Water and Food Sustainability in the Riparian Countries of Lake Chad in Africa
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Literature Search Criteria
3. Historical and Current Trends at Lake Chad Region
3.1. Old and the New Lake Chad
3.2. The Neighboring Countries of Lake Chad
3.3. Hydro-Geomorphology of the Lake
4. Agricultural Activities in the Lake Chad Region
4.1. The Overall Crop Production in the Area
4.2. The Culture of Animal Husbandry and Rearing
4.3. Transitioning from Fishing to Aquaculture
4.4. Agricultural Sustainability in the Region
5. Water Sustainability in the Lake Chad Region
5.1. The Evident Effect of Climate Change on the Hydrological System
5.2. Lake Water Level on the Satellite Imageries
5.3. Water Use and Water Law in the Surrounding Countries of Lake Chad
5.4. Food Sustainability in the Lake Chad Region
6. Influence of the Rising Crisis on Sustainability in the Region
6.1. The Operation of Boko Haram and Its Impact on the Region
6.2. The Persistent Farmers-Herders Clash in the Region
7. Sustainable Way out of the Challenges Facing the Lake Chad Region
7.1. Conflict Resolution and Enabling Peace
7.2. Governance and Policy Implementation
7.3. Data Integration and Management
7.4. Leveraging Ramsar Site of Convention
7.5. Strategic Engineering Projects
7.6. Ecosystem Services Restoration
7.7. Facilitate Adequate Funding and Relevant Inter-Boundary Cooperation
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borsato, E.; Rosa, L.; Marinello, F.; Tarolli, P.; D’Odorico, P. Weak and Strong Sustainability of Irrigation: A Framework for Irrigation Practices Under Limited Water Availability. Front. Sustain. Food Syst. 2020, 4, 17. Available online: https://www.frontiersin.org/articles/10.3389/fsufs.2020.00017 (accessed on 20 March 2023). [CrossRef]
- Kraemer, B.M.; Seimon, A.; Adrian, R.; McIntyre, P.B. Worldwide lake level trends and responses to background climate variation. Hydrol. Earth Syst. Sci. 2020, 24, 2593–2608. [Google Scholar] [CrossRef]
- Pi, X.; Luo, Q.; Feng, L.; Xu, Y.; Tang, J.; Liang, X.; Ma, E.; Cheng, R. Mapping global lake dynamics reveals the emerging roles of small lakes. Nat. Commun. 2022, 13, 5777. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Krapivin, V.F.; Mkrtchyan, F.A. On the Recovery of the Water Balance. Water, Air Soil Pollut. 2020, 231, 170. [Google Scholar] [CrossRef]
- Li, K.; Coe, M.; Ramankutty, N.; De Jong, R. Modeling the hydrological impact of land-use change in West Africa. J. Hydrol. 2007, 337, 258–268. [Google Scholar] [CrossRef]
- Hannoun, D.; Tietjen, T. Lake management under severe drought: Lake Mead, Nevada/Arizona. JAWRA J. Am. Water Resour. Assoc. 2022, 59, 416–428. [Google Scholar] [CrossRef]
- FAO. Water for agriculture and energy in Africa: The challenges of climate change: Report of the ministerial conference 15–17 December 2008 Sirte. In Libyan Arab Jamahiriya; FAO: Rome, Italy, 2011; 162p. [Google Scholar]
- Hassan, F.A. Historical Nile Floods and Their Implications for Climatic Change. Science 1981, 212, 1142–1145. [Google Scholar] [CrossRef] [PubMed]
- Thiombiano, L.; Tourino-Soto, I. Status and Trends in Land Degradation in Africa; Springer: Berlin/Heidelberg, Germany, 2007; pp. 39–53. [Google Scholar] [CrossRef]
- Policelli, F.; Hubbard, A.; Jung, H.C.; Zaitchik, B.; Ichoku, C. A predictive model for Lake Chad total surface water area using remotely sensed and modeled hydrological and meteorological parameters and multivariate regression analysis. J. Hydrol. 2018, 568, 1071–1080. [Google Scholar] [CrossRef]
