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Abstract: Magnesium deficiency is a pervasive and recurrent factor that significantly restricts crop
production, primarily attributable to the low levels of exchangeable magnesium (ex-Mg) present in
acidic soil conditions. This deficiency exerts a pronounced negative influence on the sustainability
and progress of agricultural development. Hence the current study aspired at modeling the kinetics of
Exchangeable Magnesium release from 3 fertilizer sources i.e., Epsom salt (MgSO4·7H2O), Magnesite
(MgCO3) and Dolomite [CaMg(CO3)2] in the acidic soil of the Nilgiris district in Tamil Nadu, India.
Four mathematical models were verified—Power function, parabolic diffusion, Simple-Elovich, and
first-order to explain cumulative Mg2+ release. Power function was noticed to be an outstanding
empirical equation finely fitted to the experimental data. The intensity, as well as the modality of
the release pattern, was predicted by the numerical parameters. The power function as well as
Parabolic Diffusion portrayed the Mg2+ release kinetics best as verified by the maximum correla-
tion coefficients (r2). The parabolic diffusion model also designated the data as suitable, signifying
diffusion-controlled exchange. From the derived dissolution rates, it was conceivable to agree Epsom
salt (MgSO4·7H2O) from which the release was faster than the other two magnesium sources. In con-
clusion, these outcomes provided an insight into the temporal dynamics of magnesium availability
in acidic soil, highlighting the importance of understanding its release kinetics for sustainable agri-
culture development. The findings contribute to the broader knowledge of magnesium management
strategies, aiding in the development of targeted interventions to alleviate magnesium deficiency and
optimize crop productivity in acidic soil environments.

Keywords: magnesium; acidic soil; Mg2+ release; kinetic models; power function

1. Introduction

Magnesium is a crucial element for crops as well as human beings, the deficiency of
which alters carbohydrate partitioning and photosynthesis in crops [1], moderates sustain-
able agricultural production as well as development, which produces long-term negative
influences on animals as well as human well-being [2,3]. Noticeable Magnesium deficiency
symptoms often arise in crops, exclusively at their critical developmental stage by means of
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quick carbohydrate accumulation, grown up in acidic soils broadly disseminated around
the domain [1,4]. Comestible agricultural foodstuffs are the foremost source of Magnesium
nutrition for animals as well as humans. Hence, sustaining the magnesium contents of
agricultural produces within a comparatively sufficient range is the most significant.

Soil acidity is another imperative component responsible for the reduced produc-
tivity of crops [5,6], strongly concomitant with the deficiency of phosphorus, potassium,
magnesium, calcium, as well as zinc, whereas the toxicity of aluminium along with man-
ganese [7,8] antagonizes the magnesium [9]. As Mg2+ ion exhibits a highly mobile nature,
hence, it becomes susceptible to leaching due to intense rainfall [10–12], specifically in the
case of acidic soils, declining nutrient use efficiency along with crop yield.

Soil pH directly influences the liberation of Magnesium from clay minerals at the same
time equally on Mg uptake in plants. Chan et al. [13] and Hailes et al. [14] revealed that
Mg is exchangeable at a soil pH below 6.0, and non-exchangeable when soil pH is elevated
above 6.5. Likewise, Sumner et al. [15] stated that when the pH of Ultisols enhanced from
5.5 to 7.5, soil exchangeable Mg plummeted more than 50%. Even though higher soluble
Mg concentrations in soil solution are quite high plant uptake of Mg can be hindered by a
surplus content of other cations i.e., H+ [16]. Higher levels of exchangeable aluminium, are
liberated in acid soils (pH below 5). Moreover, at the rhizosphere region, the H+ ions exist
alternative to basic cations in soil solution [16]. In this situation, the decline in available Mg
for plants at low soil pH is a corollary of the boosting incompetence to sustain adequate pH,
therefore electrochemical gradient occurs across the plasma membrane of root cells [12,17].
Soil exchangeable Mg content may upsurge at low pH; in spite of this, the ascendency of
H+ at the rhizosphere region may impede the uptake of Mg, triggering Mg deficiency plus
hindering yield along with agricultural products quality [18].

