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Abstract: The realistic determination of damage estimation and building performance depends on tar-
get displacements in performance-based earthquake engineering. In this study, target displacements
were obtained by performing pushover analysis for a sample reinforced-concrete building model,
taking into account 60 different peak ground accelerations for each of the five different stories. Three
different target displacements were obtained for damage estimation, such as damage limitation (DL),
significant damage (SD), and near collapse (NC), obtained for each peak ground acceleration for five
different numbers of stories, respectively. It aims to develop an artificial neural network (ANN)-based
sustainable model to predict target displacements under different seismic risks for mid-rise regular
reinforced-concrete buildings, which make up a large part of the existing building stock, using all
the data obtained. For this purpose, a hybrid structure was established with the particle swarm
optimization algorithm (PSO), and the network structure’s hyper parameters were optimized. Three
different hybrid models were created in order to predict the target displacements most successfully.
It was found that the ANN established with particles with the best position revealed by the hybrid
models produced successful results in the calculation of the performance score. The created hybrid
models produced 99% successful results in DL estimation, 99% in SD estimation, and 99% in NC
estimation in determining target displacements in mid-rise regular reinforced-concrete buildings.
The hybrid model also revealed which parameters should be used in ANN for estimating target
displacements under different seismic risks.

Keywords: mid-rise; regular RC building; target displacement; ANN; optimization algorithm

1. Introduction

Major structural damages and loss of life due to these damages during earthquakes
revealed the necessity and importance of performance-based design and evaluation of
structures [1-3]. The first important product of these studies is the “Vision 2000 Report”
published in 1995 by the California Society of Structural Engineers (SEAOC, 1995) [4].
Afterward, the performance-based design and evaluation of structures found their place
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in earthquake regulations over time. In performance-based earthquake engineering, it
is very significant to define target displacements for damage estimation when particular
performance limits of structural members are achieved.

In the performance-based design and evaluation method, it is possible to quantita-
tively determine the damage levels that may occur in the structural system elements under
design ground motion. For each relevant element, it can be checked whether this damage
remains below acceptable damage levels. Acceptable damage limits have been defined
to be consistent with the predicted performance targets at various earthquake levels [5].
Performance-based design’s primary objective is to ascertain the structural requirement in
structures exposed to ground motion. Correct specification of ground motion characteristics
and their connections to structural demand is necessary for accurate structural demand de-
termination [6-8]. With the definition of strong ground motion in objective and quantitative
ways, it is possible to evaluate the effects of earthquakes in a particular place. The purpose
of strong ground motion measurements is to measure ground acceleration as a function
of time or frequency and to monitor the performance of structures during earthquakes.
In this context, a useful tool for describing the properties of earthquake ground motion
and its consequences on structures is the seismic spectrum. The graph that represents the
period (or frequency) maximum response of a single-degree-of-freedom structure under
the associated seismic ground motion component is known as the earthquake response
spectrum. The most common criterion used to determine the amplitude of strong ground
motion is the “peak ground acceleration (PGA)”.

Modern pre-earthquake disaster management includes seismic risk analysis for every
region, and it is a crucial tool for decision-makers [9-15]. The most widely used determinant
in earthquake hazard determinations is the maximum horizontal ground acceleration,
which we abbreviate as PGA. One of the most important reasons for using the PGA value
is that the proposed design spectrum shapes in earthquake specifications can be scaled
with PGA (or parameters that can be associated with PGA, such as “effective acceleration”).
Within the scope of this study, structural analyses were carried out using 60 different
PGA values. There are many studies on the effect of PGA on structural analysis and
evaluation [16-20]. In this study, besides PGA, another variable considered is the total
number of stories in the building [21,22]. In addition, different parameters in reinforced
concrete structures with various stories have been examined comparatively [23-26].

Artificial neural networks (ANN), which is one of the machine learning methods, and
particle swarm optimization (PSO), which is used in solving multidimensional problems,
are frequently used in many areas [27-32]. In structural and earthquake engineering
applications, these techniques have a critical impact on areas such as simulation, modeling,
optimization, regression, and classification [33,34]. Some studies have also been carried
out to predict the structural properties of reinforced concrete buildings under seismic
loads, such as earthquakes with ANN [35-40]. Another algorithm with nonlinear static and
dynamic analyzes used in the design optimization of the structures is PSO [41]. In some
studies, ANN and PSO were used together [42—46]. In addition, there are several recent
studies that present an analytical-mechanical-based procedure to estimate the seismic
behavior of existing buildings [47-50]. Due to their results, they stated that predictions can
be made with reasonable accuracy.