- Coe, M.T. Simulating Continental Surface Waters: An Application to Holocene Northern Africa. J. Clim. 1997, 10, 1680–1689. [Google Scholar] [CrossRef]
- Contoux, C.; Jost, A.; Ramstein, G.; Sepulchre, P.; Krinner, G.; Schuster, M. Megalake Chad impact on climate and vegetation during the late Pliocene and the mid-Holocene. Clim. Past 2013, 9, 1417–1430. [Google Scholar] [CrossRef] [Green Version]
- Armitage, S.J.; Bristow, C.S.; Drake, N.A. West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad. Proc. Natl. Acad. Sci. USA 2015, 112, 8543–8548. [Google Scholar] [CrossRef] [Green Version]
- Lemoalle, J.; Bader, J.C.; Leblanc, M.; Sedick, A. Recent changes in Lake Chad: Observations, simulations and management options (1973–2011). Glob. Planet Chang. 2012, 80, 247–254. [Google Scholar] [CrossRef]
- Riebe, K.; Dressel, A. The impact on food security of a shrinking Lake Chad. J. Arid. Environ. 2021, 189, 104486. [Google Scholar] [CrossRef]
- Emeribe, C.N.; Ezeh, C.U.; Butu, A.W. Climatic Water Balance Over Two Climatic Periods and Effect on Consumptive Water Need of Selected Crops in the Chad Basin, Nigeria. Agric. Res. 2020, 10, 131–147. [Google Scholar] [CrossRef]
- Ndehedehe, C.E.; Agutu, N.O.; Okwuashi, O. Is terrestrial water storage a useful indicator in assessing the impacts of climate variability on crop yield in semi-arid ecosystems? Ecol. Indic. 2018, 88, 51–62. [Google Scholar] [CrossRef]
- FAO. Evaluation of the FAO Response to the Crisis in the Lake Chad Basin 2015–2018; FAO: Rome, Italy, 2021; 82p, Available online: https://www.fao.org/publications/card/en/c/CB3138EN/ (accessed on 20 March 2023).
- Zieba, F.W.; Yengoh, G.T.; Tom, A. Seasonal Migration and Settlement around Lake Chad: Strategies for Control of Resources in an Increasingly Drying Lake. Resources 2017, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Awosusi, A.E. Aftermath of Boko Haram violence in the Lake Chad Basin: A neglected global health threat. BMJ Glob. Health 2017, 2, e000193. [Google Scholar] [CrossRef] [Green Version]
- Vaquero, G.; Siavashani, N.S.; García-Martínez, D.; Elorza, F.J.; Bila, M.; Candela, L.; Serrat-Capdevila, A. The Lake Chad transboundary aquifer. Estimation of groundwater fluxes through international borders from regional numerical modeling. J. Hydrol. Reg. Stud. 2021, 38, 100935. [Google Scholar] [CrossRef]
- Ifabiyi, I. Recharging the Lake Chad: The Hydropolitics of National Security and Regional Integration in Africa. Afr. Res. Rev. 2013, 7, 196–216. [Google Scholar] [CrossRef] [Green Version]
- Fougou, H.K.; Lemoalle, J. Variability of Lake Chad. AGU 2022, 1, 513–518. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119657002.ch26 (accessed on 20 March 2023).
- Okpara, U.T.; Stringer, L.C.; Dougill, A.J. Integrating climate adaptation, water governance and conflict management policies in lake riparian zones: Insights from African drylands. Environ. Sci. Policy 2018, 79, 36–44. [Google Scholar] [CrossRef]
- Wakdok, S.S.; Bleischwitz, R. Climate Change, Security, and the Resource Nexus: Case Study of Northern Nigeria and Lake Chad. Sustainability 2021, 13, 10734. [Google Scholar] [CrossRef]
- Buma, W.G.; Lee, S.-I.; Seo, J.Y. Hydrological Evaluation of Lake Chad Basin Using Space Borne and Hydrological Model Observations. Water 2016, 8, 205. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Bohn, T.J.; Podest, E.; McDonald, K.C.; Lettenmaier, D.P. On the causes of the shrinking of Lake Chad. Environ. Res. Lett. 2011, 6, 034021. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Chapter 1—Global Warming of 1.5 °C. 2018. Available online: https://www.ipcc.ch/sr15/chapter/chapter-1/ (accessed on 20 March 2023).
