Performance Zoning of Asphalt Pavement and Performance Grade (PG) of Asphalt Binder in Karamay: A Case Study of Xinjiang, China
Abstract
:1. Introduction
2. Generation Performance Grading Map of Asphalt Pavement for Xinjiang
2.1. Temperature Data Collection and Analysis
2.2. Pavement Temperature Calculation
2.3. Generating Performance Grading Map for Xinjiang
3. Materials and Methods
3.1. Materials
3.2. Performance Methods
3.2.1. Dynamic Shear Rheometer (DSR)
3.2.2. Bending BEAM Rheometer (BBR)
3.2.3. Asphalt Mixture Test
4. Results and Discussion
4.1. High-Temperature PG
4.2. Intermediate Temperature PG
4.3. Low-Temperature PG
4.4. Intermediate Temperature PG
4.5. Durability of Asphalt Mixtures
5. Summary and Conclusions
- (1)
- The asphalt pavement performance grading map of Xinjiang region divides Xinjiang into nine sub-districts, which indicates that the climate varies significantly in different areas of Xinjiang. The four partitions with the largest area share are PG70-16, PG70-22, PG70-28, and PG70-34, indicating that the pavement temperature is close to 70 °C in most areas of Xinjiang during the high-temperature season.
- (2)
- For the five partitions with a continuous PG range over 92 °C (PG76-22, PG70-28, PG70-34, PG64-34, and PG58-40), modified bitumen is recommended to ensure that the pavement performance needs can be met. The remaining four subdivisions are recommended to use matrix asphalt to meet the performance requirements in order to achieve economic and environmental protection.
- (3)
- The lower the needle penetration grade of the matrix asphalt, the better the high-temperature performance, and the worse the low-temperature performance, but overall the continuous PG span difference is not large; SBS-modified asphalt continuous PG span can be higher than the matrix asphalt by about 20 °C.
- (4)
- In the case that different penetration grades of asphalt have the same PG grading, it is recommended to combine the penetration grade and continuous PG range together for reference.
- (5)
- By combining the PG grades of five kinds of asphalt with the performance zoning map of the Xinjiang region, we find that 70# asphalt can adapt to most areas of northern Xinjiang, and 50# asphalt can adapt to most areas of southern Xinjiang. Additionally, 90# and 30# are only useful in some areas. SBS-modified asphalt can not meet the requirements only in the PG58-40 area.
- (6)
- An asphalt mixture with a low penetration has better rutting resistance and water stability, but low-temperature crack resistance and fatigue performance are poor; only in some areas can it meet the requirements of the code, and an SBS-modified asphalt mixture has better durability. According to the road temperature, the paper examined the PG grading of different asphalt binders, which provides useful information for the selection of bitumen in different areas of Xinjiang. However, due to the lack of pavement temperature data, the pavement temperature used in this study is converted by air temperature, so the monitoring and collection of pavement temperature data will be very important work in the future. Additionally, not many types of asphalt were studied in this paper. In order to provide more options for the applicability of asphalt binder in different areas of Xinjiang, PG grading studies on different types of asphalt binder from more manufacturers are needed in the future.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, H.; Xu, G.; Gong, M.; Yang, J. Recycling long-term-aged asphalts using bio-binder/plasticizer-based rejuvenator. Constr. Build. Mater. 2017, 147, 117–129. [Google Scholar] [CrossRef]
