Mapping Groundwater Potential Zones in the Habawnah Basin of Southern Saudi Arabia: An AHP- and GIS-based Approach
Abstract
:1. Introduction
2. Area of Study and Methods
2.1. Study Area
2.2. Methodology
- Data Preparation: Seven thematic layers were prepared for analysis. These layers included geology, slope, land use, lineament densities, soil characteristics, drainage density, and rainfall. Each layer provides information relevant to groundwater potential assessment.
- Variable Examination: The variables in each thematic layer were carefully considered and examined. This step involved analyzing the characteristics and attributes of each variable to understand their influence on groundwater potential.
- Weight Assignment: The analytic hierarchy process (AHP) method was employed to assign weights to each class within the thematic maps. The AHP method is a well-known decision-making technique that helps determine the relative importance or influence of different factors. In this study, the characteristics of each class and its capacity to influence water potential were taken into account when assigning weights.
- Delineation of groundwater potential zones (GWPZ): Using the assigned weights, the study performed the delineation of groundwater potential zones. This step involved classifying and categorizing areas within the study basin based on their respective groundwater potentials. The precise delineation aimed to provide a comprehensive understanding of the distribution and extent of groundwater potential.
- Result Validation: To ensure the precision of the results, the generated GWPZ map was cross-referenced with existing information about the area’s potential for groundwater. This validation process helped verify the accuracy of the delineated zones.
2.3. Analytical Hierarchical Process (AHP)
3. Results and Discussion
3.1. Thematic Layers
3.1.1. Geology
3.1.2. Lineament Density
3.1.3. Slope
3.1.4. Land Use (LU)
3.1.5. Soil Type
3.1.6. Drainage Density
3.1.7. Rainfall
3.2. Groundwater Potential Zone (GWPZ)
4. Conclusions and Recommendations
- Very low zone: 0.05% of the area;
- Low zone: 36.12% of the area;
- Moderate zone: 19.55% of the area;
- High zone: 42.56% of the area;
- Very high zone: 1.72% of the area.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Awadh, S.M.; Al-Mimar, H.; Yaseen, Z.M. Groundwater Availability and Water Demand Sustainability over the Upper Mega Aquifers of Arabian Peninsula and West Region of Iraq. Environ. Dev. Sustain. 2021, 23, 1–21. [Google Scholar] [CrossRef]
- Enssle, C.; Freedman, J. Addressing Water Scarcity in Saudi Arabia: Policy Options for Continued Success; FAO: Rome, Italy, 2017. [Google Scholar]
- Statistical Yearbook of 2017|Issue Number: 53|General Authority for Statistics. Available online: https://www.stats.gov.sa/en/929-0 (accessed on 26 May 2023).
- Ghanim, A.A. Water resources crisis in Saudi Arabia, challenges and possible management options: An analytic review. Int. J. Environ. Ecol. Eng. 2019, 13, 51–56. [Google Scholar] [CrossRef]
- Mallick, J.; Singh, C.K.; Al-Wadi, H.; Ahmed, M.; Rahman, A.; Shashtri, S.; Mukherjee, S. Geospatial and Geostatistical Approach for Groundwater Potential Zone Delineation. Hydrol. Process. 2015, 29, 395–418. [Google Scholar] [CrossRef]
- Kpiebaya, P.; Amuah, E.E.Y.; Shaibu, A.-G.; Baatuuwie, B.N.; Avornyo, V.K.; Dekongmen, B.W. Spatial Assessment of Groundwater Potential Using Quantum GIS and Multi-Criteria Decision Analysis (QGIS-AHP) in the Sawla-Tuna-Kalba District of Ghana. J. Hydrol. Reg. Stud. 2022, 43, 101197. [Google Scholar] [CrossRef]