- Pattnayak, K.C.; Abdel-Lathif, A.Y.; Rathakrishnan, K.V.; Singh, M.; Dash, R.; Maharana, P. Changing Climate Over Chad: Is the Rainfall Over the Major Cities Recovering? Earth Space Sci. 2019, 6, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Bastola, S.; François, D. Temporal extension of meteorological records for hydrological modelling of Lake Chad Basin (Africa) using satellite rainfall data and reanalysis datasets. Meteorol. Appl. 2011, 19, 54–70. [Google Scholar] [CrossRef]
- Gbetkom, P.G.; Crétaux, J.-F.; Tchilibou, M.; Carret, A.; Delhoume, M.; Bergé-Nguyen, M.; Sylvestre, F. Lake Chad vegetation cover and surface water variations in response to rainfall fluctuations under recent climate conditions (2000−2020). Sci. Total. Environ. 2023, 857, 159302. [Google Scholar] [CrossRef]
- LCBC. State of the Basin Reports of The Lake Chad Basin–LCBC. 2016. Available online: https://cblt.org/download/state-of-the-basin-reports-of-the-lake-chad-basin/ (accessed on 6 June 2022).
- Pham-Duc, B.; Sylvestre, F.; Papa, F.; Frappart, F.; Bouchez, C.; Crétaux, J.-F. The Lake Chad hydrology under current climate change. Sci. Rep. 2020, 10, 5498. [Google Scholar] [CrossRef] [Green Version]
- NASAPOWER. NASA POWER | Data Access Viewer. 2022. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 24 April 2023).
- Miguez, F. Apsimx: Inspect, Read, Edit and Run “APSIM” ‘Next Generation’ and “APSIM” Classic_. R Package Version 2.3.1. 2022. Available online: https://CRAN.R-project.org/package=apsimx (accessed on 5 December 2022).
- Goni, I.B.; Taylor, R.G.; Favreau, G.; Shamsudduha, M.; Nazoumou, Y.; Ngounou Ngatcha, B. Groundwater recharge from heavy rainfall in the southwestern Lake Chad Basin: Evidence from isotopic observations. Hydrol. Sci. J. 2021, 66, 1359–1371. [Google Scholar] [CrossRef]
- Birkett, C. Synergistic Remote Sensing of Lake Chad Variability of Basin Inundation. Remote. Sens. Environ. 2000, 72, 218–236. [Google Scholar] [CrossRef]
- Bennour, A.; Jia, L.; Menenti, M.; Zheng, C.; Zeng, Y.; Barnieh, B.A.; Jiang, M. Assessing impacts of climate variability and land use/land cover change on the water balance components in the Sahel using Earth observations and hydrological modelling. J. Hydrol. Reg. Stud. 2023, 47, 101370. [Google Scholar] [CrossRef]
- Kolawole, A. Environmental change and the South Chad Irrigation Project (Nigeria). J. Arid. Environ. 1987, 13, 169–176. [Google Scholar] [CrossRef]
- Griffin, T.E. Lake Chad Changing Hydrography, Violent Extremism, and Climate-Conflict Intersection. Exped MCUP. 2020. Available online: https://www.usmcu.edu/Outreach/Marine-Corps-University-Press/Expeditions-with-MCUP-digital-journal/Lake-Chad/ (accessed on 11 January 2023).
- Zhu, W.; Jia, S.; Lall, U.; Cao, Q.; Mahmood, R. Relative contribution of climate variability and human activities on the water loss of the Chari/Logone River discharge into Lake Chad: A conceptual and statistical approach. J. Hydrol. 2019, 569, 519–531. [Google Scholar] [CrossRef]
- Mahamat Nour, A.; Vallet-Coulomb, C.; Gonçalves, J.; Sylvestre, F.; Deschamps, P. Rainfall-discharge relationship and water balance over the past 60 years within the Chari-Logone sub-basins, Lake Chad basin. J. Hydrol. Reg. Stud. 2021, 35, 100824. [Google Scholar] [CrossRef]
- Mahmood, R.; Jia, S.; Zhu, W. Analysis of climate variability, trends, and prediction in the most active parts of the Lake Chad basin, Africa. Sci. Rep. 2019, 9, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeyeri, O.E.; Laux, P.; Lawin, A.E.; Arnault, J. Assessing the impact of human activities and rainfall variability on the river discharge of Komadugu-Yobe Basin, Lake Chad Area. Environ. Earth Sci. 2020, 79, 143. [Google Scholar] [CrossRef]
- Nwilo, P.; Olayinka, D.; Okolie, C.; Emmanuel, E.; Orji, M.; Daramola, O. Impacts of land cover changes on desertification in northern Nigeria and implications on the Lake Chad Basin. J. Arid. Environ. 2020, 181, 104190. [Google Scholar] [CrossRef]
- Delire, C.; Ngomanda, A.; Jolly, D. Possible impacts of 21st century climate on vegetation in Central and West Africa. Glob. Planet. Chang. 2008, 64, 3–15. [Google Scholar] [CrossRef]
- Mailafiya, D.M. Agrobiodiversity for Biological Pest Control in Sub-Saharan Africa. Sustain. Agric. Rev. 2015, 18, 107–143. [Google Scholar] [CrossRef]
- USAID. Democratic Republic of the Congo Water Resources Profile Overview. 2020. Available online: https://winrock.org/wp-content/uploads/2021/08/DRC_Country_Profile_Final.pdf (accessed on 16 May 2022).