- Gökalp, İ.; Uz, V.E. Utilizing of Waste Vegetable Cooking Oil in bitumen: Zero tolerance aging approach. Constr. Build. Mater. 2019, 227, 116695. [Google Scholar] [CrossRef]
- Yan, K.Z.; Hong, Z.; You, L.Y.; Ou, J.; Miljković, M. Influence of ethylene-vinyl acetate on the performance improvements of low-density polyethylene-modifeied bitumen. J. Clean. Prod. 2021, 278, 123865. [Google Scholar] [CrossRef]
- Cota, J.; Martínez-Lazcano, C.; Montoya-Alcaraz, M.; García, L.; Mungaray-Moctezuma, A.; Sánchez-Atondo, A. Improvement in Durability and Service of Asphalt Pavements through Regionalization Methods: A Case Study in Baja California, Mexico. Sustainability 2022, 14, 5123. [Google Scholar] [CrossRef]
- Ullah, S.; Yang, C.; Cao, L.; Wang, P.; Chai, Q.; Li, Y.; Wang, L.; Dong, Z.; Lushinga, N.; Zhang, B. Material design and performance improvement of conductive asphalt concrete incorporating carbon fiber and iron tailings. Constr. Build. Mater. 2021, 303, 124446. [Google Scholar] [CrossRef]
- Zeiada, W.; Liu, H.; Ezzat, H.; Al-Khateeb, G.G.; Underwood, B.S.; Shanableh, A.; Samarai, M. Review of the Superpave performance grading system and recent developments in the performance-based test methods for asphalt binder characterization. Constr. Build. Mater. 2022, 319, 126063. [Google Scholar] [CrossRef]
- Ma, X.; Dong, Z.; Dong, Y. Stiffness identification method for asphalt pavement layers and interfaces using monitoring data from built-in sensors. Struct. Health Monit. 2023, 22, 151–165. [Google Scholar] [CrossRef]
- Wang, X.; Fang, N.; Ye, H.; Zhao, J. Fatigue Damage Analysis of Cement-Stabilized Base under Construction Loading. Appl. Sci. 2018, 8, 2263. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Fang, N.; Wang, X.; Wu, C.; Fang, Y. Evaluation of the Coordination of Structural Layers in the Design of Asphalt Pavement. Appl. Sci. 2020, 10, 3178. [Google Scholar] [CrossRef]
- Du, Y.; Chen, J.; Han, Z.; Liu, W. A review on solutions for improving rutting resistance of asphalt pavement and test methods. Constr. Build. Mater. 2018, 168, 893–905. [Google Scholar] [CrossRef]
- Liu, W.; Yan, K.; Ge, D.; Chen, M. Effect of APAO on the aging properties of waste tire rubber modified asphalt binder. Constr. Build. Mater. 2018, 175, 333–341. [Google Scholar] [CrossRef]
- Xing, M.; Yang, H.; Zhao, Z.; Yu, T. Effect of Asphalt Pavement Base Layers on Transverse Shrinkage Cracking Characteristics. Sustainability 2023, 15, 7178. [Google Scholar] [CrossRef]
- Zhang, K.; Kevern, J. Review of porous asphalt pavements in cold regions: The state of practice and case study repository in design, construction, and maintenance. J. Infrastruct. Preserv. Resil. 2021, 2, 4. [Google Scholar] [CrossRef]
- Miao, Y.; Sheng, J.; Ye, J. An Assessment of the Impact of Temperature Rise Due to Climate Change on Asphalt Pavement in China. Sustainability 2022, 14, 9044. [Google Scholar] [CrossRef]
- Zhang, H.; Gong, M.; Huang, Y.; Miljković, M. Study of the high and low-temperature behavior of asphalt based on a performance grading system in Northeast China. Constr. Build. Mater. 2020, 254, 119046. [Google Scholar] [CrossRef]
- Hamid, A.; Baaj, H.; El-Hakim, M. Temperature and Aging Effects on the Rheological Properties and Performance of Geopolymer-Modified Asphalt Binder and Mixtures. Materials 2023, 16, 1012. [Google Scholar] [CrossRef] [PubMed]
