; Şensoy, S. Assessment the effective ground motion parameters on seismic performance of R/C buildings using artificial neural network. Indian J. Sci. Technol. 2014, 7, 2076–2082. [Google Scholar] [CrossRef]
- Ricci, P.; Di Domenico, M.; Verderame, G.M. Effects of the in-plane/out-of-plane interaction in URM infills on the seismic performance of RC buildings designed to Eurocodes. J. Earthq. Eng. 2022, 26, 1595–1629. [Google Scholar] [CrossRef]
- Khan, R.A. Performance based seismic design of reinforced concrete building. Int. J. Innov. Res. Sci. Eng. Techn. 2014, 3, 13495–13506. [Google Scholar]
- Özdemir, M.; Işık, E.; Ülker, M. Farklı kat adetlerine sahip betonarme binaların performans değerlendirilmesi. BEÜ Fen Bilim. Derg. 2016, 5, 183–190. [Google Scholar]
- Işık, E.; Harirchian, E.; Bilgin, H.; Jadhav, K. The effect of material strength and discontinuity in RC structures according to different site-specific design spectra. Res. Eng. Struct. Mater 2021, 7, 413–430. [Google Scholar] [CrossRef]
- Adiyanto, M.I.; Majid, T.A. Seismic design of two storey reinforced concrete building in Malaysia with low class ductility. J. Eng. Sci. Techn. 2014, 9, 27–46. [Google Scholar]
- Juliafad, E.; Gokon, H.; Putra, R.R. Defect study on single storey reinforced concrete building in West Sumatra: Before and after 2009 West Sumatra Earthquake. Geomate J. 2021, 20, 205–212. [Google Scholar] [CrossRef]
- Lim, H.K.; Kang, J.W.; Pak, H.; Chi, H.S.; Lee, Y.G.; Kim, J. Seismic response of a three-dimensional asymmetric multi-storey reinforced concrete structure. Appl. Sci. 2018, 8, 479. [Google Scholar] [CrossRef] [Green Version]
- Verderame, G.M.; Polese, M.; Mariniello, C.; Manfredi, G. A simulated design procedure for the assessment of seismic capacity of existing reinforced concrete buildings. Adv.Eng. Softw. 2010, 41, 323–335. [Google Scholar] [CrossRef]
- Bülbül, M.A. Performance of different membership functions in stress classification with fuzzy logic. Bitlis Eren Uni. J. Sci. Techn. 2022, 12, 60–63. [Google Scholar] [CrossRef]
- Bülbül, M.A.; Öztürk, C. Optimization, modeling and implementation of plant water consumption control using genetic algorithm and artificial neural network in a hybrid structure. Arab. J. Sci. Eng. 2022, 47, 2329–2343. [Google Scholar] [CrossRef]
- Bülbül, M.A. Kuru fasulye tohumlarının çok sınıflı sınıflandırılması için hibrit bir yaklaşım. J. Inst. Sci. Techn. 2023, 13, 33–43. [Google Scholar]
- Czarnecki, S.; Shariq, M.; Nikoo, M.; Sadowski, Ł. An intelligent model for the prediction of the compressive strength of cementitious composites with ground granulated blast furnace slag based on ultrasonic pulse velocity measurements. Measurement 2021, 172, 108951. [Google Scholar] [CrossRef]
- Bülbül, M.A.; Öztürk, C.; Işık, M.F. Optimization of climatic conditions affecting determination of the amount of water needed by plants in relation to their life cycle with particle swarm optimization, and determining the optimum irrigation schedule. Comput. J. 2022, 65, 2654–2663. [Google Scholar] [CrossRef]
- Hoła, A.; Czarnecki, S. Random forest algorithm and support vector machine for nondestructive assessment of mass moisture content of brick walls in historic buildings. Autom. Constr. 2023, 149, 104793. [Google Scholar] [CrossRef]
- Işık, E.; Ademović, N.; Harirchian, E.; Avcil, F.; Büyüksaraç, A.; Hadzima-Nyarko, M.; Bülbül, M.A.; Işık, M.F.; Antep, B. Determination of natural fundamental period of minarets by using artificial neural network and of the impact of different materials on their seismic vulnerability. Appl. Sci. 2023, 13, 809. [Google Scholar] [CrossRef]
- Bülbül, M.A.; Harirchian, E.; Işık, M.F.; Aghakouchaki Hosseini, S.E.; Işık, E. A hybrid ANN-GA model for an automated rapid vulnerability assessment of existing RC buildings. Appl. Sci. 2022, 12, 5138. [Google Scholar] [CrossRef]