- Falkenmark, M.; Lundqvist, J.; Widstrand, C. Macro-scale water scarcity requires micro-scale approaches. Nat. Resour. Forum 1989, 13, 258–267. [Google Scholar] [CrossRef]
- Kummu, M.; Guillaume, J.H.A.; de Moel, H.; Eisner, S.; Flörke, M.; Porkka, M.; Siebert, S.; Veldkamp, T.I.E.; Ward, P.J. The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Sci. Rep. 2016, 6, 38495. [Google Scholar] [CrossRef] [Green Version]
- World Bank. World Development Indicators-Global Development Finance Database. 2021. Available online: https://datacatalog.worldbank.org/home (accessed on 16 May 2022).
- Ngene, B.U.; Nwafor, C.O.; Bamigboye, G.O.; Ogbiye, A.S.; Ogundare, J.O.; Akpan, V.E. Assessment of water resources development and exploitation in Nigeria: A review of integrated water resources management approach. Heliyon 2021, 7, e05955. [Google Scholar] [CrossRef] [PubMed]
- D’odorico, P.; Chiarelli, D.D.; Rosa, L.; Bini, A.; Zilberman, D.; Rulli, M.C. The global value of water in agriculture. Proc. Natl. Acad. Sci. USA 2020, 117, 21985–21993. [Google Scholar] [CrossRef] [PubMed]
- Coe, M.; Foley, J.A. Human and natural impacts on the water resources of the Lake Chad basin. J. Geophys. Res. Atmos. 2001, 106, 3349–3356. [Google Scholar] [CrossRef]
- Nilsson, E.; Hochrainer-Stigler, S.; Mochizuki, J.; Uvo, C.B. Hydro-climatic variability and agricultural production on the shores of Lake Chad. Environ. Dev. 2016, 20, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D.; Berger, B.; Filiberto, D.; Newton, M.; Wolfe, B.; Karabinakis, E.; Clark, S.; Poon, E.; Abbett, E.; Nandagopal, S. Water Resources: Agricultural and Environmental Issues. Bioscience 2004, 54, 909–918. [Google Scholar] [CrossRef] [Green Version]
- Lenshie, N.E.; Ojeh, V.N.; Oruonye, E.D.; Ezeibe, C.; Ajaero, C.; Nzeadibe, T.C.; Celestine, U.U.; Osadebe, N. Geopolitics of climate change-induced conflict and population displacement in West Africa. Local Environ. 2022, 27, 287–308. [Google Scholar] [CrossRef]
- Bouchez, C.; Deschamps, P.; Goncalves, J.; Hamelin, B.; Nour, A.M.; Vallet-Coulomb, C.; Sylvestre, F. Water transit time and active recharge in the Sahel inferred by bomb-produced 36Cl. Sci. Rep. 2019, 9, 7465. [Google Scholar] [CrossRef] [Green Version]
- Adeyeri, O.; Laux, P.; Ishola, K.; Zhou, W.; Balogun, I.; Adeyewa, Z.; Kunstmann, H. Homogenising meteorological variables: Impact on trends and associated climate indices. J. Hydrol. 2022, 607, 127585. [Google Scholar] [CrossRef]
- Genthon, P.; Hector, B.; Luxereau, A.; Descloitres, M.; Abdou, H.; Hinderer, J.; Bakalowicz, M. Groundwater recharge by Sahelian rivers—Consequences for agricultural development: Example from the lower Komadugu Yobe River (Eastern Niger, Lake Chad Basin). Environ. Earth Sci. 2015, 74, 1291–1302. [Google Scholar] [CrossRef] [Green Version]
- Inogwabini, B. The changing water cycle: Freshwater in the Congo. WIREs Water 2020, 7, e1410. [Google Scholar] [CrossRef]
- Mahmood, R.; Jia, S.; Mahmood, T.; Mehmood, A. Predicted and Projected Water Resources Changes in the Chari Catchment, the Lake Chad Basin, Africa. J. Hydrometeorol. 2020, 21, 73–91. [Google Scholar] [CrossRef]
- Nzango, C.; Bartout, P.; Touchart, L.; Nguimalet, C. The Environmental Issues of the Ubangui Water Transfer Project to Lake Chad. 2022. Available online: https://onlinelibrary.wiley.com/doi/10.1002/9781119657002.ch25 (accessed on 1 March 2023).
