Biolysed Sludge Composting for Nitrogen Conservation and Humification Improvements and Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sludge Conditioning and the Mechanical Dewatering of the Conditioned Sludge
2.2. Composting Treatment of Dewatered Sludges
2.3. Analytical Methods
2.4. Statistics Analysis
3. Results and Discussion
3.1. Basic Physical and Chemical Indicators during Composting
3.2. Organic Matter Degradation
3.3. Nitrogen Conversion Index
3.4. Humification Process during Composting
3.5. Fourier Transform Infrared Spectroscopy Analysis of Compost HA
3.6. Fluorescence Characteristics of HA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, B.; Dai, X.; Chai, X. Critical Review on Dewatering of Sewage Sludge: Influential Mechanism, Conditioning Technologies and Implications to Sludge Re-Utilizations. Water Res. 2020, 180, 115912. [Google Scholar] [CrossRef]
- Liu, M.; Yuan, C.; Ru, S.; Li, J.; Lei, Z.; Zhang, Z.; Shimizu, K.; Yuan, T.; Li, F. Combined Organic Reagents for Co-Conditioning of Sewage Sludge: High Performance in Deep Dewatering and Significant Contribution to the Floc Property. J. Water Process Eng. 2022, 48, 102855. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, W.; Chen, L.; Zhou, Y.; Meng, L.; Zhang, S. Isolation and Application of a Thermotolerant Nitrifying Bacterium Gordonia Paraffinivorans N52 in Sewage Sludge Composting for Reducing Nitrogen Loss. Bioresour. Technol. 2022, 363, 127959. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, H.-Y.; Zhang, Y.-L.; Ran, D.-D.; Wu, L.-Q.; Wang, H.-F.; Zeng, R.J. Effects of Sewage Sludge Pretreatment Methods on Its Use in Agricultural Applications. J. Hazard. Mater. 2022, 428, 128213. [Google Scholar] [CrossRef]
- Lu, Y.; Zheng, G.; Zhou, W.; Wang, J.; Zhou, L. Bioleaching Conditioning Increased the Bioavailability of Polycyclic Aromatic Hydrocarbons to Promote Their Removal during Co-Composting of Industrial and Municipal Sewage Sludges. Sci. Total Environ. 2019, 665, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Akbar, M.; Khan, M.F.S.; Abid, M. Novel Insight into the Degradation of Polyacrylamide by Thermophilic Anaerobic Digestion. Biochem. Eng. J. 2022, 189, 108716. [Google Scholar] [CrossRef]
- Xue, M.; Gao, H.; Dong, X.; Zhan, M.; Yang, G.; Yu, R. Promotion and Mechanisms of Bdellovibrio Sp. Y38 on Membrane Fouling Alleviation in Membrane Bioreactor. Environ. Res. 2022, 212, 113593. [Google Scholar]
- Yu, R.; Zhang, S.; Chen, Z.; Li, C. Isolation and Application of Predatory Bdellovibrio-and-like Organisms for Municipal Waste Sludge Biolysis and Dewaterability Enhancement. Front. Environ. Sci. Eng. 2017, 11, 10. [Google Scholar] [CrossRef]
- Withey, S.; Cartmell, E.; Avery, L.M.; Stephenson, T. Bacteriophages—Potential for Application in Wastewater Treatment Processes. Sci. Total Environ. 2005, 339, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Ye, J.; Hou, Y.; Chen, H.; Cao, J.; Zhou, T. Predation Efficacy of Bdellovibrio Bacteriovorus on Multidrug-Resistant Clinical Pathogens and Their Corresponding Biofilms. Jpn. J. Infect. Dis. 2017, 70, 485–489. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Deng, F.; Wang, R.; Li, J.; Liu, X.; Li, D. Bioaugmentation on Humification during Co-Composting of Corn Straw and Biogas Slurry. Bioresour. Technol. 2023, 374, 128756. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Jiang, Z.; Feng, W.; Yu, C.; Jiang, F.; Huang, J.; Cui, J. Exploration of Bacterial Community-Induced Polycyclic Aromatic Hydrocarbons Degradation and Humus Formation during Co-Composting of Cow Manure Waste Combined with Contaminated Soil. J. Environ. Manag. 2023, 326, 116852. [Google Scholar] [CrossRef]