- Dogan, G.; Arslan, M.H.; Ilki, A. Detection of damages caused by earthquake and reinforcement corrosion in RC buildings with deep transfer learning. Eng. Struct. 2023, 279, 115629. [Google Scholar] [CrossRef]
- Arslan, M.H. An evaluation of effective design parameters on earthquake performance of RC buildings using neural networks. Eng. Struct. 2010, 32, 1888–1898. [Google Scholar] [CrossRef]
- Vafaei, M.; Adnan, A.B.; Rahman, A.B.A. Real-time seismic damage detection of concrete shear walls using artificial neural networks. J. Earthq. Eng. 2013, 17, 137–154. [Google Scholar] [CrossRef]
- Suryanita, R.; Hendra, J.; Enno, Y. The Application of artificial neural networks in predicting structural response of multistory building in the region of Sumatra Island. KnE Eng. 2015, 2016, 1–6. [Google Scholar]
- Kaczmarek, M.; Szymańska, A. Application of artificial neural networks to predict the deflections of reinforced concrete beams. Stud. Geotech. Mech. 2016, 38, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Suryanita, R.; Maizir, H.; Yuniarto, E.; Zulfakar, M.; Jingga, H. Damage level prediction of reinforced concrete building based on earthquake time history using artificial neural network. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2017; Volume 138, p. 02024. [Google Scholar]
- Shooli, A.R.; Vosoughi, A.R.; Banan, M.R. A mixed GA-PSO-based approach for performance-based design optimization of 2D reinforced concrete special moment-resisting frames. Appl. Soft Comput. 2019, 85, 105843. [Google Scholar] [CrossRef]
- Nguyen, H.; Moayedi, H.; Foong, L.K.; Al Najjar, H.A.H.; Jusoh, W.A.W.; Rashid, A.S.A.; Jamali, J. Optimizing ANN models with PSO for predicting short building seismic response. Eng. Comput. 2020, 36, 823–837. [Google Scholar] [CrossRef]
- Ahmad, A.; Lagaros, N.D.; Cotsovos, D.M. Neural network-based prediction: The case of reinforced concrete members under simple and complex loading. Appl. Sci. 2021, 11, 4975. [Google Scholar] [CrossRef]
- Nguyen-Ngoc, L.; Tran, N.H.; Bui-Tien, T.; Mai-Duc, A.; Abdel Wahab, M.X.; Nguyen, H.; De Roeck, G. Damage detection in structures using particle swarm optimization combined with artificial neural network. Smart Struct. Sys. 2021, 28, 1–12. [Google Scholar]
- Bayari, M.A.; Shabakhty, N.; Izadi Zaman Abadi, E. Estimating collapse risk and reliability of concrete moment frame structure using response surface method and hybrid of artificial neural network with particle swarm optimization algorithm. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2021, 235, 1072–1089. [Google Scholar] [CrossRef]
- Ahmadi, M.; Kioumarsi, M. Predicting the elastic modulus of normal and high strength concretes using hybrid ANN-PSO. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Ruggieri, S.; Chatzidaki, A.; Vamvatsikos, D.; Uva, G. Reduced-order models for the seismic assessment of plan-irregular low-rise frame buildings. Earthq. Eng. Struct. Dyn. 2022, 51, 3327–3346. [Google Scholar] [CrossRef]
- Ruggieri, S.; Calò, M.; Cardellicchio, A.; Uva, G. Analytical-mechanical based framework for seismic overall fragility analysis of existing RC buildings in town compartments. Bull. Earthq. Eng. 2022, 20, 8179–8216. [Google Scholar] [CrossRef]
- Ruggieri, S.; Porco, F.; Uva, G.; Vamvatsikos, D. Two frugal options to assess class fragility and seismic safety for low-rise reinforced concrete school buildings in Southern Italy. Bull. Earthq. Eng. 2021, 19, 1415–1439. [Google Scholar] [CrossRef]
- Ruggieri, S.; Cardellicchio, A.; Leggieri, V.; Uva, G. Machine-learning based vulnerability analysis of existing buildings. Autom Constr. 2021, 132, 103936. [Google Scholar] [CrossRef]
- Seismosoft. SeismoStruct 2023—A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures. 2023. Available online: http://www.seismosoft.com (accessed on 5 January 2023).