The realistic determination of the earthquake performance of the buildings depends
on the target displacements. In order to obtain the target displacements within the scope of
this study, structural analyses were carried out for a sample reinforced concrete building
with five different mid-rise stories (4, 5, 6, 7, and 8). In order to reveal the effects of
different seismic risks on target displacements in the structural analysis, 60 different peak
ground accelerations (PGAs) in the range of 0.01 g to 1.19 g were taken into account.
For each story number and PGA value, three different limit situations were taken into
account, namely, damage limitation (DL), significant damage (SD), and near collapse (NC)
predicted in Eurcode-8, which is widely used around the world. In the study, firstly, the
period, base shear force, and elastic and effective stiffness values for the number of stories
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were obtained and compared. Then, target displacements were obtained for each story
and PGA. This study aims to develop a feedforward backpropagation ANN model to
predict target displacements under different seismic risks for mid-rise regular reinforced
concrete buildings in the most successful way. For this purpose, a PSO-ANN-based model
is presented for the optimization of the hyper parameters used in the network structure.
It is expected that the proposed hybrid structure will optimize the number of hidden
layers, the number of neurons in each layer, the activation functions in the neuron cells,
the training function of the network, and obtain the network parameters that should be
used in such a problem in the ANN model that is intended to be developed and will make
the best prediction. The change in these parameters directly affects the performance of the
network in estimation. The presented model was run on 300 data obtained for five different
stories separately for the estimation of each DL, SD, and NC value, and the findings were
presented controversially. The flow chart of the paper is shown in Figure 1.
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Figure 1. Flow chart of this study.

This paper addresses an important issue from the perspective of sustainability. The
construction industry faces challenges related to sustainability, such as energy consump-
tion, depletion of natural resources, and environmental impacts. Therefore, it is of great
importance to consider sustainability principles in the design and construction processes of
buildings. The model presented in the article offers an approach that combines artificial
neural networks and particle swarm optimization algorithms for determining target dis-
placements in buildings. This model is applicable to mid-rise regular reinforced-concrete
structures and assists in optimizing their structural performance. Accurately determining
target displacements enhances the resilience of buildings, making them safer when exposed
to earthquakes or other external forces.

Artificial neural networks provide a learning and prediction mechanism to simulate
the behavior of the structure. Real-time data obtained from the combination of structural
parameters and loads are used to train the artificial neural network. After the training
process, the model can predict the responses of the structure and determine the target dis-
placements. The particle swarm optimization algorithm is effective in optimizing the target
displacements. The swarm of particles moves in the solution space, representing the design
parameters of the structure. Each particle seeks the best solution by evaluating its current
position and its distance from the target. By sharing the best solutions and learning from
each other, the particles navigate the solution space. In this way, the optimization process is
performed to obtain the best target displacements. The significance of the article in terms of
sustainability lies in enhancing the resilience of structures and effectively managing energy
and material usage through the application of the model. Accurately determining target
displacements helps prevent unnecessary material usage and increases energy efficiency.
Thus, an important step is taken toward a sustainable construction industry.
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2. Description of the Numerical Models

The Seismostruct computer program was used for numerical analysis [51]. Pushover
analyses were performed in the structural analyses for the reference RC building models
with 4-stories, 5-stories, 6-stories, 7-stories, and 8-stories, respectively. The blueprint of the
story was taken the same in all structural buildings and is shown in Figure 2. The sample
reinforced-concrete building is modeled symmetrically and regularly in both directions.
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Figure 2. The blueprint of the sample RC building model.

All building models were created using infrmFBPH (force-based plastic hinge frame
elements), which were used for structural components such as beams and columns. These
components only allow plasticity to extend a fixed distance and model force-based ex-
tensional flexibility. According to Antoniou and Pinho [52], the ideal number of fibers in
the section should be adequate to model the stress—strain distribution in the section. The
designated fiber elements for the chosen sections amount to 100 in total. For partitions of
this type, this value is sufficient. The selected value for the plastic-hinge length (Lp/L)
is 16.67%. A fully fixed column footing and a free top end were produced by setting the
column’s boundary conditions in accordance with the cantilever boundary conditions. The
footing’s boundary condition was fixed on the surface. In all numerical models, the story
height is assumed to be 3 m. Each of these spans is 4 m in each direction and was taken
into consideration for the model RC building, which was chosen to be symmetrical in the X
and Y directions. In Figure 3, the 2D building models are displayed. The 4-story, 5-story,
6-story, 7-story, and 8-story building models were taken into account in order to represent
the mid-rise housing structures, which constitute a large part of the existing housing stock
in Tiirkiye.