- Yang, H.; Ma, L.; Fu, M.; Li, K.; Li, Y.; Li, Q. Mechanism Analysis of Humification Coupling Metabolic Pathways Based on Cow Dung Composting with Ionic Liquids. J. Environ. Manag. 2023, 325, 116426. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, C.; Dang, Q.; Xi, B. Insights into Phenol Monomers in Response to Electron Transfer Capacity of Humic Acid during Corn Straw Composting Process. Environ. Pollut. 2022, 307, 119548. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Zhu, T.; Yao, S.; Quan, H.; Zhang, K.; Liang, B.; Wang, Y.; Zhu, Y.; Zhao, C.; Lyu, Z. Coupling Effect of High Temperature and Thermophilic Bacteria Indirectly Accelerates the Humification Process of Municipal Sludge in Hyperthermophilic Composting. Process Saf. Environ. Prot. 2022, 166, 469–477. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, Z.; Guo, W.; Wei, Y.; Luo, J.; Song, C.; Lu, Q.; Zhao, Y. Two Types Nitrogen Source Supply Adjusted Interaction Patterns of Bacterial Community to Affect Humifaction Process of Rice Straw Composting. Bioresour. Technol. 2021, 332, 125129. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, J.; Huang, H.; Sun, E.; Butterly, C.; Xu, Y.; He, H.; Zhang, J.; Chang, Z. Spectroscopic Evidence for Hyperthermophilic Pretreatment Intensifying Humification during Pig Manure and Rice Straw Composting. Bioresour. Technol. 2019, 294, 122131. [Google Scholar] [CrossRef]
- Yang, X.-C.; Han, Z.-Z.; Ruan, X.-Y.; Chai, J.; Jiang, S.-W.; Zheng, R. Composting Swine Carcasses with Nitrogen Transformation Microbial Strains: Succession of Microbial Community and Nitrogen Functional Genes. Sci. Total Environ. 2019, 688, 555–566. [Google Scholar] [CrossRef]
- Hu, W.; Zheng, G.; Fang, D.; Cui, C.; Liang, J.; Zhou, L. Bioleached Sludge Composting Drastically Reducing Ammonia Volatilization as Well as Decreasing Bulking Agent Dosage and Improving Compost Quality: A Case Study. Waste Manag. 2015, 44, 55–62. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, W.; Chen, L.; Meng, L.; Zhang, S. Impacts of Adding Thermotolerant Nitrifying Bacteria on Nitrogenous Gas Emissions and Bacterial Community Structure during Sewage Sludge Composting. Bioresour. Technol. 2023, 368, 128359. [Google Scholar] [CrossRef]
- Yan, C.; Zhan, M.; Xv, K.; Zhang, S.; Liang, T.; Yu, R. Sludge Dewaterability Enhancement under Low Temperature Condition with Cold-Tolerant Bdellovibrio Sp. CLL13. Sci. Total Environ. 2022, 820, 153269. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chen, Z.; Zhang, S.; Gao, L.; Yu, R.; Zhan, M. Mechanistic Understanding of Predatory Bacteria-Induced Biolysis for Waste Sludge Dewaterability Improvement. Water Air Soil Pollut. 2019, 230, 194. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Hu, X.; Zhang, S.; Li, A.; Deng, Y.; Wu, Y.; Li, S.; Che, R.; Cui, X. Downward Aeration Promotes Static Composting by Affecting Mineralization and Humification. Bioresour. Technol. 2021, 338, 125592. [Google Scholar] [CrossRef]
- Xie, T.; Zhang, Z.; Zhang, D.; Tian, Y.; Nan, J.; Feng, Y. Hydrothermal Pretreatment and Compound Microbial Agents Promoting High-Quality Kitchen Waste Compost: Superior Humification Degree and Reduction of Odour. Sci. Total Environ. 2023, 862, 160657. [Google Scholar] [CrossRef]