- Antoniou, S.; Pinho, R. SeismoStruct–Seismic Analysis Program by Seismosoft. In Technical User Manuel; SeismoStruct: Pavia, Italy, 2003. [Google Scholar]
- EN 1998-3 (2005); Eurocode-8: Design of Structures for Earthquake Resistance-Part 3: Assessment and Retrofitting of Buildings. European Committee for Standardization: Brussels, Belgium, 2005.
- Pinto, P.E.; Franchin, P. Eurocode 8-Part 3: Assessment and retrofitting of buildings. In Proceedings of the Eurocode 8 Background and Applications, Dissemination of Information for Training, Lisbon, Portugal, 10–11 February 2011. [Google Scholar]
- Işık, E.; Özdemir, M.; Karaşin, İ.B. Performance analysis of steel structures with A3 irregularities. Int. J. Steel Struct. 2018, 18, 1083–1094. [Google Scholar] [CrossRef]
- Bilgin, H.; Huta, E. Earthquake performance assessment of low and mid-rise buildings: Emphasis on URM buildings in Albania. Earthq. Struct. 2018, 14, 599–614. [Google Scholar]
- Chopra, A.K.; Goel, R.K. A modal pushover analysis procedure for estimating seismic demands for buildings. Earthq. Eng. Struct. Dyn. 2002, 31, 561–582. [Google Scholar] [CrossRef] [Green Version]
- Hadzima-Nyarko, M.; Morić, D.; Španić, M. Spectral functions of RC frames using a new formula for damage ındex. Tehnički Vjesn. 2014, 21, 163–171. [Google Scholar]
- Ademovic, N.; Hrasnica, M.; Oliveira, D.V. Pushover analysis and failure pattern of a typical masonry residential building in Bosnia and Herzegovina. Eng. Struct. 2013, 50, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Gholipour, M.; Alinia, M.M. Considerations on the pushover analysis of multi-story steel plate shear wall structures. Period. Polytechn. Civil Eng. 2016, 60, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Hasan, R.; Xu, L.; Grierson, D.E. Push-over analysis for performance-based seismic design. Comput. Struct. 2002, 80, 2483–2493. [Google Scholar] [CrossRef]
- Isik, E.; Karasin, I.B.; Karasin, A. The effect of different earthquake ground motion levels on the performance of steel structures in settlements with different seismic hazards. Struct. Eng. Mech. 2022, 84, 85–100. [Google Scholar]
Parameter | Value | |
---|---|---|
All Structural Models | ||
Concrete | C25 | |
Reinforcement | S420 | |
Each story height | 3 m | |
Slab height | 120 mm | |
Cover thickness | 25 mm | |
Beams | 250 × 600 mm | |
Columns | 400 × 500 mm | |