Table 1 shows the RC building model’s structural characteristics. All these structural
characteristics are taken the same in all building models except target displacement.
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Figure 3. Two-dimensional models of the reference RC structure for various numbers of stories.

Table 1. Structural properties of reference RC building model.

Value
Parameter
All Structural Models
Concrete C25
Reinforcement 5420
Each story height 3m
Slab height 120 mm
Cover thickness 25 mm
Beams 250 x 600 mm
Columns 400 x 500 mm
Longitudinall reinforcement Top (lig:tr(l) i;ssi de ig%g
(columns) Left right side 4916
Stirrups (Columns) $10/100
Stirrups (beam) $10/150
Steel material model Menegotto-Pinto
Constraint type Rigid diaphragm
Concrete material model Mander et al. nonlinear
Local soil type zC
Incremental load 4 kN
Dead Load 5kN/m
Damping 5%
Importance class v
Target-displacement (4-story) 024 m
Target-displacement (5-story) 0.30m
Target-displacement (6-story) 0.36 m
Target-displacement (7-story) 042 m
Target-displacement (8-story) 0.48 m

The target displacement is one of the critical data used to decide the earthquake
performance of the buildings. The accuracy of these displacements allows for more realistic
damage estimation and performance of structures. Within the scope of this study, target
displacements were obtained by taking into account the boundary conditions specified
in Eurocode 8 (Part 3) [53,54], which is more widely used around the world. Three limit
states were envisaged in this code such as damage limitation (DL), significant damage (SD),
and near collapse (NC). DL corresponds only lightly damaged; damage to non-structural
components is economically repairable for a 20% probability exceedance in 50 years. SD
corresponds to significantly damaged; some residual strength and stiffness, non-structural
components damaged, and uneconomic to repair for 10% probability exceedance in 50-year.
NC states for heavily damaged; very low residual strength and stiffness, large permanent
drift but still standing for 2% probability exceedance in 50-year. A sample representation of
these limit states on a pushover curve is shown in Figure 4. A pushover curve is obtained
by combining the intersecting points on an interaction diagram of the roof displacement
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values corresponding to the base shear forces. The yield displacement is represented by the
first value, while the intermediate displacement and target displacement, respectively, are
represented by the second and third values.
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Figure 4. Target displacement graphs of the idealized curves and typical pushover.

According to Eurocode-8, the building importance class was selected as the IV class,
as stated in Table 2. In order to make comparisons, ZC, which is the average soil class in
Eurocode-8, was chosen as the local soil class that is given in Table 3.

Table 2. Importance class for reference RC building model [53].

Class Description

v Buildings whose integrity during earthquakes is of vital importance for civil
protection, e.g., hospitals, fire stations, power plants, etc.

Table 3. Properties of local soil classes [53].

Ground Description of Parameters
Type Stratigraphic Profile Vs, 30 (m/s)  NSPT (Blows/30 cm)  Cu (kPa)

Deep deposits of dense or
medium-dense sand, gravel,
zC or stiff clay with thickness 180-360 15-50 70-250
from several tens to many
hundreds of meters.

Pushover analysis was used in this study to carry out structural analyses. One of the
most used methods for determining a building’s seismic capacity is pushover analysis [55].
This approach offers a useful tool to assess how a building will behave in the inelastic zone.
By using this analysis’s base shear force and peak displacements, the building’s capacity
curve is determined. In order to obtain this curve, the lateral forces are incrementally raised
until the building’s roof displacement achieves a target displacement. The pushover curve
increases the structure from zero to unstable by geometrically combining the intersection
points on an interaction diagram of the roof displacement corresponding to the base shear
forces under the imposed load. By converting the pushover curve to modal capacity
diagrams and figuring out the structure’s maximum inelastic displacement capacity, the
pushover curve becomes meaningful [56—60]. The flow chart of the pushover analysis
procedure is given in Figure 5.
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Figure 5. Flowchart of typical pushover analysis (adopted from [61,62]).

3. Structural Analysis Results

In this study, the comparison of the period, base shear force, and elastic and effective
stiffness values obtained as a result of the eigenvalue and pushover analyses performed for
different stories are given in Table 4. The comparison of all these obtained values is shown

in Figure 6.

Table 4. Comparison of the values obtained for buildings with different stories.