- Gao, H.; Zhao, R.; Wu, Z.; Ye, J.; Duan, L.; Yu, R. New Insights into Exogenous N-Acyl-Homoserine Lactone Manipulation in Biological Nitrogen Removal System against ZnO Nanoparticle Shock. Bioresour. Technol. 2023, 370, 128567. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, L.; Qian, Y.; Xu, Y.; Wu, H.; Zhang, J.; Huang, H.; Chang, Z. Contributions of Thermotolerant Bacteria to Organic Matter Degradation under a Hyperthermophilic Pretreatment Process during Chicken Manure Composting. BioRes 2019, 14, 6747–6766. [Google Scholar] [CrossRef]
- Ogunwande, G.A.; Osunade, J.A.; Adekalu, K.O.; Ogunjimi, L.A.O. Nitrogen Loss in Chicken Litter Compost as Affected by Carbon to Nitrogen Ratio and Turning Frequency. Bioresour. Technol. 2008, 99, 7495–7503. [Google Scholar] [CrossRef]
- Wang, G.; Kong, Y.; Yang, Y.; Ma, R.; Shen, Y.; Li, G.; Yuan, J. Superphosphate, Biochar, and a Microbial Inoculum Regulate Phytotoxicity and Humification during Chicken Manure Composting. Sci. Total Environ. 2022, 824, 153958. [Google Scholar] [CrossRef]
- Liu, X.; Hou, Y.; Li, Z.; Yu, Z.; Tang, J.; Wang, Y.; Zhou, S. Hyperthermophilic Composting of Sewage Sludge Accelerates Humic Acid Formation: Elemental and Spectroscopic Evidence. Waste Manag. 2020, 103, 342–351. [Google Scholar] [CrossRef]
- Wang, M.; Wu, Y.; Zhao, J.; Liu, Y.; Gao, L.; Jiang, Z.; Zhang, J.; Tian, W. Comparison of Composting Factors, Heavy Metal Immobilization, and Microbial Activity after Biochar or Lime Application in Straw-Manure Composting. Bioresour. Technol. 2022, 363, 127872. [Google Scholar] [CrossRef]
- Zhao, Y.; Lou, Y.; Qin, W.; Cai, J.; Zhang, P.; Hu, B. Interval Aeration Improves Degradation and Humification by Enhancing Microbial Interactions in the Composting Process. Bioresour. Technol. 2022, 358, 127296. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, K.; He, C.; Wang, Z.; Ren, N.; Tian, Y. Effects of Bioleaching Pretreatment on Nitrous Oxide Emission Related Functional Genes in Sludge Composting Process. Bioresour. Technol. 2018, 266, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Du, M.; Wang, Z.; Liu, H.; Zhao, Y.; Wu, C.; Tian, Y. Effects of Bulking Agents on Greenhouse Gases and Related Genes in Sludge Composting. Bioresour. Technol. 2022, 344, 126270. [Google Scholar] [CrossRef]
- Kong, Y.; Wang, G.; Chen, W.; Yang, Y.; Ma, R.; Li, D.; Shen, Y.; Li, G.; Yuan, J. Phytotoxicity of Farm Livestock Manures in Facultative Heap Composting Using the Seed Germination Index as Indicator. Ecotoxicol. Environ. Saf. 2022, 247, 114251. [Google Scholar] [CrossRef] [PubMed]
- Gong, B.; Zhong, X.; Chen, X.; Li, S.; Hong, J.; Mao, X.; Liao, Z. Manipulation of Composting Oxygen Supply to Facilitate Dissolved Organic Matter (DOM) Accumulation Which Can Enhance Maize Growth. Chemosphere 2021, 273, 129729. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Awasthi, S.K.; Liu, T.; Duan, Y.; Ren, X.; Zhang, Z.; Pandey, A.; Awasthi, M.K. Effects of Microbial Culture and Chicken Manure Biochar on Compost Maturity and Greenhouse Gas Emissions during Chicken Manure Composting. J. Hazard. Mater. 2020, 389, 121908. [Google Scholar] [CrossRef]
- Wang, X.; Selvam, A.; Wong, J.W.C. Influence of Lime on Struvite Formation and Nitrogen Conservation during Food Waste Composting. Bioresour. Technol. 2016, 217, 227–232. [Google Scholar] [CrossRef]