Longitudinal reinforcement (columns) | Corners | 4Φ20 |
Top bottom side | 4Φ16 | |
Left right side | 4Φ16 | |
Stirrups (Columns) | Φ10/100 | |
Stirrups (beam) | Φ10/150 | |
Steel material model | Menegotto-Pinto | |
Constraint type | Rigid diaphragm | |
Concrete material model | Mander et al. nonlinear | |
Local soil type | ZC | |
Incremental load | 4 kN | |
Dead Load | 5 kN/m | |
Damping | 5% | |
Importance class | IV | |
Target-displacement (4-story) | 0.24 m | |
Target-displacement (5-story) | 0.30 m | |
Target-displacement (6-story) | 0.36 m | |
Target-displacement (7-story) | 0.42 m | |
Target-displacement (8-story) | 0.48 m |
Class | Description |
---|---|
IV | Buildings whose integrity during earthquakes is of vital importance for civil protection, e.g., hospitals, fire stations, power plants, etc. |
Ground Type | Description of Stratigraphic Profile | Parameters | ||
---|---|---|---|---|
Vs, 30 (m/s) | NSPT (Blows/30 cm) | Cu (kPa) | ||
ZC | Deep deposits of dense or medium-dense sand, gravel, or stiff clay with thickness from several tens to many hundreds of meters. | 180–360 | 15–50 | 70–250 |
Number of Story’s | Period (s) | Base Shear Force (kN) | Kelas (kN/m) | Keff (kN/m) |
---|---|---|---|---|
4 | 0.341637 | 5840.40 | 293,739.8 | 119,332.5 |
5 | 0.424407 | 6032.93 | 239,489.5 | 100,846.8 |
6 | 0.508263 | 6208.78 | 197,843.7 | 87,294.01 |
7 | 0.593282 | 6376.08 | 161,456.4 | 76,628.36 |
8 | 0.679561 | 6532.66 | 138,517.4 | 68,165.47 |
PGA (g) | 4-Story | 5-Story | 6-Story | 7-Story | 8-Story | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DL | SD | NC | DL | SD | NC | DL | SD | NC | DL | SD | NC | DL | SD | NC | |
0.01 | 0.002 | 0.003 | 0.004 | 0.003 | 0.004 | 0.006 | 0.004 | 0.005 | 0.008 | 0.004 | 0.006 | 0.010 | 0.005 | 0.006 | 0.011 |
0.03 | 0.006 | 0.008 | 0.013 | 0.009 | 0.011 | 0.019 | 0.011 | 0.014 | 0.025 | 0.013 | 0.017 | 0.029 | 0.015 | 0.019 | 0.033 |
0.05 | 0.010 | 0.013 | 0.022 | 0.014 | 0.018 | 0.032 | 0.019 | 0.024 | 0.042 | 0.022 | 0.028 | 0.048 | 0.025 | 0.031 | 0.055 |
0.07 | 0.014 | 0.018 | 0.030 | 0.020 | 0.026 | 0.044 | 0.026 | 0.034 | 0.059 | 0.030 | 0.039 | 0.067 | 0.034 | 0.044 | 0.076 |
0.09 | 0.018 | 0.023 | 0.039 | 0.026 | 0.033 | 0.057 | 0.034 | 0.043 | 0.075 | 0.039 | 0.050 | 0.087 | 0.044 | 0.057 | 0.098 |
0.11 | 0.021 | 0.028 | 0.048 | 0.031 | 0.040 | 0.071 | 0.041 | 0.053 | 0.092 | 0.048 | 0.061 | 0.106 | 0.054 | 0.069 | 0.120 |