- Dumont, H.J.; Verheye, H.M. The nature and origin of the crustacean zooplankton of Sahelian Africa, with a note on the Limnomedusa. Hydrobiologia 1984, 113, 313–325. [Google Scholar] [CrossRef]
- Sylvestre, F.; Schuster, M.; Vogel, H.; Abdheramane, M.; Ariztegui, D.; Salzmann, U.; Schwalb, A.; Waldmann, N. The ICDP CHADRILL Consortium The Lake CHAd Deep DRILLing project (CHADRILL)–targeting ∼ 10 million years of environmental and climate change in Africa. Sci. Drill. 2018, 24, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Adoum, A.A.; Moulin, P.; Brossard, M. Pioneering assessment of carbon stocks in polder soils developed in inter-dune landscapes in a semiarid climate, Lake Chad. Comptes Rendus Geosci. 2017, 349, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Babama’aji, R.A. Impacts of Precipitation, Land Use Land Cover and Soil Type on the Water Balance of Lake Chad Basin. 2013. Available online: https://mospace.umsystem.edu/xmlui/handle/10355/41500 (accessed on 14 May 2022).
- Nkiaka, E.; Nawaz, N.R.; Lovett, J.C. Effect of single and multi-site calibration techniques on hydrological model performance, parameter estimation and predictive uncertainty: A case study in the Logone catchment, Lake Chad basin. Stoch. Environ. Res. Risk Assess. 2017, 32, 1665–1682. [Google Scholar] [CrossRef] [Green Version]
- Vassolo, S.; Wilczok, C.; Daira, D.; Bala, A. Groundwater-Surface Water Interaction in the Lower Logone Floodplain, Hanover; Federal Ministry of Economic Cooperation and Development (Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung): Berlin, Germany, 2016. [Google Scholar]
- Beavington, F. Studies of Some Cracking Clay Soils in the Lake Chad Basin of North East Nigeria. Eur. J. Soil Sci. 1978, 29, 575–583. [Google Scholar] [CrossRef]
- Li, K.Y.; Coe, M.T.; Ramankutty, N. Investigation of Hydrological Variability in West Africa Using Land Surface Models. J. Clim. 2005, 18, 3173–3188. [Google Scholar] [CrossRef]
- Pierre, T.J.; Primus, A.T.; Simon, B.D.; Philemon, Z.Z.; Hamadjida, G.; Monique, A.; Pierre, N.J.; Lucien, B.D. Characteristics, classification and genesis of vertisols under seasonally contrasted climate in the Lake Chad Basin, Central Africa. J. Afr. Earth Sci. 2018, 150, 176–193. [Google Scholar] [CrossRef]
- Reynolds, T.W.; Waddington, S.R.; Anderson, C.L.; Chew, A.; True, Z.; Cullen, A. Environmental impacts and constraints associated with the production of major food crops in Sub-Saharan Africa and South Asia. Food Secur. 2015, 7, 795–822. [Google Scholar] [CrossRef] [Green Version]
- Leroux, L.; Baron, C.; Zoungrana, B.; Traore, S.B.; Seen, D.L.; Begue, A. Crop Monitoring Using Vegetation and Thermal Indices for Yield Estimates: Case Study of a Rainfed Cereal in Semi-Arid West Africa. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2015, 9, 347–362. [Google Scholar] [CrossRef] [Green Version]
- Ouédraogo, M.; Zougmoré, R.; Moussa, A.S.; Partey, S.T.; Thornton, P.K.; Kristjanson, P.; Quiros, C. Markets and climate are driving rapid change in farming practices in Savannah West Africa. Reg. Environ. Chang. 2017, 17, 437–449. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Gao, Y.; Qin, A.; Liu, Z.; Zhao, B.; Ning, D.; Ma, S.; Duan, A.; Liu, Z. Effects of waterlogging at different stages and durations on maize growth and grain yields. Agric. Water Manag. 2021, 261, 107334. [Google Scholar] [CrossRef]
- Ahmad, M.T.; Haie, N.; Yen, H.; Tuqan, N.A.S. Sefficiency of a Water Use System: The Case of Kano River Irrigation Project, Nigeria. Int. J. Civ. Eng. 2017, 16, 929–939. [Google Scholar] [CrossRef]
- Kolawole, A. Farm tenancy on the South Chad Irrigation Project, Nigeria: Problems and prospects. Land Use Policy 1988, 5, 434–444. [Google Scholar] [CrossRef]
- FAOSTAT. Livestock Product. 2020. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 4 January 2023).