- Baghaee Moghaddam, T.; Baaj, H. The use of compressible packing model and modified asphalt binders in high-modulus asphalt mixdesign. Road Mater. Pavement Des. 2020, 21, 1061–1077. [Google Scholar] [CrossRef]
- Zhang, J.; Apeagyei, A.K.; Airey, G.D.; Grenfell, J.R. Influence of aggregate mineralogical composition on water resistance of aggregate–bitumen adhesion. Int. J. Adhes. Adhes. 2015, 62, 45–54. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, J.; Hui, B.; Zhang, H.; Guan, Y.; Guo, F.; Li, Y.; He, Y.; Wang, D. Analysis of Modulus Properties of High-Modulus Asphalt Mixture and Its New Evaluation Index of Rutting Resistance. Sustainability 2023, 15, 7574. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, X.; Li, Y.; Fu, Q.; Rui, H. Laboratory Evaluation of Dynamic Characteristics of a New High-Modulus Asphalt Mixture. Sustainability 2022, 14, 11838. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Xu, S.; You, Z. High modulus asphalt concrete: A state-of-the-art review. Constr. Build. Mater. 2020, 237, 117653. [Google Scholar] [CrossRef]
- Hemmati, N.; Vigneswaran, S.; Kim, H.H.; Lee, M.S.; Lee, S.J. Laboratory Evaluation of Asphalt Binders Containing Styrene-Butadiene-Styrene (SBS) and Processed Oil. Materials 2023, 16, 1235. [Google Scholar] [CrossRef]
- Huang, W.; Tang, N. Characterizing SBS modified asphalt with sulfur using multiple stress creep recovery test. Constr. Build. Mater. 2015, 93, 514–521. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Y.; Muhammad, Y.; Li, J.Q.; Ye, Y.; Li, J.; Li, Z.; Pei, R. Effect of glutaraldehyde-chitosan crosslinked graphene oxide on high temperature properties of SBS modified asphalt. Constr. Build. Mater. 2022, 357, 129387. [Google Scholar] [CrossRef]
- Mugume, R.; Kakoto, D. Effect of Inappropriate Binder Grade Selection on Initiation of Asphalt Pavement Cracking. Sustainability 2020, 12, 6099. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, H.; Chen, Z. Improvement of short-term aging resistance of styrenebutadiene rubber modified asphalt by Sasobit and epoxidized soybean oil. Constr. Build. Mater. 2021, 271, 121870. [Google Scholar] [CrossRef]
- Angelo, J.D. Current Status of Superpave Binder Specification. Road Mater. Pavement Des. 2009, 10, 13–24. [Google Scholar] [CrossRef]
- Inocente Domingos, M.D.; Faxina, A.L. Accelerated short term ageing effects on the rheological properties of modifified bitumens with similar high PG grades. Road Mater. Pavement Des. 2015, 16, 469–480. [Google Scholar] [CrossRef]
- Zou, J.; Roque, R.; Chun, S.; Lopp, G. Long-term fifield evaluation and analysis of top-down cracking for Superpave projects. Road Mater. Pavement Des. 2013, 14, 831–846. [Google Scholar] [CrossRef]
- D’Angelo, J.; Fee, F. Superpave binder tests and specifications: How have they performed in the real world? Assoc. Asph. Paving Technol. Proc 2000, 69, 697–713. [Google Scholar]
- Wang, T.; Xiao, F.; Amirkhanian, S.; Huang, W.; Zheng, M. A review on low temperature performances of rubberized asphalt materials. Constr. Build. Mater. 2017, 145, 483–505. [Google Scholar] [CrossRef]
- Anderson, D.A.; Christensen, D.W.; Bahia, H.U.; Dongre, R.; Sharma, M.G.; Antle, C.E.; Button, J. Binder Characterization and Evaluation Volume 3: Physical Characterization; Strategic Highway Research Program: Washington, DC, USA, 1994. [Google Scholar]
- Tester, A.M.P. Testing for Fatigue Cracking in the Asphalt Mixture Performance Tester; FHWA: Washington, DC, USA, 2016.