0.13 | 0.025 | 0.033 | 0.059 | 0.037 | 0.048 | 0.085 | 0.049 | 0.063 | 0.109 | 0.056 | 0.072 | 0.125 | 0.064 | 0.082 | 0.142 |
0.15 | 0.029 | 0.038 | 0.071 | 0.043 | 0.055 | 0.100 | 0.056 | 0.072 | 0.125 | 0.065 | 0.083 | 0.144 | 0.074 | 0.094 | 0.164 |
0.17 | 0.033 | 0.043 | 0.082 | 0.049 | 0.063 | 0.114 | 0.064 | 0.082 | 0.142 | 0.074 | 0.094 | 0.164 | 0.083 | 0.107 | 0.185 |
0.19 | 0.037 | 0.048 | 0.094 | 0.054 | 0.071 | 0.128 | 0.071 | 0.092 | 0.159 | 0.082 | 0.106 | 0.183 | 0.093 | 0.120 | 0.207 |
0.21 | 0.041 | 0.054 | 0.106 | 0.060 | 0.079 | 0.142 | 0.079 | 0.101 | 0.176 | 0.091 | 0.117 | 0.202 | 0.103 | 0.132 | 0.229 |
0.23 | 0.045 | 0.061 | 0.118 | 0.066 | 0.087 | 0.156 | 0.086 | 0.111 | 0.192 | 0.100 | 0.128 | 0.222 | 0.113 | 0.145 | 0.251 |
0.25 | 0.049 | 0.067 | 0.129 | 0.073 | 0.095 | 0.171 | 0.094 | 0.121 | 0.209 | 0.108 | 0.139 | 0.241 | 0.123 | 0.157 | 0.273 |
0.27 | 0.054 | 0.074 | 0.141 | 0.079 | 0.104 | 0.185 | 0.102 | 0.130 | 0.226 | 0.117 | 0.150 | 0.260 | 0.132 | 0.170 | 0.295 |
0.29 | 0.059 | 0.081 | 0.153 | 0.086 | 0.112 | 0.199 | 0.109 | 0.140 | 0.243 | 0.126 | 0.161 | 0.279 | 0.142 | 0.182 | 0.316 |
0.31 | 0.065 | 0.088 | 0.165 | 0.092 | 0.120 | 0.213 | 0.117 | 0.150 | 0.259 | 0.134 | 0.172 | 0.299 | 0.152 | 0.195 | 0.338 |
0.33 | 0.070 | 0.094 | 0.176 | 0.098 | 0.128 | 0.228 | 0.124 | 0.159 | 0.276 | 0.143 | 0.183 | 0.318 | 0.162 | 0.208 | 0.360 |
0.35 | 0.075 | 0.101 | 0.188 | 0.105 | 0.136 | 0.242 | 0.132 | 0.169 | 0.293 | 0.152 | 0.194 | 0.337 | 0.172 | 0.220 | 0.382 |
0.37 | 0.080 | 0.108 | 0.200 | 0.111 | 0.145 | 0.256 | 0.139 | 0.178 | 0.309 | 0.160 | 0.206 | 0.356 | 0.182 | 0.233 | 0.404 |
0.39 | 0.086 | 0.115 | 0.211 | 0.118 | 0.153 | 0.270 | 0.147 | 0.188 | 0.326 | 0.169 | 0.217 | 0.376 | 0.191 | 0.245 | 0.425 |
0.41 | 0.091 | 0.121 | 0.223 | 0.124 | 0.161 | 0.284 | 0.154 | 0.198 | 0.343 | 0.178 | 0.228 | 0.395 | 0.201 | 0.258 | 0.447 |
0.43 | 0.096 | 0.128 | 0.235 | 0.130 | 0.169 | 0.299 | 0.162 | 0.207 | 0.360 | 0.186 | 0.239 | 0.414 | 0.211 | 0.271 | 0.469 |
0.45 | 0.101 | 0.135 | 0.247 | 0.137 | 0.177 | 0.313 | 0.169 | 0.217 | 0.376 | 0.195 | 0.250 | 0.433 | 0.221 | 0.283 | 0.491 |
0.47 | 0.107 | 0.142 | 0.258 | 0.143 | 0.186 | 0.327 | 0.177 | 0.227 | 0.393 | 0.204 | 0.261 | 0.453 | 0.231 | 0.296 | 0.513 |
0.49 | 0.112 | 0.148 | 0.270 | 0.150 | 0.194 | 0.341 | 0.184 | 0.236 | 0.410 | 0.212 | 0.272 | 0.472 | 0.240 | 0.308 | 0.535 |