Number of Story’s Period (s) Base Shear Force (kN) Keas (KN/m) Kegs (kKN/m)
4 0.341637 5840.40 293,739.8 119,332.5
5 0.424407 6032.93 239,489.5 100,846.8
6 0.508263 6208.78 197,843.7 87,294.01
7 0.593282 6376.08 161,456.4 76,628.36
8 0.679561 6532.66 138,517.4 68,165.47

Period (s) K-Elas (kN/m)
0.8 350,000
0.7 300,000
0.6 250,000
0.5
200,000
0.4
- 150,000
05 100,000
041 50,000
0 0
Base Shear (kN) K-eff (kN/m)
6 600 140,000

6 400

6 200
6 000
5800
5600 .
5400

m4-storey u5-storey = 6-storey

120,000

100,000
80,000
60,000

40,000 l
20,000
0

7-storey m8-storey

Figure 6. Comparison of the period, base shear force, and elastic and effective stiffness values for

different stories.
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As the number of floors of RC structures with the same structural properties increases,
the stiffness value decreases, and accordingly, the period value increases. The comparison
of the pushover curves obtained for different floor numbers as a result of the structural
analysis was made in Figure 7.
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Figure 7. Comparison of pushover curves for different stories.

Another variable considered within the scope of the study is PGA. In order to reveal
different seismic risks, 60 different PGA values were taken into account by increasing 0.01 g
in the range of 0.01-1.19 g. Structural analyzes were carried out separately to obtain three
different limit states specified in Eurocode-8 for each increment and five different stories.
The target displacement values obtained for 60 different PGA values considered within
the scope of the study are shown in Table 5. All these values obtained in the table form the
data set for the machine learning used in the study.

Table 5. Limit displacement values obtained for different story numbers and PGA.

PGA 4-Story 5-Story 6-Story 7-Story 8-Story
(8 DL SD NC DL SD NC DL SD NC DL SD NC DL SD NC

0.01 0.002 0.003 0.004 0003 0.004 0.006 0004 0005 0.008 0.004 0006 0.010 0.005 0.006 0.011
0.03 0.006 0.008 0013 0.009 0.011 0019 0011 0.014 0.025 0013 0.017 0.029 0015 0019 0.033
005 0010 0013 0022 0014 0018 0.032 0019 0.024 0042 0022 0.028 0.048 0.025 0.031 0.055
0.07 0014 0.018 0030 0020 0.026 0.044 0026 0.034 0.059 0030 0039 0.067 0034 0044 0.076
0.09 0.018 0.023 0039 0026 0.033 0.057 0034 0.043 0.075 0039 0050 0.087 0.044 0.057 0.098
011 0021 0028 0048 0.031 0.040 0.071 0.041 0.053 0.092 0.048 0061 0.106 0.054 0.069 0.120
013 0.025 0.033 0059 0037 0.048 0.085 0049 0.063 0.109 0056 0.072 0.125 0.064 0.082 0.142
015 0.029 0038 0071 0.043 0.055 0.100 0.056 0.072 0.125 0.065 0.083 0.144 0.074 0.094 0.164
0.17 0.033 0043 0082 0.049 0.063 0.114 0.064 0.082 0.142 0074 0.094 0.164 0.083 0.107 0.185
019 0.037 0.048 0.094 0054 0.071 0.128 0071 0.092 0.159 0082 0.106 0.183 0.093 0.120 0.207
021 0041 0054 0.106 0.060 0.079 0.142 0.079 0.101 0.176 0.091 0.117 0202 0.103 0.132 0.229
023 0045 0061 0.118 0.066 0.087 0.156 0.08 0.111 0.192 0.100 0.128 0222 0.113 0.145 0.251
025 0.049 0.067 0129 0073 0.095 0.171 0094 0121 0209 0108 0.139 0241 0123 0157 0273
027 0054 0074 0.141 0.079 0.104 0.185 0.102 0.130 0226 0.117 0.150 0260 0.132 0.170 0.295
029 0059 0081 0.153 0.08 0.112 0.199 0.109 0.140 0243 0.126 0.61 0279 0.142 0.182 0.316
031 0065 0.088 0.165 0092 0.120 0213 0117 0150 0259 0.134 0172 0299 0.152 0.195 0.338
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Table 5. Cont.