- Reynaldo, R.; Yu, Y.; Lopp, G. Evaluation of the Cracking Performance of Asphalt Binders at Intermediate Temperatures; University of Florida: Gainesville, FL, USA, 2020. [Google Scholar]
- Qiao, Y.; Santos, J.; Stoner, A.M.K.; Flinstch, G. Climate change impacts on asphalt road pavement construction and maintenance: An economic life cycle assessment of adaptation measures in the State of Virginia, United States. J. Ind. Ecol. 2020, 24, 342–355. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, X.; Gao, G. Study on Climate Impacts on Asphalt Pavement in Tibet, China. J. Geosci. Environ. Prot. 2019, 7, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Association, A.A. Reference Manual for High Performance Asphalt Pavement Foundation; Beijing People’s Transport Press: Beijing, China, 2005. [Google Scholar]
- Asi, I.M. Performance evaluation of SUPERPAVE and Marshall asphalt mix designs to suite Jordan climatic and traffic conditions. Constr. Build. Mater. 2006, 21, 1732–1740. [Google Scholar] [CrossRef]
- Hassan, H.F.; Al-Nuaimi, A.; Al-Oraimi, S.; Jafar, T.M. Development of asphalt binder performance grades for Omani climate. Constr. Build. Mater. 2007, 22, 1684–1690. [Google Scholar] [CrossRef]
- Saleh, A.M.M.; Trad, M.A. Generation of asphalt performance grading map for Egypt based on the SUPERPAVETM program. Constr. Build. Mater. 2011, 25, 2248–2253. [Google Scholar] [CrossRef]
- Mirza, M.W.; Abbas, Z.; Rizvi, M.A. Temperature Zoning of Pakistan for Asphalt Mix Design. Pak. J. Eng. Appl. Sci. 2011, 8, 49–60. [Google Scholar]
- Jitsangiam, P.; Chindaprasirt, P.; Nikraz, H. An evaluation of the suitability of SUPERPAVE and Marshall asphalt mix designs as they relate to Thailand’s climatic conditions. Constr. Build. Mater. 2013, 40, 961–970. [Google Scholar] [CrossRef] [Green Version]
- Salem, H.A.; Uzelac, D.; Matic, B. Temperature Zoning of Libya Desert for Asphalt Mix Design. Appl. Mech. Mater. 2014, 3489, 638–640. [Google Scholar] [CrossRef]
- Viola, F.; Celauro, C. Effect of climate change on asphalt binder selection for road construction in Italy. Transp. Res. Part D 2015, 37, 40–47. [Google Scholar] [CrossRef]
- Zhao, K.; Ma, X.; Zhang, H.; Dong, Z. Performance zoning method of asphalt pavement in cold regions based on climate Indexes: A case study of Inner Mongolia. Constr. Build. Mater. 2022, 361, 129650. [Google Scholar] [CrossRef]
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Renmin Communication Press: Beijing, China, 2011.
- JTG F40-2004; The Chinese Technical Specification for Construction of Highway Asphalt Pavement. Renmin Communication Press: Beijing, China, 2004.