0.51 | 0.117 | 0.155 | 0.282 | 0.156 | 0.202 | 0.356 | 0.192 | 0.246 | 0.426 | 0.221 | 0.283 | 0.491 | 0.250 | 0.321 | 0.556 |
0.53 | 0.123 | 0.162 | 0.293 | 0.162 | 0.210 | 0.370 | 0.199 | 0.256 | 0.443 | 0.230 | 0.294 | 0.510 | 0.260 | 0.334 | 0.578 |
0.55 | 0.128 | 0.169 | 0.305 | 0.169 | 0.218 | 0.384 | 0.207 | 0.265 | 0.460 | 0.238 | 0.306 | 0.530 | 0.270 | 0.346 | 0.600 |
0.57 | 0.133 | 0.176 | 0.317 | 0.175 | 0.227 | 0.398 | 0.214 | 0.275 | 0.477 | 0.247 | 0.317 | 0.549 | 0.280 | 0.359 | 0.622 |
0.59 | 0.138 | 0.182 | 0.329 | 0.182 | 0.235 | 0.412 | 0.222 | 0.285 | 0.493 | 0.256 | 0.328 | 0.568 | 0.289 | 0.371 | 0.644 |
0.61 | 0.144 | 0.189 | 0.340 | 0.188 | 0.243 | 0.427 | 0.229 | 0.294 | 0.510 | 0.264 | 0.339 | 0.588 | 0.299 | 0.384 | 0.666 |
0.63 | 0.149 | 0.196 | 0.352 | 0.194 | 0.251 | 0.441 | 0.237 | 0.304 | 0.527 | 0.273 | 0.350 | 0.607 | 0.309 | 0.396 | 0.687 |
0.65 | 0.154 | 0.203 | 0.364 | 0.201 | 0.259 | 0.455 | 0.244 | 0.314 | 0.544 | 0.281 | 0.361 | 0.626 | 0.319 | 0.409 | 0.709 |
0.67 | 0.159 | 0.209 | 0.375 | 0.207 | 0.268 | 0.469 | 0.252 | 0.323 | 0.560 | 0.290 | 0.372 | 0.645 | 0.329 | 0.422 | 0.731 |
0.69 | 0.165 | 0.216 | 0.387 | 0.213 | 0.276 | 0.484 | 0.259 | 0.333 | 0.577 | 0.299 | 0.383 | 0.665 | 0.338 | 0.434 | 0.753 |
0.71 | 0.170 | 0.223 | 0.399 | 0.220 | 0.284 | 0.498 | 0.267 | 0.342 | 0.594 | 0.307 | 0.394 | 0.684 | 0.348 | 0.447 | 0.775 |
0.73 | 0.175 | 0.230 | 0.411 | 0.226 | 0.292 | 0.512 | 0.274 | 0.352 | 0.610 | 0.316 | 0.406 | 0.703 | 0.358 | 0.459 | 0.796 |
0.75 | 0.180 | 0.236 | 0.422 | 0.233 | 0.301 | 0.526 | 0.282 | 0.362 | 0.627 | 0.325 | 0.417 | 0.722 | 0.368 | 0.472 | 0.818 |
0.77 | 0.186 | 0.243 | 0.434 | 0.239 | 0.309 | 0.540 | 0.290 | 0.371 | 0.644 | 0.333 | 0.428 | 0.742 | 0.378 | 0.485 | 0.840 |
0.79 | 0.191 | 0.250 | 0.446 | 0.245 | 0.317 | 0.555 | 0.297 | 0.381 | 0.661 | 0.342 | 0.439 | 0.761 | 0.388 | 0.497 | 0.862 |
0.81 | 0.196 | 0.257 | 0.457 | 0.252 | 0.325 | 0.569 | 0.305 | 0.391 | 0.677 | 0.351 | 0.450 | 0.780 | 0.397 | 0.510 | 0.884 |
0.83 | 0.202 | 0.263 | 0.469 | 0.258 | 0.333 | 0.583 | 0.312 | 0.400 | 0.694 | 0.359 | 0.461 | 0.799 | 0.407 | 0.522 | 0.906 |
0.85 | 0.207 | 0.270 | 0.481 | 0.265 | 0.342 | 0.597 | 0.320 | 0.410 | 0.711 | 0.368 | 0.472 | 0.819 | 0.417 | 0.535 | 0.927 |