Up to date, the maximum emphasis has been provided to the nitrogenous, phosphatic,
and potassic fertilizers compared to Magnesium to achieve maximum yield of crop [19].
Intensive cropping as well as harvest in soils that are not being replaced with Magnesium
fertilizers causes in reduction of native Mg from the soil along with extensive deficiency of
Mg. Currently, the deficiency of Mg has grown into a pervasive problem, harshly plummet-
ing photosynthetic rates of crops specifically cultivated in acidic soils [20–24]. Theoretically,
deficiency of Mg occurs for two reasons, i.e., (a) absolute deficiency; (b) cationic competition.
Absolute deficiency can be an outcome of (i) the source rocks with low Mg contents [25],
(ii) Mg losses from the soil i.e., by mobilization followed by consecutive leaching [10,11]
(iii) long-term unbalanced crop fertilization practice ignoring Mg depletion of soils due to
removal by the crop [26].

The form of nutrient soils has been considered an essential feature always, swaying
the magnesium availability predominantly, meanwhile there is an immense discrepancy
in solubility in water between the numerous magnesium sources [27]. The four best
equations indicating magnesium release are the parabolic diffusion equation based on
kinetic chemistry and that the constants of this equation are used to explain the liberated
ions in the soil and the Power function model is experimental. The finest kinetic equations
can be determined to describe the release and adsorption of the element by comparing
the values of the correlation coefficient (r2) as a measure of the preference between the
equations. The equivalent Parabolic diffusion equation states that the driving force of the
propagation process arises from the difference between the liberated element as well as its
concentration in the outer solution. However, the release of absorbed quantity is directly
proportional to time and is raised to a certain square [28].

Until now, no effort done to scientifically scrutinize the influences of Mg fertilizers on
their release pattern in acid soils. In Nilgiris, Tamil Nadu, India the soils are highly acidic,
H+ saturation is excessive, as well as more prone to leaching of Mg because of heavy rainfall.
Hence, it is crucial to provide Mg fertilizer to such soils for the maintenance of soil fertility as
well as productivity. To address all these issues, the current study endeavored to postulate
more acumens into the mechanism of release pattern of exchangeable Mg in response to several
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magnesium fertilizer sources and to refine and use various kinetic models to explain Mg release
in acid soils of Nilgiris.

2. Materials and Methods
2.1. Climate and Location

In the current experiment, the soil was collected from a farmer’s field (11◦24′08.0′′ N,
76◦39′50.6′′ E) in Nilgiris, Tamil Nadu belonged to the soil taxonomy of Ultic Tropudalf. The
soil of this study was typically of low Mg status. The location comes under a subtropical
climate receiving a mean annual rainfall of 1390 mm besides exhibiting a mean annual
temperature of 15 ◦C.

2.2. Soil Collection and Analysis

The soil was collected from the surface (0–15 cm), packed in polythene covers, and carried
to the laboratory. The soil was air-dried for one week at room temperature, ground then passed
through a 2-mm sieve before the arrangement of microcosms. The physico-chemical properties
of soil are furnished in Table 1. The incubation study was laid down at the Department of
Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, in
a completely randomized design (CRD) with two replications. A control microcosm that had
received no Mg fertilizers was taken as control. Each microcosm contained 100 g of soil. Five
doses of Mg were inoculated in each soil as MgSO4·7H2O, MgCO3, and CaMg(CO3)2 at 10, 20,
30, 40, and 50 kg Mg ha−1 soil total of 16 treatments. Water holding capacity was estimated, as
summarized by [29]. Double distilled water was used to saturate the soil to field capacity based
on weight loss then reinstated to field capacity by the addition of required double distilled water
at 2 days intervals. On 5, 10, 20, 30, 40, 50, and 60 days after incubation destructive sampling was
carried out, dried, homogenized, then taken for analysis of basic soil properties and available
nutrients as per standard procedures. The control along with fifteen treatments was established
in replicates (n = 2). The incubation was conducted in an incubator at 25 ◦C with 60% humidity
in the dark.

Table 1. Initial physico-chemical properties of the experimental soil.

Soil Properties Soil

Texture Sandy loam
Bulk density (Mg m−3) 1.32

pH 5.24
EC (dS m−1) 0.29

OC (%) 6.36
Total N (%) 0.17
Total P (%) 0.16
Total K (%) 0.25

Total Mg (mg kg −1) 1912
Avail. N (kg ha −1) 282
Avail. P (kg ha −1) 55
Avail. K (kg ha −1) 442
Exch. Ca (mg kg−1) 18
Exch. Mg (mg kg−1) 10.5

Available S (mg kg−1) 13.7
DTPA Extractable Fe (mg kg−1) 100
DTPA Extractable Mn (mg kg−1) 2.56
DTPA Extractable Zn (mg kg−1) 2.26
DTPA Extractable Cu (mg kg−1) 2.49