- Kennedy, T.W.; Huber, G.A.; Harrigan, E.T.; Cominsky, R.J.; Hughes, C.S.; Von Quintus, H.; Moulthrop, J.S. Moulthrop Superior Performing Asphalt Pavements (Superpave): The Product of the SHRP Asphalt Research Program; Strategic Highway Research Program: Washington, DC, USA, 1994. [Google Scholar]
Station | Longitude (°) | Latitude (°) | Average of Seven Days, Average Maximum Temperature (°C) | Standard Deviation | Maximum Design Temperature of Road Surface (°C) | Average of Seven Days, Average Minimum Temperature (°C) | Standard Deviation | Minimum Design Temperature of Road Surface (°C) |
---|---|---|---|---|---|---|---|---|
Fuhai | 87.48 | 47.11 | 38.0 | 2.2 | 65.50 | −39.0 | 3.1 | −31.83 |
Habahe | 86.32 | 48.04 | 37.4 | 2.4 | 64.99 | −37.8 | 4.1 | −30.80 |
Buerjin | 86.85 | 47.70 | 37.4 | 2.4 | 64.97 | −39.0 | 3.8 | −31.83 |
Jimunai | 85.87 | 47.44 | 35.4 | 2.8 | 63.05 | −34.8 | 4.1 | −28.22 |
Fuyun | 89.53 | 46.99 | 38.4 | 2.8 | 65.88 | −41.0 | 4.1 | −33.55 |
Qinghe | 90.38 | 46.67 | 35.0 | 2.2 | 62.61 | −42.2 | 3.4 | −34.58 |
Tacheng | 82.59 | 46.46 | 38.2 | 1.9 | 65.65 | −33.2 | 4.1 | −26.84 |
Emin | 83.62 | 46.52 | 36.5 | 2.0 | 64.03 | −36.5 | 4.5 | −29.68 |
Yumin | 82.98 | 46.20 | 38.0 | 2.2 | 65.44 | −34.2 | 4.4 | −27.70 |
Tuoli | 83.60 | 45.94 | 34.8 | 1.9 | 62.37 | −31.4 | 3.6 | −25.29 |
Hebukesaier | 85.72 | 46.79 | 32.2 | 1.5 | 59.95 | −34.8 | 3.8 | −28.22 |
Wusu | 84.62 | 44.45 | 38.9 | 1.7 | 66.17 | −30.6 | 2.5 | −24.61 |
Kelamayi | 84.77 | 45.59 | 39.5 | 1.7 | 66.83 | −32.3 | 3.2 | −26.07 |
Kuitun | 84.89 | 44.45 | 38.9 | 1.6 | 66.17 | −30.4 | 2.5 | −24.43 |
Shawan | 85.62 | 44.33 | 37.7 | 1.3 | 65.02 | −31.5 | 3.1 | −25.38 |
Manasi | 86.20 | 44.29 | 39.1 | 1.8 | 66.35 | −33.1 | 2.8 | −26.76 |
Shihezi | 86.00 | 44.18 | 39.2 | 1.5 | 66.44 | −38.5 | 4.6 | −31.40 |
Changji | 87.30 | 44.02 | 40.3 | 2.1 | 67.48 | −37.1 | 3.8 | −30.19 |
Wulumuqi | 87.61 | 43.79 | 37.7 | 2.1 | 64.98 | −29.4 | 3.0 | −23.58 |
Wujiaqu | 87.54 | 44.17 | 41.0 | 2.1 | 68.16 | −36.8 | 2.6 | −29.94 |
Fukang | 87.94 | 44.16 | 40.2 | 1.8 | 67.39 | −32.5 | 3.0 | −26.24 |
Miquan | 87.68 | 43.97 | 40.0 | 1.9 | 67.19 | −33.0 | 4.0 | −26.67 |
Qitai | 89.59 | 44.02 | 38.2 | 1.7 | 65.47 | −37.1 | 3.3 | −30.19 |
Jimusaer | 89.18 | 44.00 | 38.2 | 1.6 | 65.47 | −32.2 | 3.2 | −25.98 |
Mulei | 90.28 | 43.83 | 34.4 | 1.8 | 61.83 | −32.6 | 3.9 | −26.33 |
Balikun | 93.01 | 43.59 | 33.0 | 2.0 | 60.48 | −35.0 | 3.3 | −28.39 |
Yiwu | 94.69 | 43.25 | 32.8 | 1.7 | 60.26 | −31.3 | 2.6 | −25.21 |