PGA 4-Story 5-Story 6-Story 7-Story 8-Story
(g) DL SD NC DL SD NC DL SD NC DL SD NC DL SD NC

033 0.070 0.094 0176 0.098 0.128 0.228 0124 0159 0276 0.143 0.183 0.318 0.162 0208 0.360
035 0075 0101 0188 0.105 0.136 0242 0132 0169 0293 0.152 0.194 0337 0172 0220 0.382
037 0.080 0108 0200 0.111 0.145 025 0139 0178 0309 0160 0206 035 0.182 0.233 0.404
039 0.08 0.115 0211 0.118 0.153 0270 0.147 0.188 0326 0.169 0.217 0376 0.191 0245 0425
041 0.091 0.121 0223 0.124 0.161 0284 0154 0198 0343 0178 0228 0.395 0.201 0.258 0.447
043 0.09¢ 0128 0235 0130 0169 0299 0162 0207 0360 018 0239 0414 0211 0271 0.469
045 0101 0135 0247 0137 0.177 0313 0169 0217 0376 0.195 0250 0433 0221 0283 0491
047 0107 0.142 0258 0.143 0.186 0327 0177 0227 0393 0204 0261 0453 0231 02% 0513
049 0112 0.148 0270 0150 0.194 0341 0.184 0236 0410 0212 0272 0472 0240 0308 0.535
051 0117 0.155 0282 0.156 0.202 0356 0192 0246 0426 0221 0.283 0491 0250 0321 0.556
053 0123 0162 0293 0.162 0210 0370 0199 0256 0443 0230 0.294 0510 0260 0334 0578
055 0128 0169 0305 0169 0218 0384 0207 0265 0460 0238 0306 0530 0270 0.346 0.600
057 0133 0176 0317 0.175 0.227 0398 0214 0275 0477 0247 0317 0549 0280 0359 0.622
059 0138 0.182 0329 0.182 0.235 0412 0222 028 0493 025 0328 0.568 0.289 0371 0.644
061 0144 0.189 0340 0.188 0.243 0427 0229 0294 0510 0264 0339 0588 0299 0384 0.666
063 0149 019 0352 0.194 0251 0441 0237 0304 0527 0273 0350 0.607 0309 039 0.687
065 0154 0203 0364 0201 0259 0455 0244 0314 0544 0281 0361 0.626 0319 0409 0.709
067 0159 0209 0375 0207 0268 0469 0252 0323 0560 029 0372 0645 0329 0422 0.731
069 0165 0216 0387 0213 0276 0484 0259 0333 0577 0299 0383 0.665 0338 0434 0.753
071 0170 0223 0399 0220 0284 0498 0267 0342 0594 0307 0394 0684 0348 0447 0.775
073 0175 0230 0411 0226 0.292 0512 0274 0352 0610 0316 0406 0.703 0358 0.459 0.796
075 0180 0236 0422 0233 0301 0526 0282 0362 0627 0325 0417 0722 0368 0472 0.818
077 0186 0243 0434 0239 0309 0540 0290 0371 0.644 0333 0428 0742 0378 0485 0.840
079 0191 0250 0446 0245 0317 0555 0297 0381 0.661 0342 0439 0.761 0388 0497 0.862
0.81 019 0257 0457 0252 0325 0569 0305 0391 0677 0351 0450 0.780 0.397 0510 0.884
0.83 0202 0263 0469 0258 0333 0583 0312 0400 0.694 035 0461 0799 0407 0522 0.906
0.85 0207 0270 0481 0265 0342 0597 0320 0410 0.711 0368 0472 0.819 0417 0535 0.927
087 0212 0277 0493 0271 0350 0.612 0327 0420 0728 0377 0483 0.838 0427 0547 0.949
0.89 0217 0284 0504 0277 0358 0626 0335 0429 0744 038 0494 0857 0437 0560 0971
091 0223 029 0516 0284 0366 0.640 0342 0439 0761 0394 0506 0.876 0446 0573 0.993
093 0228 0297 0528 0290 0374 0654 0350 0449 0778 0403 0517 0.896 0456 0585 1.015
095 0233 0304 0539 0297 0383 0668 0357 0458 0.794 0411 0528 0915 0466 0598 1.036
097 0238 0311 0551 0303 0391 0683 0365 0468 0.811 0420 0539 0934 0476 0.610 1.058
099 0244 0317 0563 0309 0399 0697 0372 0478 0.828 0429 0550 0.953 0486 0.623 1.080
1.01 0249 0324 0575 0316 0407 0711 0380 0487 0.845 0437 0561 0973 0495 0.636 1.102
1.03 0254 0331 0586 0322 0415 0725 0387 0497 0.861 0446 0572 0992 0505 0.648 1.124
1.05 0259 0338 0598 0329 0424 0740 0395 0506 0.878 0455 0583 1.011 0515 0.661 1.146
1.07 0265 0344 0.610 0335 0432 0754 0402 0516 0.895 0463 0594 1.031 0525 0.673 1.167
1.09 0270 0351 0.621 0341 0440 0.768 0410 0526 0911 0472 0606 1.050 0535 0.686 1.189
111 0275 0.358 0.633 0348 0.448 0.782 0417 0535 0928 0481 0.617 1.069 0545 0.699 1211
113 0281 0365 0.645 0354 0456 0.797 0425 0545 0945 0489 0.628 1.088 0.554 0.711 1.233
115 0286 0372 0.657 0361 0465 0811 0432 0555 0962 0498 0.639 1.108 0564 0.724 1.255
117 0291 0378 0.668 0367 0473 0825 0440 0564 0978 0507 0650 1.127 0574 0736 1.276
1.19 029 0385 0.680 0373 0481 0.839 0447 0574 099 0515 0.661 1.146 0.584 0.749 1.298