0.87 | 0.212 | 0.277 | 0.493 | 0.271 | 0.350 | 0.612 | 0.327 | 0.420 | 0.728 | 0.377 | 0.483 | 0.838 | 0.427 | 0.547 | 0.949 |
0.89 | 0.217 | 0.284 | 0.504 | 0.277 | 0.358 | 0.626 | 0.335 | 0.429 | 0.744 | 0.385 | 0.494 | 0.857 | 0.437 | 0.560 | 0.971 |
0.91 | 0.223 | 0.290 | 0.516 | 0.284 | 0.366 | 0.640 | 0.342 | 0.439 | 0.761 | 0.394 | 0.506 | 0.876 | 0.446 | 0.573 | 0.993 |
0.93 | 0.228 | 0.297 | 0.528 | 0.290 | 0.374 | 0.654 | 0.350 | 0.449 | 0.778 | 0.403 | 0.517 | 0.896 | 0.456 | 0.585 | 1.015 |
0.95 | 0.233 | 0.304 | 0.539 | 0.297 | 0.383 | 0.668 | 0.357 | 0.458 | 0.794 | 0.411 | 0.528 | 0.915 | 0.466 | 0.598 | 1.036 |
0.97 | 0.238 | 0.311 | 0.551 | 0.303 | 0.391 | 0.683 | 0.365 | 0.468 | 0.811 | 0.420 | 0.539 | 0.934 | 0.476 | 0.610 | 1.058 |
0.99 | 0.244 | 0.317 | 0.563 | 0.309 | 0.399 | 0.697 | 0.372 | 0.478 | 0.828 | 0.429 | 0.550 | 0.953 | 0.486 | 0.623 | 1.080 |
1.01 | 0.249 | 0.324 | 0.575 | 0.316 | 0.407 | 0.711 | 0.380 | 0.487 | 0.845 | 0.437 | 0.561 | 0.973 | 0.495 | 0.636 | 1.102 |
1.03 | 0.254 | 0.331 | 0.586 | 0.322 | 0.415 | 0.725 | 0.387 | 0.497 | 0.861 | 0.446 | 0.572 | 0.992 | 0.505 | 0.648 | 1.124 |
1.05 | 0.259 | 0.338 | 0.598 | 0.329 | 0.424 | 0.740 | 0.395 | 0.506 | 0.878 | 0.455 | 0.583 | 1.011 | 0.515 | 0.661 | 1.146 |
1.07 | 0.265 | 0.344 | 0.610 | 0.335 | 0.432 | 0.754 | 0.402 | 0.516 | 0.895 | 0.463 | 0.594 | 1.031 | 0.525 | 0.673 | 1.167 |
1.09 | 0.270 | 0.351 | 0.621 | 0.341 | 0.440 | 0.768 | 0.410 | 0.526 | 0.911 | 0.472 | 0.606 | 1.050 | 0.535 | 0.686 | 1.189 |
1.11 | 0.275 | 0.358 | 0.633 | 0.348 | 0.448 | 0.782 | 0.417 | 0.535 | 0.928 | 0.481 | 0.617 | 1.069 | 0.545 | 0.699 | 1.211 |
1.13 | 0.281 | 0.365 | 0.645 | 0.354 | 0.456 | 0.797 | 0.425 | 0.545 | 0.945 | 0.489 | 0.628 | 1.088 | 0.554 | 0.711 | 1.233 |
1.15 | 0.286 | 0.372 | 0.657 | 0.361 | 0.465 | 0.811 | 0.432 | 0.555 | 0.962 | 0.498 | 0.639 | 1.108 | 0.564 | 0.724 | 1.255 |
1.17 | 0.291 | 0.378 | 0.668 | 0.367 | 0.473 | 0.825 | 0.440 | 0.564 | 0.978 | 0.507 | 0.650 | 1.127 | 0.574 | 0.736 | 1.276 |
1.19 | 0.296 | 0.385 | 0.680 | 0.373 | 0.481 | 0.839 | 0.447 | 0.574 | 0.995 | 0.515 | 0.661 | 1.146 | 0.584 | 0.749 | 1.298 |
Parameters in Particle Structure | Values | |
---|---|---|
Minimum | Maximum | |
Number of Hidden Layers | 1 | 6 |
Number of Neurons in Each Layer | 1 | 6 |
Activation Function in Each Layer | hardlim, hardlims, purelin, tansig, radbas, logsig | |