Hami | 93.44 | 42.78 | 41.4 | 1.4 | 68.43 | −26.6 | 2.6 | −21.17 |
Tulufan | 89.18 | 42.93 | 46.2 | 1.3 | 73.02 | −19.8 | 2.6 | −15.32 |
Shanshan | 90.21 | 42.86 | 43.8 | 1.4 | 70.73 | −22.5 | 2.2 | −17.64 |
Tuokesun | 88.65 | 42.79 | 46.5 | 1.6 | 73.30 | −20.4 | 2.0 | −15.84 |
Hejing | 86.39 | 42.31 | 36.7 | 1.3 | 63.90 | −24.2 | 1.9 | −19.10 |
Heshuo | 86.86 | 42.26 | 36.6 | 1.2 | 63.80 | −25.6 | 2.2 | −20.31 |
Yanqi | 86.57 | 42.05 | 37.2 | 1.5 | 64.36 | −26.0 | 2.6 | −20.65 |
Bohu | 86.63 | 41.98 | 36.5 | 1.1 | 63.69 | −25.6 | 2.7 | −20.31 |
Kuerle | 86.06 | 41.68 | 38.7 | 1.7 | 65.76 | −20.8 | 1.9 | −16.18 |
Yuli | 86.25 | 41.33 | 39.3 | 1.3 | 66.30 | −24.3 | 2.5 | −19.19 |
Ruoqiang | 88.17 | 39.02 | 42.3 | 1.5 | 68.96 | −22.3 | 1.9 | −17.47 |
Qiemo | 85.53 | 38.14 | 40.2 | 1.4 | 66.87 | −21.6 | 1.8 | −16.87 |
Minfeg | 82.68 | 37.06 | 40.6 | 1.7 | 67.15 | −21.1 | 2.4 | −16.44 |
Yutian | 81.95 | 36.45 | 39.2 | 1.4 | 65.75 | −19.7 | 2.3 | −15.24 |
Cele | 80.78 | 37.04 | 40.0 | 1.5 | 66.57 | −19.2 | 2.3 | −14.81 |
Hetian | 79.94 | 37.12 | 39.1 | 1.5 | 65.72 | −18.4 | 2.7 | −14.12 |
Moyu | 79.71 | 37.31 | 38.9 | 1.3 | 65.55 | −20.8 | 2.1 | −16.18 |
Pishan | 78.29 | 37.62 | 39.3 | 1.5 | 65.96 | −19.9 | 2.5 | −15.41 |
Tashiuergan | 75.23 | 37.77 | 30.2 | 1.5 | 57.29 | −28.7 | 1.8 | −22.97 |
Yecheng | 77.42 | 37.89 | 37.7 | 1.4 | 64.46 | −20.0 | 2.8 | −15.49 |
Zepu | 77.26 | 38.20 | 38.5 | 1.4 | 65.25 | −20.1 | 2.3 | −15.58 |
Shache | 77.25 | 38.45 | 38.8 | 1.5 | 65.56 | −19.5 | 2.5 | −15.06 |
Maigaiti | 77.64 | 38.95 | 39.1 | 1.4 | 65.90 | −19.8 | 2.3 | −15.32 |
Yingjisha | 76.17 | 38.93 | 38.6 | 1.2 | 65.42 | −20.8 | 3.1 | −16.18 |
Yuepuhu | 76.77 | 39.23 | 40.1 | 1.3 | 66.88 | −20.7 | 2.5 | −16.10 |
Jiashi | 76.73 | 39.50 | 39.4 | 1.3 | 66.24 | −20.6 | 2.5 | −16.01 |
Shule | 76.05 | 39.41 | 38.3 | 1.5 | 65.18 | −19.5 | 2.5 | −15.06 |
Shufu | 75.86 | 39.37 | 37.9 | 1.2 | 64.79 | −19.5 | 2.6 | −15.06 |
Aketao | 75.95 | 39.15 | 37.6 | 1.2 | 64.48 | −21.8 | 2.8 | −17.04 |
Kashi | 75.99 | 39.46 | 37.8 | 1.3 | 64.70 | −20.6 | 2.8 | −16.01 |
Wuqia | 75.25 | 39.71 | 32.4 | 1.5 | 59.57 | −23.6 | 1.9 | −18.59 |
Atushi | 76.16 | 39.73 | 39.0 | 1.4 | 65.87 | −18.5 | 2.5 | −14.20 |
Bachu | 78.59 | 39.78 | 39.0 | 1.2 | 65.88 | −20.0 | 2.2 | −15.49 |
Tumukeshu | 79.13 | 39.85 | 39.2 | 1.3 | 66.08 | −16.4 | 2.7 | −12.40 |
Aheqi | 78.44 | 40.93 | 33.9 | 1.6 | 61.11 | −24.2 | 2.2 | −19.10 |
Keping | 79.05 | 40.51 | 38.7 | 1.2 | 65.66 | −22.8 | 2.8 | −17.90 |
Awati | 80.37 | 40.64 | 37.8 | 1.6 | 64.81 | −21.5 | 2.3 | −16.78 |