- Sarch, M.-T. Fishing and farming at Lake Chad: Institutions for access to natural resources. J. Environ. Manag. 2001, 62, 185–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehiane, S.; Moyo, P. Climate Change, Human Insecurity and Conflict Dynamics in the Lake Chad Region. J. Asian Afr. Stud. 2021, 57, 1677–1689. [Google Scholar] [CrossRef]
- Kamta, F.N.; Schilling, J.; Scheffran, J. Insecurity, Resource Scarcity, and Migration to Camps of Internally Displaced Persons in Northeast Nigeria. Sustainability 2020, 12, 6830. [Google Scholar] [CrossRef]
- Kamta, F.N.; Schilling, J.; Scheffran, J. Water Resources, Forced Migration and Tensions with Host Communities in the Nigerian Part of the Lake Chad Basin. Resources 2021, 10, 27. [Google Scholar] [CrossRef]
- Lutz, W. How population growth relates to climate change. Proc. Natl. Acad. Sci. USA 2017, 114, 12103–12105. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Cook, K.H.; Vizy, E.K. How shrinkage of Lake Chad affects the local climate. Clim. Dyn. 2022, 61, 595–619. [Google Scholar] [CrossRef]
- Franzke, C.L.; Ciullo, A.; A Gilmore, E.; Matias, D.M.; Nagabhatla, N.; Orlov, A.; Paterson, S.K.; Scheffran, J.; Sillmann, J. Perspectives on tipping points in integrated models of the natural and human Earth system: Cascading effects and telecoupling. Environ. Res. Lett. 2022, 17, 015004. [Google Scholar] [CrossRef]
- Barnett, T.P.; Pierce, D.W. Sustainable water deliveries from the Colorado River in a changing climate. Proc. Natl. Acad. Sci. USA 2009, 106, 7334–7338. [Google Scholar] [CrossRef] [Green Version]
- Cockayne, B. Climate change effects on waterhole persistence in rivers of the Lake Eyre Basin, Australia. J. Arid. Environ. 2021, 187, 104428. [Google Scholar] [CrossRef]
- Perreault, T. Climate Change and Climate Politics: Parsing the Causes and Effects of the Drying of Lake Poopó, Bolivia. J. Lat. Am. Geogr. 2020, 19, 26–46. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Li, Z.; Fang, G.; Wang, F.; Liu, H. The impact of climate change and human activities on the Aral Sea Basin over the past 50 years. Atmospheric Res. 2020, 245, 105125. [Google Scholar] [CrossRef]
- Elgood, J.H.; Sharland, R.E.; Ward, P. Palaearctic Migrants in Nigeria. IBIS 2008, 108, 84–116. [Google Scholar] [CrossRef]
- Dumont, H.J. Relict Distribution Patterns of Aquatic Animals: Another Tool in Evaluating Late Pleistocene Climate Changes in the Sahara and Sahel. In Palaeoecology of Africa; Routledge: Oxfordshire, UK, 1982; Volume 14. [Google Scholar]
- Shaibu, M.T.; Omoyele, B.H.; Raphael, O.O. Climate Change and Trans-Border Migration from Lake Chad to Nigeria: Are There Policy Responses Towards a Sustainable Lake? Int. J. Eng. Appl. Sci. Technol. 2020, 4, 37–44. [Google Scholar]
- Nagabhatla, N.; Brahmbhatt, R. Geospatial Assessment of Water-Migration Scenarios in the Context of Sustainable Development Goals (SDGs) 6, 11, and 16. Remote. Sens. 2020, 12, 1376. [Google Scholar] [CrossRef]
- Tshimanga, R.M.; Lutonadio, G.-S.K.; Kabujenda, N.K.; Sondi, C.M.; Mihaha, E.-T.N.; Ngandu, J.-F.K.; Nkaba, L.N.; Sankiana, G.M.; Beya, J.T.; Kombayi, A.M.; et al. An Integrated Information System of Climate-Water-Migrations-Conflicts Nexus in the Congo Basin. Sustainability 2021, 13, 9323. [Google Scholar] [CrossRef]
- UN. Clean Water and Sanitation-Goal 6. United Nations Sustainable Development. 2015. Available online: https://www.un.org/sustainabledevelopment/water-and-sanitation/ (accessed on 14 March 2023).