- Rahmati, O.; Pourghasemi, H.R.; Zeinivand, H. Flood Susceptibility Mapping Using Frequency Ratio and Weights-of-Evidence Models in the Golastan Province, Iran. Geocarto Int. 2016, 31, 42–70. [Google Scholar] [CrossRef]
- Arulbalaji, P.; Padmalal, D.; Sreelash, K. GIS and AHP Techniques Based Delineation of Groundwater Potential Zones: A Case Study from Southern Western Ghats, India. Sci. Rep. 2019, 9, 2082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maity, B.; Mallick, S.K.; Das, P.; Rudra, S. Comparative Analysis of Groundwater Potentiality Zone Using Fuzzy AHP, Frequency Ratio and Bayesian Weights of Evidence Methods. Appl. Water Sci. 2022, 12, 63. [Google Scholar] [CrossRef]
- Chen, W.; Li, Y.; Tsangaratos, P.; Shahabi, H.; Ilia, I.; Xue, W.; Bian, H. Groundwater Spring Potential Mapping Using Artificial Intelligence Approach Based on Kernel Logistic Regression, Random Forest, and Alternating Decision Tree Models. Appl. Sci. 2020, 10, 425. [Google Scholar] [CrossRef] [Green Version]
- Thanh, N.N.; Thunyawatcharakul, P.; Ngu, N.H.; Chotpantarat, S. Global Review of Groundwater Potential Models in the Last Decade: Parameters, Model Techniques, and Validation. J. Hydrol. 2022, 614, 128501. [Google Scholar] [CrossRef]
- Razandi, Y.; Pourghasemi, H.R.; Neisani, N.S.; Rahmati, O. Application of Analytical Hierarchy Process, Frequency Ratio, and Certainty Factor Models for Groundwater Potential Mapping Using GIS. Earth Sci. Inf. 2015, 8, 867–883. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, W.; Chandra Pal, S.; Saha, A.; Chowdhuri, I.; Adeli, B.; Janizadeh, S.; Dineva, A.A.; Wang, X.; Mosavi, A. Evaluation Efficiency of Hybrid Deep Learning Algorithms with Neural Network Decision Tree and Boosting Methods for Predicting Groundwater Potential. Geocarto Int. 2022, 37, 5564–5584. [Google Scholar] [CrossRef]
- Bai, Z.; Liu, Q.; Liu, Y. Groundwater Potential Mapping in Hubei Region of China Using Machine Learning, Ensemble Learning, Deep Learning and Automl Methods. Nat. Resour. Res. 2022, 31, 2549–2569. [Google Scholar] [CrossRef]
- Thanh, N.N.; Chotpantarat, S.; Trung, N.H.; Ngu, N.H. Mapping Groundwater Potential Zones in Kanchanaburi Province, Thailand by Integrating of Analytic Hierarchy Process, Frequency Ratio, and Random Forest. Ecol. Indic. 2022, 145, 109591. [Google Scholar] [CrossRef]
- Tamiru, H.; Wagari, M. Comparison of ANN Model and GIS Tools for Delineation of Groundwater Potential Zones, Fincha Catchment, Abay Basin, Ethiopia. Geocarto Int. 2022, 37, 6736–6754. [Google Scholar] [CrossRef]
- Bandyopadhyay, J.; Rahaman, S.H.; Karan, C. Agricultural Potential Zone Mapping with Surface Water Resource Management Using Geo-Spatial Tools for Jhargram District, West Bengal, India. Knowl.-Based Eng. Sci. 2023, 4, 1–18. [Google Scholar] [CrossRef]
- Halder, B.; Haghbin, M.; Farooque, A.A. An Assessment of Urban Expansion Impacts on Land Transformation of Rajpur-Sonarpur Municipality. Knowl.-Based Eng. Sci. 2021, 2, 34–53. [Google Scholar] [CrossRef]
- Derdour, A.; Benkaddour, Y.; Bendahou, B. Application of Remote Sensing and GIS to Assess Groundwater Potential in the Transboundary Watershed of the Chott-El-Gharbi (Algerian–Moroccan Border). Appl. Water Sci. 2022, 12, 136. [Google Scholar] [CrossRef]
- Rather, A.F.; Ahmed, R.; Wani, G.F.; Ahmad, S.T.; Dar, T.; Javaid, S.; Ahmed, P. Mapping of Groundwater Potential Zones in Pohru Watershed of Jhelum Basin-Western Himalaya, India Using Integrated Approach of Remote Sensing, GIS and AHP. Earth Sci. Inf. 2022, 15, 2091–2107. [Google Scholar] [CrossRef]
- Petrick, N.; bin Jubidi, M.F.; Ahmad Abir, I. Groundwater Potential Assessment of Penang Island, Malaysia, through Integration of Remote Sensing and GIS with Validation by 2D ERT. Nat. Resour. Res. 2023, 32, 523–541. [Google Scholar] [CrossRef]