With the increase in the number of floors and seismic risk in reinforced concrete
structures, the target displacement values have also increased. The increase in the number
of stories of a building under the influence of an earthquake and the increase in the period
value depending on the decrease in the stiffness value indicates that the structure will be
exposed to more horizontal displacement. Therefore, as the number of floors increases,
the target displacement values will increase accordingly. In addition, the high seismic risk
means that the effect of the earthquake on the structure will increase, and it will cause more
horizontal displacement.
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4. Artificial Neural Network (ANN)

ANN is an artificial intelligence technology inspired by the working principles of the
human brain [28]. ANNs are designed as networks of complex mathematical operations
used to learn and generalize data. These networks contain many tiny artificial neurons
interconnected by billions of junctions, and these neurons work together to sense, classify,
or predict data patterns. A simple ANN structure is shown in Figure 8.

HIDDEN LAYER

i

Figure 8. ANN network structure.

INPUT LAYER
43AV1 LNd1NO

In the ANN network structure presented in Figure 8, information enters the network
from the input layer and proceeds to the output layer. Neuron cells in each layer multiply
the information from the previous layer by their weight and pass it through an activation
function by adding its own bias value. If there is information passed through the activation
function, it is transmitted to the next layer. The information becomes meaningful in the last
output layer, and the network generates output information for the input information.

4.1. Particle Swarm Optimization Algorithm

PSO is an optimization technique that mimics the behavior of a swarm in nature. In
PSO, each individual in a population represents a part of a solution, and it is aimed to find
a better solution as a result of interactions between individuals [31]:

1. Set the initial parameters and create the population;

2. Identify each individual’s best solution so far (pbest) and the global best solution
(gbest);

3. Calculate the new velocities of each particle and swap the particles;

4. Update pbest and gbest values;

5. Go back to step 3 for the number of iterations.

PSO is a population-based algorithm. Each particle in the population is a solution to
the problem to be solved. In each iteration, the position of the particle is changed in the
solution space, as shown in Equations (1) and (2).

Vkl(t + 1) = WVk[(t) + C1Tﬂﬂd(1)(pb€5tkl(t) — Xk](t)) + sznd(l)(gbestkl(t) - Xkl(t)) (1)

Xn(t+1) = Xu(t) + Vu(t +1) )

In Equation (1), the value of Vi,(t + 1) represents the velocity of the ¢ iteration in the
first dimension of k particles. The pbesty;(t) value shows the best position of k particles in
the first dimension in the ¢ iteration. The value of Xj; (f) shows the position of the k particle
in the first dimension in the f iteration. The value of gbest(t) shows the best position in
the first dimension in the t iteration. The W value in the equation shows the momentum
coefficient, and the C; and C; constants are the learning parameters used to find the best
solution. The value of X, (t) given in Equation (2) shows the position of the n particle in
the t iteration.
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4.2. Hybrid Model and Results

In this part of the study, a hybrid structure was created using PSO and ANN to most
successfully predict target displacements under different seismic risks for mid-rise regular
reinforced concrete buildings. In the data set presented in Table 6, the input values are
in the ANN models created with the PGA and Floor number. DL, SD, and NC values
form the output information with hybrid structures that are created differently with these
input values. With these hybrid structures, the parameters that should be used in the most
successful ANN structures are determined for the estimation of DL, SD, and NC values.
In the study, the data set is divided into 70% training data and 30% test data. Thus, they
learn models with 210 pieces of data and make predictions for 70 data they have never
encountered. The generated PSO-ANN hybrid structure is shown in Figure 9.

Table 6. Parameters and limit values used in the hybrid model.