2.3. Soil Chemical Parameters

Soil texture was analyzed by the international pipette method then sand, silt, and
clay content was estimated as per the standard procedure of [30], and soil textural class
was determined using the soil textural class triangle given by United State Department of
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Agriculture (USDA) [31]. The pre-incubation soil pH was estimated electrometrically in
1:2.5 soil: water suspension as elucidated by [32]. The Cation Exchange Capacity (CEC)
along with exchangeable bases viz., Ca2+, Mg2+, Na+, and K+ were estimated by 1 N
NH4-acetate (pH 7) saturation method. Exchangeable Ca2+ and Mg2+ were analysed by
versenate method [33], and exchangeable K+ and Na+ using a flame photometer [32]. The
wet oxidation method by Walkely and Black was used to estimate organic carbon [34].
Kjeldahl digestion-distillation method was used to estimate total N as explained by [35].
Available P was estimated by the Bray-1 method [36] and then analyzed spectrophotomet-
rically at 660 nm. Plant available micronutrient cations (Fe, Cu, Zn, and Mn) from the
soil were analyzed by the 0.5M DTPA reagent [37]. The cumulative Mg released by the
different sources into the soil solution was plotted against incubation time intervals for the
experimental soil.

2.4. Kinetic Models

Four kinetic models were draw on to fit the Mg release patterns as illustrated by [38–40].

First order: ln(q0 − qt) = a − bt (1)

Parabolic diffusion: q = a + bt1/2 (2)

Power function: lnq = lna + blnt (3)

Power function: lnq = lna + blnt (4)

where q is the amount of Mg2+ released, qt is the cumulative Mg2+ released at time t, t, is the
time of release, q0 is the maximum Mg2+ released, whereas a and b are constants. Constant
b is the key term of these equations, which depicts the rate of release of exchangeable
Mg. All these mathematical equations were verified by least square regression analysis
to conclude which model best describes exchangeable Mg release from soils. Coefficients
of determination (r2) were obtained by least square regression of measured vs. predicted
values. First-order, parabolic diffusion as well as Elovich models were also verified, as the
data did not fit and hence are not explained in detail.

The empirical equation for power function model is furnished by

q = a t b (5)

where q is the concentration (mmol L−1) of each element in the solution at time t, where a
(mmol L−1 days−n) and b (dimensionless) are constants. Equation (4) has been generally used
earlier for explaining the kinetics of plant nutrient release from natural materials [41,42], and
also for kinetics of minerals dissolution [43,44]. As compared to the other kinetic models such
for example the pseudo-second-order equation, power function has the practical benefit [45],
where it can be utilized for modelling non-equilibrium experimental conditions. The more the
values of a and b, the more is the element release rate with time. Besides, b provides evidence
on how the release rate differs during the incubation period; as time goes on, the rate of release
of each element declines (b < 1, remains constant (b = 1) or raises (b > 1), respectively.

The Elovich equation is depicted by

q = 1/a ln(a b) + 1/a ln(t) (6)

where a (L mmol−1) and b (mmol L−1 days−1) are constants. The Elovich equation,
initially developed for gas adsorption [46], has also been furnished for modelling minerals
dissolution. Few cases are the phosphate rock dissolution in acidic sandy soils [47] as well
as of zinc silicate in ammoniacal solution [48].
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2.5. Statistical Analysis

Linear forms of the four kinetic equations were fitted to the experimental data, in-
dividually for each source with all the levels of concentration applied. The coefficient of
determination (r2) values and Mg release rate parameters were consequently obtained from
fitted equations as follows: the “a” and “b” from the simple Elovich equation [49], “a” and
“b” from power function model [50] were computed using OriginPro 8.5.0. The obtained
data were subjected to factorial completely randomized design in SPSS 16.0 software for
Windows (SPSS Inc., Chicago, IL, USA) in one-way analysis of variance (ANOVA) for
studied soil. The mean was compared using Tukey’s Honestly significant difference (HST)
at p ≤ 0.05.

3. Results

The soil was acidic, low in EC, whereas the organic matter content was high. The
texture of the soil was found to be Sandy loam (66.02% sand, 17.18 silt, and 16.08 clay), and
bulk density was 1.32 Mg m−3. The CEC value was 18.6 cmol (p+) kg−1. Exchangeable
Mg2+ was 10.5 mg kg−1. Selected chemical and physical properties of the experimental soil
are displayed in Table 1.