Wushi | 79.22 | 41.21 | 35.1 | 1.2 | 62.28 | −24.4 | 2.9 | −19.28 |
Wensu | 80.24 | 41.27 | 37.6 | 1.4 | 64.67 | −22.0 | 2.6 | −17.21 |
Akesu | 80.26 | 41.17 | 37.9 | 1.2 | 64.95 | −21.5 | 2.2 | −16.78 |
Alaer | 81.29 | 40.54 | 38.4 | 1.2 | 65.37 | −23.5 | 2.7 | −18.50 |
Shaya | 83.19 | 41.05 | 39.0 | 1.5 | 65.99 | −20.8 | 2.5 | −16.18 |
Kuche | 82.96 | 41.71 | 37.4 | 1.3 | 64.52 | −21.9 | 2.5 | −17.13 |
Xinhe | 82.63 | 41.55 | 37.6 | 1.3 | 64.70 | −22.6 | 2.5 | −17.73 |
Baicheng | 81.84 | 41.82 | 36.5 | 1.4 | 63.67 | −27.0 | 3.2 | −21.51 |
Luntai | 84.25 | 41.77 | 39.1 | 1.5 | 66.15 | −24.3 | 3.0 | −19.19 |
Zhaosu | 81.13 | 43.15 | 29.8 | 1.8 | 57.39 | −30.1 | 3.0 | −24.18 |
Tekesi | 81.83 | 43.21 | 34.3 | 1.5 | 61.69 | −29.6 | 3.3 | −23.75 |
Gongliu | 82.23 | 43.48 | 36.7 | 1.5 | 64.00 | −30.1 | 3.5 | −24.18 |
Xinyuan | 83.26 | 43.42 | 36.5 | 1.5 | 63.80 | −25.3 | 3.4 | −20.05 |
Nileke | 82.51 | 43.80 | 35.9 | 1.6 | 63.26 | −32.0 | 3.5 | −25.81 |
Yining | 81.33 | 43.91 | 38.2 | 1.7 | 65.46 | −31.2 | 4.2 | −25.12 |
Chabuchaer | 81.15 | 43.84 | 38.7 | 1.6 | 65.94 | −33.7 | 4.7 | −27.27 |
Huocheng | 80.87 | 44.05 | 38.7 | 1.6 | 65.95 | −30.7 | 3.7 | −24.69 |
Wenquan | 81.03 | 44.97 | 33.4 | 1.9 | 60.96 | −31.6 | 2.0 | −25.47 |
Bole | 82.10 | 44.93 | 38.8 | 1.5 | 66.11 | −32.8 | 2.7 | −26.50 |
Jinghe | 82.88 | 44.60 | 39.5 | 1.5 | 66.76 | −33.2 | 2.7 | −26.84 |
Technical Indexes | Unit | 90# | 70# | 50# | 30# | SBS (I-C) | Limit Values | Standards |
---|---|---|---|---|---|---|---|---|
Penetration (25 °C, 100 g, 5 s) | 0.1 mm | 87 (80~100) | 72 (60~80) | 55.8 (40~60) | 32.8 (20~40) | 76 | - | T 0604 |
Penetration index, PI | - | −1.11 | −0.34 | −0.22 | −0.02 | 0.53 (≥−0.4) | −1.5~+1.0 | T 0604 |
Softening point, TR&B | °C | 45.3 (≥45) | 49.0 (≥46) | 50.2 (≥49) | 55.6 (≥55) | 65.6 (≥55) | - | T 0606 |
Ductility (15 °C, 5 cm/min) | cm | >100 (≥100) | >100 (≥100) | >100 (≥80) | 61 (≥50) | / | - | T 0604 |
Ductility (10 °C, 5 cm/min) | cm | >100 (≥20) | >100 (≥20) | >100 (≥15) | 8 (≥10) | 42.1 (≥30) a | - | T 0604 |
Density@15 °C | g/cm3 | 0.983 | 0.986 | 0.985 | 0.986 | 0.985 | actual measurement | T 0603 |
Dynamic viscosity@60 °C | Pa·S | 252 (≥160) | 421 (≥180) | 879 (≥200) | 1783 (≥260) | 1.977 (≤3) b | - | T 0620 |
After RTFOT (163 °C 85 min) | T 0610 | |||||||
Mass change | % | −0.035 | −0.035 | −0.064 | −0.088 | −0.185 (≤1) | ≤0.8 | T 0610 |
Penetration ratio @25 °C | % | 77 (≥57) | 75 (≥61) | 74 (≥63) | 77 (≥65) | 84 (≥60) | - | T 0604 |
Ductility (15 °C, 5 cm/min) | cm | >100 (≥20) | >100 (≥15) | 27 (≥10) | 9 | / | - | T 0605 |