Val
Parameters in Particle Structure aues
Minimum Maximum
Number of Hidden Layers 1 6
Number of Neurons in Each Layer 1 6

Activation Function in Each Layer hardlim, hardlims, purelin, tansig, radbas, logsig
trainbr, traincgf, trainoss, traingd, trainb
traingdm, traingdx, traincgp, trainscg,

traing, trainr, trainbfg, traincgb, traingda, trainrp

Training Function

‘ START |

POPULATION MEMBER SET INITIAUIZE PARTICLES WITH
INITIAL VELOCITIES ITERATION * RANDOM POSITION AND GENERA;::}TQ‘LEF?R EACH
MEMBER VELOCITY VECTORS
CALCULATE AND UPDATE THE FIND AND UPDATE pbest AND EVALUATE THE FITNESS OF
VELOCITY OF PARTICLES gbest PARTICLES
CALCULATE AND UPDATE
t=t+1 p—
POSITION OF PARTICLES
L A

| FINISH |

Figure 9. Created PSO-ANN hybrid structure.

The hybrid structure presented in Figure 9 was run separately for DL, SD, and NC
values. Within the hybrid model, each particle contains hyper parameters used in the
ANN network structure. These parameters are the number of hidden layers, the number
of neurons in each hidden layer, the activation functions of neurons in each layer, and the
training function of the network. The training function and activation functions used in
the ANN network structure and the limit values used in the hybrid structure are shown in
Table 6.

Activation functions and training functions presented in Table 6 are different functions
used in ANNSs. The use of these functions directly affects the performance of the ANN
structure. In addition, while increasing the number of hidden layers and neurons, the
response time of the system increases in experimental studies. Therefore, as a result of the
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experimental studies, the upper limit of the number of hidden layers and neurons was
determined as 6.

In the hybrid model, each particle forms an ANN structure and is individually mea-
sured according to its fitness function. In the hybrid model, each particle forms an ANN
structure, and each particle is individually measured according to its fitness function. In
the hybrid model, the population was created as the first step. The values given in Table 6
were taken into account when creating the population. Other parameters used in PSO were
determined as a result of studies, as presented in Table 7.

Table 7. PSO parameters.

PSO Parameters Values
Number of Particles 20
Solution Space Dimension 4
Momentum Constant 1
C, 1.99
C, 1.99
Number of Iterations 50

As can be seen in Table 7, the momentum constant (w) value was taken as 1 in order
to eliminate sudden velocity changes and not destroy the velocity concept in the algorithm,
and C; and C, values were chosen to be C, + C; = 4 [31]. The algorithm converges as
the number of iterations increases. As a result of the experimental studies, the number of
iterations was determined as 50.

Since each particle creates an ANN structure within itself, “network parameters to be
optimized” constitute the solution space. According to the initial parameters determined
as the first step, 20 particles were created. In the next step in the hybrid model, the pbest
value of each generated particle and the gbest value in that iteration were calculated as
presented in Equation (3).

f(P;)= MSE(ANN;) (©)]

In Equation (3), f(P;) represents the fitness value of the i-th particle, ANN; represents
the ANN network structure established with the i-th particle, and MSE represents the mean
squared error. After obtaining the pbest and gbest values of each particle, the velocities
of the particles were updated, as shown in Equation (1), and the positions of the particles
according to the calculated velocity values were updated, as shown in Equation (2).

For each DL, SD and NC value of the hybrid model, 50 iterations were run separately.
After 50 iterations, the particles in the best position for DL, SD and NC values were
determined according to gbest values. The best particle positions determined are presented
in Table 8.

Table 8. Particles values in the gbest.

Optimized Hyperparameters VaIl)ll;es Vauslll?es V:lfes
Number of hidden layers 3 2 3
Number of Neurons in Hidden 255 46 446
Layers
Activation Functions Used in tansie—radbas— logsie—purelin—
Hidden gt . tansig—radbas & gl Pt
Layers ansig ogsig
Number of Output Layer 1 1 1
Neurons
Activation Function Used in
Output purelin purelin purelin
Layer

Training Function trainbr trainbfg traincgf
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Table 8 shows that different network structures should be created to estimate different
data using the same input data. As seen in the three models, the parameters used in
the network structure are different. ANN structures established with the best particles
presented in Table 8 are shown in Figure 10. In Figure 10, architectures were created with
the specified parameters to achieve the most successful results in three models.

Layer Layer Layer Layer \avee L Aayee L
Input Output  mput Output
2 1 2 1
3 5 5 1 4 4 6 1

1xTarget + 0,00041

I

Output

Output = 1xTarget + 0,00019
(=]

o

0.55 O Daa

o
N
o

°

4
o

0.7

0.6

0.5

0.4

0.3

0.1

5 y=T

(a) ANN structure used in DL estimation

Layer

Layer

(b) ANN structure used in SD estimation

Layer

Input Output
2 1

4

6

1

(c) ANN structure used in NC estimation

Figure 10. ANN structures established with particles with the best position.