Kinetics of Magnesium Release

The cumulative Mg2+ release pattern was practically parallel with magnesium sulphate,
magnesium carbonate and dolomite, however magnesium sulphate released more Mg2+ com-
pared the other two sources. Cumulative exchangeable Mg released after 60 days in magnesium
sulphate, magnesium carbonate and dolomite varied from 74.97 to 239.37 mg kg−1, 75.02 to
133.0 mg kg−1 and 75.5 to 127.7 mg kg−1, respectively (Figure 1a–c). With increasing levels of
Mg, an increasing trend was noticed in the release of exchangeable magnesium in all the tested
sources. Among the various sources tested, the cumulative Mg release was found to be higher
in MgSO4·7H2O @50 kg Mg ha−1 as compared to control. The release of magnesium followed
the order MgSO4·7H2O @ 50 kg Mg ha−1 > MgCO3 @ 50 Kg Mg ha−1 > CaMg(CO3)2 @ 50 Kg
Mg ha−1 (Table 2).

The constant ‘b’ denotes the slope which could be considered as an index of Mg2+

release rates. The parameter ‘b’ (Table 3) was less than 1 in all soils, represented the
decrease in exchangeable Mg2+ release rates with time. The Mg2+ release rate explains
the cumulative Mg release over a period of time. In case of power function model, the
release rates ranged from 0.757 to 0.972 in Magnesium sulphate treated soil, from 0.757 to
0.889 mg kg−1 in magnesium carbonate treated soil and from 0.759 to 0.907 in dolomite
treated soil. The rate of release decreased with increasing levels of Mg in the case of
MgSO4·7H2O and was found to be maximum @ 10 kg Mg ha−1 as compared to higher
levels. The release rate followed a different trend in the case of MgCO3 @ 30 kg Mg ha−1.
The rate of release increased with increasing levels of Mg in the case of dolomite and was
found to be maximum @ 50 kg Mg ha−1 as compared to the control.

Table 2. Cumulative Mg released (kg ha−1) from soil treated with Magnesium sulphate, Magnesium
carbonate, and Dolomite.

Levels of Mg(kg ha−1)
Cumulative Mg Released after 60 Days from Different Sources

Epsom Salt (MgSO4·7H2O)
(mg kg−1)

Magnesite(MgCO3)
(mg kg−1)

Dolomite [CaMg(CO3)2]
(mg kg−1)

0 74.97 75.02 75.5
10 168.19 108.4 101.1
20 181.77 113.7 107.8
30 198.2 120 113
40 221.27 126.3 119.4
50 239.37 a 133 b 127.7 b

Means with the different letters are significantly different at p = 0.05 by Tukey’s (HSD) test.
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Table 3. Parameters of models used to elucidate release kinetics of exchangeable Mg2+ from Magne-
sium sulphate, Magnesium carbonate, and Dolomite in studied acid soil.

Sources
Levels of Mg (kg

ha−1)
First Order Elovich Power Function Parabolic Diffusion

a (mg kg−1) b (mg kg−1 d−1) a (mg kg−1) b (mg kg−1 d−1) a (mg kg−1) b (mg kg−1 d−1) a (mg kg−1) b (mg kg−1 d−1)

MgSO4 ·7H2O 0 4.901 −0.063 −34.871 24.674 1.204 0.757 −16.420 11.341
10 6.040 −0.071 −98.950 57.460 1.070 0.972 −58.970 26.980
20 6.120 −0.072 −105.410 61.990 1.227 0.954 −61.980 29.060
30 6.220 −0.073 −113.000 67.350 1.409 0.932 −65.630 31.530
40 6.397 −0.074 −123.630 74.950 1.620 0.908 −70.540 35.010
50 6.424 −0.075 −132.090 80.910 1.757 0.895 −74.560 37.750

MgCO3 0 4.903 −0.063 −34.920 24.690 1.203 0.757 −16.460 11.350
10 5.451 −0.066 −59.280 36.710 1.024 0.883 −32.990 17.100
20 5.505 −0.067 −61.940 38.410 1.069 0.883 −34.380 17.880
30 5.572 −0.067 −65.700 40.630 1.110 0.889 −36.540 18.910
40 5.626 −0.068 −67.750 42.420 1.235 0.867 −37.300 19.740
50 5.696 −0.068 −71.740 44.630 1.260 0.872 −39.880 20.800