- Muniraj, K.; Jesudhas, C.J.; Chinnasamy, A. Delineating the Groundwater Potential Zone in Tirunelveli Taluk, South Tamil Nadu, India, Using Remote Sensing, Geographical Information System (GIS) and Analytic Hierarchy Process (AHP) Techniques. Proc. Natl. Acad. Sci. USA India Sect. A—Phys. Sci. 2020, 90, 661–676. [Google Scholar] [CrossRef]
- Elewa, H.H.; Qaddah, A.A. Groundwater Potentiality Mapping in the Sinai Peninsula, Egypt, Using Remote Sensing and GIS-Watershed-Based Modeling. Hydrogeol. J. 2011, 19, 613–628. [Google Scholar] [CrossRef] [Green Version]
- Abuzied, S.M. Groundwater Potential Zone Assessment in Wadi Watir Area, Egypt Using Radar Data and GIS. Arab. J. Geosci. 2016, 9, 501. [Google Scholar] [CrossRef]
- Armanuos, A.M.; Moghazy, H.E.; Zeleňáková, M.; Yaseen, Z.M. Assessing the Impact of Groundwater Extraction on the Performance of Fractured Concrete Subsurface Dam in Controlling Seawater Intrusion in Coastal Aquifers. Water 2022, 14, 2139. [Google Scholar] [CrossRef]
- Abd El-Aal, A.K.; El Kharashy, I.A. Engineering and Geological Aspects of the Wajid Sandstone, Najran-Khamis Mushayt Area, Southwestern Saudi Arabia, K.S.A. Int. J. Res. Stud. Sci. Eng. Technol. 2014, 1, 10–21. [Google Scholar]
- Farran, M.M.; Al-Amri, N.; Elfeki, A.M. Aquifer Recharge from Flash Floods in the Arid Environment: A Mass Balance Approach at the Catchment Scale. Hydrol. Process. 2021, 35, e14318. [Google Scholar] [CrossRef]
- Alfaifi, H.J.; Kahal, A.Y.; Abdelrahman, K.; Zaidi, F.K.; Albassam, A.; Lashin, A. Assessment of Groundwater Quality in Southern Saudi Arabia: Case Study of Najran Area. Arab. J. Geosci. 2020, 13, 101. [Google Scholar] [CrossRef]
- Owolabi, S.T.; Madi, K.; Kalumba, A.M.; Orimoloye, I.R. A Groundwater Potential Zone Mapping Approach for Semi-Arid Environments Using Remote Sensing (RS), Geographic Information System (GIS), and Analytical Hierarchical Process (AHP) Techniques: A Case Study of Buffalo Catchment, Eastern Cape, South Africa. Arab. J. Geosci. 2020, 13, 1184. [Google Scholar] [CrossRef]
- Bhadran, A.; Girishbai, D.; Jesiya, N.P.; Gopinath, G.; Krishnan, R.G.; Vijesh, V.K. A GIS Based Fuzzy-AHP for Delineating Groundwater Potential Zones in Tropical River Basin, Southern Part of India. Geosyst. Geoenviron. 2022, 1, 100093. [Google Scholar] [CrossRef]
- Moharir, K.N.; Pande, C.B.; Gautam, V.K.; Singh, S.K.; Rane, N.L. Integration of Hydrogeological Data, GIS and AHP Techniques Applied to Delineate Groundwater Potential Zones in Sandstone, Limestone and Shales Rocks of the Damoh District, (MP) Central India. Environ. Res. 2023, 228, 115832. [Google Scholar] [CrossRef] [PubMed]
- AL-Shammari, M.M.A.; AL-Shamma’a, A.M.; Al Maliki, A.; Hussain, H.M.; Yaseen, Z.M.; Armanuos, A.M. Integrated Water Harvesting and Aquifer Recharge Evaluation Methodology Based on Remote Sensing and Geographical Information System: Case Study in Iraq. Nat. Resour. Res. 2021, 30, 2119–2143. [Google Scholar] [CrossRef]
- Roy, S.; Hazra, S.; Chanda, A.; Das, S. Assessment of Groundwater Potential Zones Using Multi-Criteria Decision-Making Technique: A Micro-Level Case Study from Red and Lateritic Zone (RLZ) of West Bengal, India. Sustain. Water Resour. Manag. 2020, 6, 4. [Google Scholar] [CrossRef]
- Waikar, M.; Nilawar, A. Identification of Groundwater Potential Zone Using Remote Sensing and GIS Technique—Search. Available online: https://www.bing.com/search?q=Identification+of+groundwater+potential+zone+using+remote+sensing+and+GIS+technique&aqs=edge..69i57j69i11004&FORM=ANCMS9&PC=ASTS (accessed on 11 May 2023).