Ductility (10 °C, 5 cm/min) | cm | 40 (≥8) | 11 (≥6) | / | / | 25.1 (≥20) c | - | T 0605 |
Parameter | Condation | Specfication | PG | ||||
---|---|---|---|---|---|---|---|
90# | 70# | 50# | 30# | SBS | |||
G*/sinδ | Original | ≥1 kPa | 67.5 | 71.8 | 74.4 | 76.8 | 84.9 |
G*/sinδ | RTFOT | ≥2.2 kPa | 66.7 | 69.0 | 72.1 | 77.6 | 83.2 |
Upper PG | 64 | 64 | 70 | 76 | 82 | ||
G*·sinδ | PAV | ≤5000 kPa | 22 | 22 | 28 | 31 | 28 |
Intermediate PG | 22 | 22 | 28 | 31 | 28 | ||
S | PAV | ≤300 MPa at 60 s | −30.0 | −28.2 | −25.6 | −22.9 | −34.3 |
m-value | PAV | ≥0.3 kPa at 60 s | −31.3 | −28.7 | −25.4 | −22.4 | −34.5 |
Lower PG | −28 | −28 | −22 | −22 | −34 | ||
PG | 64–28 | 64–28 | 70–22 | 76–22 | 82–34 | ||
Continuous PG | 66.7–30 | 69–28.2 | 72.1–25.4 | 76.8–22.4 | 83.2–34.3 | ||
Difference between cont. high and cont. low PG | 96.7 | 97.2 | 97.5 | 99.2 | 117.5 |
Items | High-Temperature Performance | Low-Temperature Performance | Moisture Susceptibility | Fatigue Performance | ||
---|---|---|---|---|---|---|
Dynamic Stability (Times/mm)/Std.Dev | Ultimate Flexural Strain/Std.Dev | MS1 (kN) /Std.Dev | MS (kN) /Std.Dev | RMS (%) | Fatigue Life (Times)/Std.Dev | |
90# | 1435/127.72 | 2818/108.22 | 11.46/0.76 | 14.12/0.63 | 81.2 | 61,220/3869 |
70# | 2039/130.50 | 2611/84.25 | 14.70/0.58 | 17.89/0.72 | 82.3 | 49,524/3325 |
50# | 2703/75.68 | 2383/78.55 | 16.55/0.74 | 19.07/0.84 | 86.8 | 34,667/1845 |
30# | 3514/77.31 | 2151/69.17 | 18.17/0.92 | 20.79/1.06 | 87.4 | 30,315/1926 |
SBS | 8183/310.95 | 2628/83.42 | 16.73/0.75 | 18.64/0.88 | 89.8 | 128,769/8871 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, C.; Feng, L.; Xu, Y. Performance Zoning of Asphalt Pavement and Performance Grade (PG) of Asphalt Binder in Karamay: A Case Study of Xinjiang, China. Sustainability 2023, 15, 9742. https://doi.org/10.3390/su15129742
Dong C, Feng L, Xu Y. Performance Zoning of Asphalt Pavement and Performance Grade (PG) of Asphalt Binder in Karamay: A Case Study of Xinjiang, China. Sustainability. 2023; 15(12):9742. https://doi.org/10.3390/su15129742
Chicago/Turabian StyleDong, Chaofei, Liqun Feng, and Yafeng Xu. 2023. "Performance Zoning of Asphalt Pavement and Performance Grade (PG) of Asphalt Binder in Karamay: A Case Study of Xinjiang, China" Sustainability 15, no. 12: 9742. https://doi.org/10.3390/su15129742
APA StyleDong, C., Feng, L., & Xu, Y. (2023). Performance Zoning of Asphalt Pavement and Performance Grade (PG) of Asphalt Binder in Karamay: A Case Study of Xinjiang, China. Sustainability, 15(12), 9742. https://doi.org/10.3390/su15129742