- CrétaCrétaux, J.-F.; Birkett, C. Lake studies from satellite radar altimetry. Comptes Rendus Geosci. 2006, 338, 1098–1112. [Google Scholar] [CrossRef]
- Bouchez, C.; Goncalves, J.; Deschamps, P.; Vallet-Coulomb, C.; Hamelin, B.; Doumnang, J.-C.; Sylvestre, F. Hydrological, chemical, and isotopic budgets of Lake Chad: A quantitative assessment of evaporation, transpiration and infiltration fluxes. Hydrol. Earth Syst. Sci. 2016, 20, 1599–1619. [Google Scholar] [CrossRef] [Green Version]
- Buma, W.G.; Lee, S.-I.; Seo, J.Y. Recent Surface Water Extent of Lake Chad from Multispectral Sensors and GRACE. Sensors 2018, 18, 2082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magrin, G. The disappearance of Lake Chad: History of a myth. J. Politi. Ecol. 2016, 23, 204–222. Available online: http://journals.librarypublishing.arizona.edu/jpe/article/id/1962/ (accessed on 20 March 2023).
- Daoust, G.; Selby, J. Understanding the Politics of Climate Security Policy Discourse: The Case of the Lake Chad Basin. Geopolitics 2022, 28, 1285–1322. [Google Scholar] [CrossRef]
- Okonkwo, C.; Demoz, B.; Gebremariam, S. Characteristics of Lake Chad Level Variability and Links to ENSO, Precipitation, and River Discharge. Sci. World J. 2014, 2014, e145893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, L.; Mackay, E.B.; Cardoso, A.C.; Baattrup-Pedersen, A.; Birk, S.; Blackstock, K.L.; Borics, G.; Borja, A.; Feld, C.K.; Ferreira, M.T.; et al. Protecting and restoring Europe’s waters: An analysis of the future development needs of the Water Framework Directive. Sci. Total Environ. 2018, 658, 1228–1238. [Google Scholar] [CrossRef]
- Keiser, D.; Shapiro, J. Consequences of the Clean Water Act and the Demand for Water Quality. Natl. Bur. Econ. Res. 2017, 134, 349–396. [Google Scholar]
- Crampon, M.; Copard, Y.; Favreau, G.; Raux, J.; Merlet-Machour, N.; Le Coz, M.; Portet-Koltalo, F. Occurrence of 1,1′-dimethyl-4,4′-bipyridinium (Paraquat) in irrigated soil of the Lake Chad Basin, Niger. Environ. Sci. Pollut. Res. 2014, 21, 10601–10613. [Google Scholar] [CrossRef]
- Sand, Z.S. Development of international water law in the Lake Chad Basin. In Zeitschrift fur Auslandisches Offentiliches Recht und Volkerrecht; Max-Planck-Institut Heidelberg Journal of International Law: Heidelberg, Germany, 1974; pp. 73–81. [Google Scholar]
- Okpara, U.T.; Stringer, L.C.; Dougill, A.J.; Bila, M.D. Conflicts about water in Lake Chad: Are environmental, vulnerability and security issues linked? Prog. Dev. Stud. 2015, 15, 308–325. [Google Scholar] [CrossRef] [Green Version]
- Nagabhatla, N.; Cassidy-Neumiller, M.; Francine, N.N.; Maatta, N. Water, conflicts and migration and the role of regional diplomacy: Lake Chad, Congo Basin, and the Mbororo pastoralist. Environ. Sci. Policy 2021, 122, 35–48. [Google Scholar] [CrossRef]
- Hassan, M.Z. Explaining the resilience of Boko Haram’s insurgency in the Lake Chad Basin. South Afr. J. Int. Aff. 2021, 28, 305–322. [Google Scholar] [CrossRef]
- Luxereau, A.; Genthon, P.; Karimou, J.-M.A. Fluctuations in the size of Lake Chad: Consequences on the livelihoods of the riverain peoples in eastern Niger. Reg. Environ. Chang. 2011, 12, 507–521. [Google Scholar] [CrossRef]