CaMg(CO3)2 0 4.913 −0.063 −35.218 24.828 1.200 0.759 −16.690 11.420
10 5.362 −0.065 −53.644 33.550 1.026 0.859 −29.810 15.660
20 5.447 −0.066 −58.668 36.256 1.012 0.882 −32.830 16.910
30 5.508 −0.067 −62.226 38.201 1.011 0.895 −34.960 17.810
40 5.577 −0.067 −65.740 40.237 1.055 0.896 −37.140 18.770
50 5.660 −0.068 −70.725 43.068 1.077 0.907 −40.060 20.090

The curve fit between all the models and experimental data are displayed by the coefficients
of determination (r2) as indicated in Table 4. As compared to all other models, the power function
model showed a maximum value of r2. The minimum value of r2 was found in the case of the
first order (release of the nutrient is independent of the concentration of sources) which means
the release of Mg does not fit the first order equation which indicates the dependency on the
concentration of sources and the Figures 2a, 3a and 4a revealed that the points deviate from the
first order curve fitting line. The r2 value is observed to be the highest in the case of dolomite
among all the sources. With the increase in the levels of Mg, there is an increase in the r2 value
in all the sources (Figures 2d, 3d and 4d). These results explained the perfect fitting of points at
all the intervals to the curve fitting line in the case of the power function equation.

Table 4. Coefficient of determination (r2) of different kinetic models for exchangeable Mg release in
experimental soil.

Sources
Conc. of Levels

(kg ha−1)
First Order Elovich Power Function Parabollic

Diffusion

r2 r2 r2 r2

MgSO4·7H2O 0 0.791 0.932 0.994 0.988
10 0.671 0.857 0.993 0.949
20 0.671 0.865 0.993 0.953
30 0.670 0.869 0.994 0.956
40 0.669 0.877 0.994 0.960
50 0.668 0.881 0.994 0.963

MgCO3 0 0.790 0.932 0.994 0.988
10 0.721 0.889 0.994 0.968
20 0.714 0.892 0.995 0.969
30 0.711 0.892 0.995 0.970
40 0.705 0.892 0.996 0.970
50 0.700 0.887 0.995 0.966

CaMg(CO3)2 0 0.787 0.931 0.994 0.988
10 0.710 0.879 0.993 0.961
20 0.713 0.883 0.995 0.964
30 0.710 0.886 0.996 0.966
40 0.701 0.881 0.996 0.963
50 0.694 0.882 0.996 0.963
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4. Discussion
Depiction of Magnesium Release by Kinetic Models

Plots of cumulative exchangeable Mg2+ release in Magnesium sulphate, Magnesium
carbonate and Dolomite are shown in Figure 1a–c. All the plots of the Mg release data for
three sources with 6 levels with different equations are shown in Figures 2–4. Figure 1a
show the magnesium release curves of the studied soil samples, where the amount of
release increases the reaction by increasing the concentrations of levels of source in the
experimental soil. It is shown by the behavior of these curves that there is a general
tendency to increase the amount of free magnesium with the increase in the concentration
of source (MgSO4·7H2O) until 40 days; this increase gradually decreases over time in all
soil samples during 40 to 60 days. But in the case of Magnesite (MgCO3) and Dolomite
(CaMg(CO3)2), the increase is gradual and the rate of increase increased over time from
0 to 60 days.

When we follow the magnesium release processes in the soils above, two stages of
emancipation can be distinguished, which appear clearly in soil samples with the low
magnesium content. In the early stages, the release of magnesium takes the form of a
highly inclined curve over short periods of time (the release of a massively magnified
magnesium mass over a small time period). In the second stage, there is a decrease in the
slope of the magnesium release curves to follow the shape of the straight line and is almost
parallel to the y-axis. This stage represents the release of magnesium that is difficult to
release; these results agree with [51]. Sequential addition of more concentrations of fertilizer
source to the soil headed to a rise in the amount of released magnesium by constantly
changing the movement of dissolved materials due to ion exchange and release processes
of magnesium-bearing fertilizer that get between the liquid as well as solid phases of
the soil. The amount of magnesium released by fertilizers surpassed the rest of the long
interaction periods may be due to weak ion bonding on the surface of colloids, which is
a very high proportion of ion exchange capacity, and higher solubility that leads to easy
liberation of Exchangeable Mg. It is observed that the greater the reaction time, the less
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release amount depends on the reaction products during the process of emancipation of
the ion, but the liberation does not reach the fixed state of emancipation since the release of
the magnesium, in this case, represents the relatively easy magnesium release in the soil
solution along with the magnesium adsorbed on the location. The slow-release magnesium
fertilizers, are associated with specialized adsorption sites and less solubility, resulting in
a slow release from the clay to the soil solution [52]. There is a similarity in the behavior
of the cumulative magnesium release curves of all levels in general. However, the total
cumulative magnesium release from the soil differed according to magnesium levels for a
particular source of Mg.