- Yammani, S. Groundwater Quality Suitable Zones Identification: Application of GIS, Chittoor Area, Andhra Pradesh, India. Environ. Geol. 2007, 53, 201–210. [Google Scholar] [CrossRef]
- Asadi, S.S.; Vuppala, P.; Reddy, M.A. Remote Sensing and GIS Techniques for Evaluation of Groundwater Quality in Municipal Corporation of Hyderabad (Zone-V), India. Int. J. Environ. Res. Public Health 2007, 4, 45–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sable, E.G. Geologic Map of the Najrān Quadrangle, Sheet 17G, Kingdom of Saudi Arabia|WorldCat. Available online: https://www.worldcat.org/title/geologic-map-of-the-najran-quadrangle-sheet-17g-kingdom-of-saudi-arabia/oclc/430944758 (accessed on 26 May 2023).
- PetroLink, G.; Nehlig, P.; Genna, A.; Asfirane, F.; Guerrot, C.; Eberlé, J.; Kluyver, H.; Lasserre, J.; Le Goff, E.; Nicol, N.; et al. A Review of the Pan-African Evolution of the Arabian Shield; Gulf PetroLink: Manama, Bahrain, 2002; Volume 7. [Google Scholar]
- Edet, A.E.; Okereke, C.S.; Teme, S.C.; Esu, E.O. Application of Remote-Sensing Data to Groundwater Exploration: A Case Study of the Cross River State, Southeastern Nigeria. Hydrogeol. J. 1998, 6, 394–404. [Google Scholar] [CrossRef]
- Algaydi, B.A.M.; Subyani, A.M.; Hamza, M.H.M.M. Investigation of Groundwater Potential Zones in Hard Rock Terrain, Wadi Na’man, Saudi Arabia. Groundwater 2019, 57, 940–950. [Google Scholar] [CrossRef]
- Singh, P.; Thakur, J.K.; Kumar, S. Delineating Groundwater Potential Zones in a Hard-Rock Terrain Using Geospatial Tool. Hydrol. Sci. J. 2013, 58, 213–223. [Google Scholar] [CrossRef] [Green Version]
- De Reu, J.; Bourgeois, J.; Bats, M.; Zwertvaegher, A.; Gelorini, V.; De Smedt, P.; Chu, W.; Antrop, M.; De Maeyer, P.; Finke, P.; et al. Application of the Topographic Position Index to Heterogeneous Landscapes. Geomorphology 2013, 186, 39–49. [Google Scholar] [CrossRef]
- Yeh, H.F.; Cheng, Y.S.; Lin, H.I.; Lee, C.H. Mapping Groundwater Recharge Potential Zone Using a GIS Approach in Hualian River, Taiwan. Sustain. Environ. Res. 2016, 26, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim-Bathis, K.; Ahmed, S.A. Geospatial Technology for Delineating Groundwater Potential Zones in Doddahalla Watershed of Chitradurga District, India. Egypt. J. Remote Sens. Space Sci. 2016, 19, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Al-Areeq, A.M.; Al-Zahrani, M.A.; Sharif, H.O. Physically-Based, Distributed Hydrologic Model for Makkah Watershed Using GPM Satellite Rainfall and Ground Rainfall Stations. Nat. Hazards Risk 2021, 12, 1234–1257. [Google Scholar] [CrossRef]
- Rajaveni, S.P.; Brindha, K.; Elango, L. Geological and Geomorphological Controls on Groundwater Occurrence in a Hard Rock Region. Appl. Water Sci. 2017, 7, 1377–1389. [Google Scholar] [CrossRef] [Green Version]