Training Function | trainbr, traincgf, trainoss, traingd, trainb traingdm, traingdx, traincgp, trainscg, trainc, trainr, trainbfg, traincgb, traingda, trainrp |
PSO Parameters | Values |
---|---|
Number of Particles | 20 |
Solution Space Dimension | 4 |
Momentum Constant | 1 |
C2 | 1.99 |
C2 | 1.99 |
Number of Iterations | 50 |
Optimized Hyperparameters | DL Values | SD Values | NC Values |
---|---|---|---|
Number of hidden layers | 3 | 2 | 3 |
Number of Neurons in Hidden Layers | 2–5–5 | 4–6 | 4–4–6 |
Activation Functions Used in Hidden Layers | tansig—radbas—tansig | tansig—radbas | logsig—purelin— logsig |
Number of Output Layer Neurons | 1 | 1 | 1 |
Activation Function Used in Output Layer | purelin | purelin | purelin |
Training Function | trainbr | trainbfg | traincgf |
Models | MSE |
---|---|
ANN structure used in DL | 0.00001 |
ANN structure used in SD | 0.00003 |
ANN structure used in NC | 0.00004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Işık, M.F.; Avcil, F.; Harirchian, E.; Bülbül, M.A.; Hadzima-Nyarko, M.; Işık, E.; İzol, R.; Radu, D. A Hybrid Artificial Neural Network—Particle Swarm Optimization Algorithm Model for the Determination of Target Displacements in Mid-Rise Regular Reinforced-Concrete Buildings. Sustainability 2023, 15, 9715. https://doi.org/10.3390/su15129715
Işık MF, Avcil F, Harirchian E, Bülbül MA, Hadzima-Nyarko M, Işık E, İzol R, Radu D. A Hybrid Artificial Neural Network—Particle Swarm Optimization Algorithm Model for the Determination of Target Displacements in Mid-Rise Regular Reinforced-Concrete Buildings. Sustainability. 2023; 15(12):9715. https://doi.org/10.3390/su15129715
Chicago/Turabian StyleIşık, Mehmet Fatih, Fatih Avcil, Ehsan Harirchian, Mehmet Akif Bülbül, Marijana Hadzima-Nyarko, Ercan Işık, Rabia İzol, and Dorin Radu. 2023. "A Hybrid Artificial Neural Network—Particle Swarm Optimization Algorithm Model for the Determination of Target Displacements in Mid-Rise Regular Reinforced-Concrete Buildings" Sustainability 15, no. 12: 9715. https://doi.org/10.3390/su15129715
APA StyleIşık, M. F., Avcil, F., Harirchian, E., Bülbül, M. A., Hadzima-Nyarko, M., Işık, E., İzol, R., & Radu, D. (2023). A Hybrid Artificial Neural Network—Particle Swarm Optimization Algorithm Model for the Determination of Target Displacements in Mid-Rise Regular Reinforced-Concrete Buildings. Sustainability, 15(12), 9715. https://doi.org/10.3390/su15129715