- Béné, C.; Neiland, A.; Jolley, T.; Ovie, S.; Sule, O.; Ladu, B.; Mindjimba, K.; Belal, E.; Tiotsop, F.; Baba, M.; et al. Inland Fisheries, Poverty, and Rural Livelihoods in the Lake Chad Basin. J. Asian Afr. Stud. 2003, 38, 17–51. [Google Scholar] [CrossRef]
- Iocchi, A. The Dangers of Disconnection: Oscillations in Political Violence on Lake Chad. Int. Spect. 2020, 55, 84–99. [Google Scholar] [CrossRef]
- Lizotte, R.E.; Knight, S.S.; Locke, M.; Bingner, R.L. Influence of integrated watershed-scale agricultural conservation practices on lake water quality. J. Soil Water Conserv. 2014, 69, 160–170. [Google Scholar] [CrossRef] [Green Version]
- UN. Transforming our world: The 2030 Agenda for Sustainable Development|Department of Economic and Social Affairs. 2015. Available online: https://sdgs.un.org/2030agenda (accessed on 14 May 2022).
- Asah, S.T. Transboundary hydro-politics and climate change rhetoric: An emerging hydro-security complex in the lake chad basin. WIREs Water 2014, 2, 37–45. [Google Scholar] [CrossRef]
- Badewa, A.S.; Dinbabo, M.F. Multisectoral intervention on food security in complex emergencies: A discourse on regional resilience praxis in Northeast Nigeria. GeoJournal 2022, 88, 1231–1250. [Google Scholar] [CrossRef]
- Kingsford, R.T.; Bino, G.; Finlayson, C.M.; Falster, D.; Fitzsimons, J.; Gawlik, D.E.; Murray, N.J.; Grillas, P.; Gardner, R.C.; Regan, T.J.; et al. Ramsar Wetlands of International Importance–Improving Conservation Outcomes. Front. Environ. Sci. 2021, 9, 1–6. Available online: https://www.frontiersin.org/articles/10.3389/fenvs.2021.643367 (accessed on 20 March 2023). [CrossRef]
- Loreau, M.; Naeem, S.; Inchausti, P.; Bengtsson, J.; Grime, J.P.; Hector, A.; Hooper, D.U.; Huston, M.A.; Raffaelli, D.; Schmid, B.; et al. Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. Science 2001, 294, 804–808. [Google Scholar] [CrossRef] [Green Version]
- Owonikoko, S.B.; Momodu, J.A. Environmental degradation, livelihood, and the stability of Chad Basin Region. Small Wars. Insur. 2020, 31, 1295–1322. [Google Scholar] [CrossRef]
- Mahmood, R.; Jia, S. Assessment of hydro-climatic trends and causes of dramatically declining stream flow to Lake Chad, Africa, using a hydrological approach. Sci. Total Environ. 2019, 675, 122–140. [Google Scholar] [CrossRef] [PubMed]
- Onamuti, O.Y.; Okogbue, E.C.; Orimoloye, I.R. Remote sensing appraisal of Lake Chad shrinkage connotes severe impacts on green economics and socio-economics of the catchment area. R. Soc. Open Sci. 2017, 4, 171120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olowoyeye, O.S.; Kanwar, R.S. Water and Food Sustainability in the Riparian Countries of Lake Chad in Africa. Sustainability 2023, 15, 10009. https://doi.org/10.3390/su151310009
Olowoyeye OS, Kanwar RS. Water and Food Sustainability in the Riparian Countries of Lake Chad in Africa. Sustainability. 2023; 15(13):10009. https://doi.org/10.3390/su151310009
Chicago/Turabian StyleOlowoyeye, Oluwatuyi S., and Rameshwar S. Kanwar. 2023. "Water and Food Sustainability in the Riparian Countries of Lake Chad in Africa" Sustainability 15, no. 13: 10009. https://doi.org/10.3390/su151310009
APA StyleOlowoyeye, O. S., & Kanwar, R. S. (2023). Water and Food Sustainability in the Riparian Countries of Lake Chad in Africa. Sustainability, 15(13), 10009. https://doi.org/10.3390/su151310009