- Ganapuram, S.; Kumar, G.T.V.; Krishna, I.V.M.; Kahya, E.; Demirel, M.C. Mapping of Groundwater Potential Zones in the Musi Basin Using Remote Sensing Data and GIS. Adv. Eng. Softw. 2009, 40, 506–518. [Google Scholar] [CrossRef]
- Al-Areeq, A.M.; Al-Zahrani, M.A.; Sharif, H.O. Assessment of the Performance of Satellite Rainfall Products over Makkah Watershed Using a Physically Based Hydrologic Model. Appl. Water Sci. 2022, 12, 246. [Google Scholar] [CrossRef]
- Achilleos, G.A. The Inverse Distance Weighted Interpolation Method and Error Propagation Mechanism—Creating a DEM from an Analogue Topographical Map. J. Spat. Sci. 2011, 56, 283–304. [Google Scholar] [CrossRef]
- Al-Areeq, A.M.; Al-Zahrani, M.A.; Sharif, H.O. The Performance of Physically Based and Conceptual Hydrologic Models: A Case Study for Makkah Watershed, Saudi Arabia. Water 2021, 13, 1098. [Google Scholar] [CrossRef]
- Hussien, H.M.; Kehew, A.E.; Aggour, T.; Korany, E.; Abotalib, A.Z.; Hassanein, A.; Morsy, S. An Integrated Approach for Identification of Potential Aquifer Zones in Structurally Controlled Terrain: Wadi Qena Basin, Egypt. Catena 2017, 149, 73–85. [Google Scholar] [CrossRef]
- Morsy, E.A.; Othman, A. Delineation of Shallow Groundwater Potential Zones Using Integrated Hydrogeophysical and Topographic Analyses, Western Saudi Arabia. J. King Saud Univ. Sci. 2021, 33, 101559. [Google Scholar] [CrossRef]
- Yousif, M.; Hussien, H.M.; Abotalib, A.Z. The Respective Roles of Modern and Paleo Recharge to Alluvium Aquifers in Continental Rift Basins: A Case Study from El Qaa Plain, Sinai, Egypt. Sci. Total Environ. 2020, 739, 139927. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, O.; Nazari Samani, A.; Mahdavi, M.; Pourghasemi, H.R.; Zeinivand, H. Groundwater Potential Mapping at Kurdistan Region of Iran Using Analytic Hierarchy Process and GIS. Arab. J. Geosci. 2015, 8, 7059–7071. [Google Scholar] [CrossRef]
- Shebl, A.; Abdelaziz, M.I.; Ghazala, H.; Araffa, S.A.S.; Abdellatif, M.; Csámer, Á. Multi-Criteria Ground Water Potentiality Mapping Utilizing Remote Sensing and Geophysical Data: A Case Study within Sinai Peninsula, Egypt. Egypt. J. Remote Sens. Space Sci. 2022, 25, 765–778. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Pourghasemi, H.R.; Dixon, B. GIS-Based Groundwater Potential Mapping Using Boosted Regression Tree, Classification and Regression Tree, and Random Forest Machine Learning Models in Iran. Environ. Monit. Assess. 2016, 188, 44. [Google Scholar] [CrossRef] [PubMed]
Thematic Layer | Geology | Lineament Density | Slope | LULC | Soil Type | Drainage Density | Rainfall | Weight |