In order to know the best equation elucidating the release of magnesium in the study
soil and to detect the mechanics of this liberation, applied standards of kinetics, which
represent the best means to calculate and emancipate the emancipation of ions from the
soil and the purpose of the application of these criteria is the motor to obtain the coefficient
of the speed of the release of ions in the concept of kinetic chemistry, hence the interactions
within the soil depending on the time factor, where four equations are used: First Order,
Parabolic diffusion, Power function, and Elovich. For the purpose of determining the best
kinetic equation, the highest value of the r2 is taken, as displayed in Table 4. The study
findings showed that the maximum value of r2 (0.994) was found in the Power function
equation compared to all other equations. Figure 1a–c showed the relationship between the
cumulative and time-release amount of magnesium for the incubated soil sample treated
with various magnesium fertilizers, and the statistical plot by Origin 8.5 notes that most
points are located on the extension of the straight line. The highest value of the magnesium
release speed coefficient is 0.972 shown in Table 4 that treated with magnesium sulfate at
20 kg ha−1 according to the Power function equation, whereas the lowest value of 0.84 when
treated with magnesium sulfate at 10 kg ha−1 according to the power function equation.
From this, we concluded that enhancing the concentration of the fertilizer sources leads
headed for a rise in the speed of the release coefficient of magnesium and may be due to
the role of electrolytic concentration of fast release and slow-release fertilizers by electrical
conductivity. The differences in Mg2+ release at different intervals between Magnesium
sulphate (MgSO4·7H2O), Magnesium carbonate (MgCO3) and Dolomite [CaMg(CO3)2]
can be recognized as alterations in their nature of reaction with soil. On the surface of a
mineral Mg2+ ions can exchange H+ ions, because of their greater size as well as hydration
energy, they cannot easily exchange interlayer Mg2+. A substantial increase by MgCO3 was
only marked during the last sampling interval (60 days after application). However, even
60 days after application, both MgCO3 and CaMg(CO3)2 fertilizers had a lesser influence
on rising the Mg availability than MgSO4·7H2O. This suggested the slow-release nature
of these latter two fertilizers [53]. Though MgSO4·7H2O enhanced the Mg availability
of the soil instantly after treatment, the available Mg content show a steady as well as
continual emancipation of magnesium from this source until 60 days after treatment. These
interpretations are in accordance with the outcomes of other workers [54,55]. Conquering
an explanation of a power function equation for exchangeable Mg2+ release from soils
was previously explained by some researchers [28,42,56]. The fitting of the data to the
power function equation showed a straight line (Figures 2–4). A successful explanation
of Mg2+ release by the power function model was also conveyed by Abed et al. [57]. A
successful explanation of Mg2+ release by the parabolic model was formerly narrated by
Abed et al. [57].

5. Conclusions
The results indicated that soil treated with high magnesium solubility could release mag-

nesium higher than low solubility. Mathematical scrutiny of magnesium release data revealed
that the power function, Elovich, parabolic diffusion, and first-order equations each explained
Magnesium release kinetics. The fitting of the data to the power function model signposted
that it was considered by an initial faster rate followed by a slow rate in all soils. Data derived
from mathematical models will provide a way to describe the release kinetics and estimate
the magnesium-delivering power of soil. The kinetic behavior of the magnesium ion release
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among all the equations showed the highest coefficient of determination in power function.
The study recommends further research on the kinetic behavior of magnesium release from
the soil and consideration of the behavior and properties of magnesium in the management of
acid soils of Nilgiris with low levels of magnesium when using magnesium fertilizers. It also
requires observing the behavior of magnesium when reclaiming acidic soil to avoid reaching
the limits that exhibit plant deficiency. Author Contributions: Conceptualization, M.D., S.T., D.S.

and R.A.; methodology, M.D.; software, S.K.S., K.R. and D.M.; validation, M.D., S.T. and D.S.; formal
analysis, M.D. and J.M.; investigation, M.D.; resources, S.T., D.S. and R.A.; data curation, S.K.S. and
B.P.; writing—original draft preparation, M.D. and B.P.; writing—review and editing, B.P., S.S. and
S.K.S.; visualization, M.D.; supervision, S.T. and D.S.; project administration, S.T.; funding acquisition,
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