The successes of the ANN structures, which are presented in Figure 7 and contain the
hyper parameters obtained with the hybrid model, during the testing phase are shown in

Figure 11.
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Fit
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......... y=T
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Figure 11. Cont.
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Training: R=0.99988
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Figure 11. Training and test success graphs of the models.

The regression graphs of the ANN structures, which are presented in Figure 11a,c,e,
and which are calculated with the hybrid model, are shown. In the regression graphs
of all three models, the target line and the fit lines overlap. The data concentrate on
these overlapping lines. It shows that the learning success of these models is high. The
performance graphs of the ANN structures obtained with the hybrid model and presented
in Figure 11b,d,f are shown. In all three graphs, it is seen that the MSE values of the
networks decrease during the iterations. The performances of the networks are determined
according to the MSE value. These graphs show that the models are successful and their
predictive power on the data they have not encountered.

As a result of this study, testing was carried out on 70 pieces of data, which completed
their training with 210 data and did not encounter each model whose educational achieve-
ments are presented in Figure 11. As a result of the tests, the success of the models in their
predictions of the new data is presented in Table 9.

Table 9. Test performances of models.

Models MSE
ANN structure used in DL 0.00001
ANN structure used in SD 0.00003
ANN structure used in NC 0.00004

The MSE values of the models are seen in the estimation processes performed on
the test data presented in Table 9 The closer the MSE value is to zero, the greater the
success of the model in predicting. The results show that the ANN models created with
the parameters obtained with the hybrid model produced successful results. There is no
comparable algorithm to the presented hybrid model. The comparison of the proposed
model has been discussed in the study using real data in a controversial manner, and the
obtained results have been presented.

5. Conclusions

It is important to know the target displacements in order to know the damage estima-
tion and possible performances of the structures under the effect of earthquakes. Within
the scope of this study, three different target displacements were obtained by choosing the
number of stories and seismic risk as variables as a result of structural analysis. For this
purpose, structural analyses were carried out by considering five different story numbers
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and 60 different PGA values. In RC structures with the same structural features, as the
number of stories increases, the period increases, and accordingly, the stiffness decreases.
In addition, with the increase in PGA values, the target displacements increased. Since the
horizontal drifts expected from the structure increase depending on the magnitude of the
earthquake, the target displacement values predicted for the performance level will also
increase. As a result of this, accurately obtaining the target displacements to be predicted
under the effect of any earthquake in the building will enable the performance levels of
the building to be determined more realistically. Within the scope of this study, 300 result
values obtained from the results of the structural analysis were used as a data set, and
target displacement values were tried to be estimated with artificial neural networks. For
this purpose, a hybrid structure was established in order to predict the target displacements
under different seismic risks in the most successful and easy way for mid-rise regular rein-
forced concrete buildings. Owing to this hybrid structure, the ANN hyper parameters that
should be used in the most successful estimation of DL, SD, and NC values were optimized
using PSO. In light of the findings, it was observed that the success of network structures
established with different network parameters on the same data is different. ANN network
structures established by the most successful particles obtained with the hybrid model
produced successful results in estimating DL, SD, and NC values. In addition, thanks to
the created hybrid structure, the network parameters to be used in such a problem were
determined separately for each value.

In the study, hybrid models were created to determine target displacements in regular
mid-rise reinforced concrete buildings with 99% success in DL estimation. In addition, 99%
success was achieved in the estimation of SD. In addition, hybrid models achieved a 99%
success rate in NC prediction. These results demonstrate the effectiveness of hybrid models
in detecting target displacements in mid-rise regular reinforced concrete buildings.

In conclusion, the article “A Hybrid Artificial Neural Network—Particle Swarm Op-
timization Algorithm Model for the Determination of Target Displacements in Mid-rise
Regular Reinforced-Concrete Buildings” presents a model for determining target displace-
ments in mid-rise regular reinforced-concrete structures with a focus on sustainability.
By combining artificial neural networks and particle swarm optimization algorithms, the
model aids in optimizing structural performance and effectively managing resources. This
article can be considered an important step toward achieving sustainability goals in the
construction industry.

The study was carried out only for regular reinforced concrete buildings. This study
can be used as a resource for reinforced-concrete buildings with different irregularities. In
addition, the study was carried out only for mid-rise buildings. This study can be a base
for buildings with more number stories.
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