---|---|---|---|---|---|---|---|---|
Geology | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0.3857 |
Lineament density | 7/2 | 6/2 | 5/2 | 4/2 | 3/2 | 2/2 | 1/2 | 0.19 |
Slope | 7/3 | 6/3 | 5/3 | 4/6 | 3/3 | 2/3 | 1/3 | 0.12 |
LULC | 7/4 | 6/4 | 5/4 | 4/4 | 3/4 | 2/4 | 1/4 | 0.1 |
Soil type | 7/5 | 6/5 | 5/5 | 4/5 | 3/5 | 2/5 | 1/5 | 0.08 |
Drainage density | 7/6 | 6/6 | 5/6 | 4/6 | 3/6 | 2/6 | 1/6 | 0.066 |
Rainfall | 7/7 | 6/7 | 5/7 | 4/7 | 3/7 | 2/7 | 1/7 | 0.064 |
Thematic Layer | Factors | Weight (%) | Rank |
---|---|---|---|
Geology | Igneous extrusive rocks | 39 | 1 |
Sedimentary surficial deposits | 5 | ||
Sedimentary rocks | 5 | ||
Igneous intrusive rocks | 1 | ||
Metamorphic rocks | 4 | ||
Polylithologic rocks | 4 | ||
Igneous rocks (plugs) | 1 | ||
Lineament density | 1 | 19 | 5 |
2 | 4 | ||
3 | 3 | ||
4 | 2 | ||
5 | 1 | ||
Slope | 0–5.49 | 12 | 5 |
5.5–14.8 | 4 | ||
14.9–26.1 | 3 | ||
26.2–39.4 | 2 | ||
39.5–82.3 | 1 | ||
LULC | Water | 10 | 3 |
Rangeland | 2 | ||
Flooded vegetation | 2 | ||
Crops | 4 | ||
Built area | 1 | ||
Bare land | 1 | ||
Soil type | Clay loam | 8 | 1 |
Loam | 1 | ||
Loamy sand | 3 | ||
Sand | 3 | ||
Sandy clay loam | 5 | ||
Sandy loam | 5 | ||
Drainage density | 1 | 7 | 1 |
2 | 2 | ||
3 | 3 | ||
4 | 4 | ||
5 | 5 | ||
Rainfall | 52–63 | 5 | 1 |
64–74 | 2 | ||
75–85 | 3 | ||
86–96 | 4 | ||
97–110 | 5 |
Texture | Covered Area (%) |
---|---|
Sandy loam | 44.9 |
Loamy sand | 26.7 |
Sand | 21.3 |
Sandy clay loam | 6.2 |
Loam | 0.87 |
Clay loam | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghanim, A.A.J.; Al-Areeq, A.M.; Benaafi, M.; Al-Suwaiyan, M.S.; Aghbari, A.A.A.; Alyami, M. Mapping Groundwater Potential Zones in the Habawnah Basin of Southern Saudi Arabia: An AHP- and GIS-based Approach. Sustainability 2023, 15, 10075. https://doi.org/10.3390/su151310075
Ghanim AAJ, Al-Areeq AM, Benaafi M, Al-Suwaiyan MS, Aghbari AAA, Alyami M. Mapping Groundwater Potential Zones in the Habawnah Basin of Southern Saudi Arabia: An AHP- and GIS-based Approach. Sustainability. 2023; 15(13):10075. https://doi.org/10.3390/su151310075
Chicago/Turabian StyleGhanim, Abdulnoor A. J., Ahmed M. Al-Areeq, Mohammed Benaafi, Mohammed S. Al-Suwaiyan, Amran A. Al Aghbari, and Mana Alyami. 2023. "Mapping Groundwater Potential Zones in the Habawnah Basin of Southern Saudi Arabia: An AHP- and GIS-based Approach" Sustainability 15, no. 13: 10075. https://doi.org/10.3390/su151310075
APA StyleGhanim, A. A. J., Al-Areeq, A. M., Benaafi, M., Al-Suwaiyan, M. S., Aghbari, A. A. A., & Alyami, M. (2023). Mapping Groundwater Potential Zones in the Habawnah Basin of Southern Saudi Arabia: An AHP- and GIS-based Approach. Sustainability, 15(13), 10075. https://doi.org/10.3390/su151310075