- Tang, Y.; Dai, X.; Dong, B.; Guo, Y.; Dai, L. Humification in Extracellular Polymeric Substances (EPS) Dominates Methane Release and EPS Reconstruction during the Sludge Stabilization of High-Solid Anaerobic Digestion. Water Res. 2020, 175, 115686. [Google Scholar] [CrossRef]
- Jia, P.; Wang, X.; Liu, S.; Hua, Y.; Zhou, S.; Jiang, Z. Combined Use of Biochar and Microbial Agent Can Promote Lignocellulose Degradation and Humic Acid Formation during Sewage Sludge-Reed Straw Composting. Bioresour. Technol. 2023, 370, 128525. [Google Scholar] [CrossRef]
- Wang, G.; Yang, Y.; Kong, Y.; Ma, R.; Yuan, J.; Li, G. Key Factors Affecting Seed Germination in Phytotoxicity Tests during Sheep Manure Composting with Carbon Additives. J. Hazard. Mater. 2022, 421, 126809. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, D.; Xiao, J.; He, Y.; Harvey, G.J.; Wang, C.; Zhang, J.-G.; Liu, J. Superionic Conduction and Interfacial Properties of the Low Temperature Phase Li7P2S8Br0.5I0.5. Energy Storage Mater. 2019, 19, 80–87. [Google Scholar] [CrossRef]
- Shan, G.; Li, W.; Gao, Y.; Tan, W.; Xi, B. Additives for Reducing Nitrogen Loss during Composting: A Review. J. Clean. Prod. 2021, 307, 127308. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, L.; Li, R. Effects of Additives on Physical, Chemical, and Microbiological Properties during Green Waste Composting. Bioresour. Technol. 2021, 340, 125719. [Google Scholar] [CrossRef]
- Mo, J.; Xin, L.; Zhao, C.; Qin, Y.; Nan, Q.; Mei, Q.; Wu, W. Reducing Nitrogen Loss during Kitchen Waste Composting Using a Bioaugmented Mechanical Process with Low PH and Enhanced Ammonia Assimilation. Bioresour. Technol. 2023, 372, 128664. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, W.; Chen, L.; Meng, L.; Zheng, Z. Effect of Enriched Thermotolerant Nitrifying Bacteria Inoculation on Reducing Nitrogen Loss during Sewage Sludge Composting. Bioresour. Technol. 2020, 311, 123461. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, M.K.; Duan, Y.; Awasthi, S.K.; Liu, T.; Zhang, Z. Effect of Biochar and Bacterial Inoculum Additions on Cow Dung Composting. Bioresour. Technol. 2020, 297, 122407. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sun, X. Food Waste and Montmorillonite Contribute to the Enhancement of Green Waste Composting. Process Saf. Environ. Prot. 2023, 170, 983–998. [Google Scholar] [CrossRef]
- Qiu, Z.; Li, M.; Song, L.; Wang, C.; Yang, S.; Yan, Z.; Wang, Y. Study on Nitrogen-Retaining Microbial Agent to Reduce Nitrogen Loss during Chicken Manure Composting and Nitrogen Transformation Mechanism. J. Clean. Prod. 2021, 285, 124813. [Google Scholar] [CrossRef]
- Abdellah, Y.A.Y.; Shi, Z.-J.; Sun, S.-S.; Luo, Y.-S.; Yang, X.; Hou, W.-T.; Wang, R.-L. An Assessment of Composting Conditions, Humic Matters Formation and Product Maturity in Response to Different Additives: A Meta-Analysis. J. Clean. Prod. 2022, 366, 132953. [Google Scholar] [CrossRef]
- Bao, H.; Chen, Z.; Wen, Q.; Wu, Y.; Fu, Q. Effect of Calcium Peroxide Dosage on Organic Matter Degradation, Humification during Sewage Sludge Composting and Application as Amendment for Cu (II)-Polluted Soils. J. Hazard. Mater. 2022, 439, 129592. [Google Scholar] [CrossRef]
- Liu, H.; Guo, H.; Guo, X.; Wu, S. Probing Changes in Humus Chemical Characteristics in Response to Biochar Addition and Varying Bulking Agents during Composting: A Holistic Multi-Evidence-Based Approach. J. Environ. Manag. 2021, 300, 113736. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Liu, C.; Zhao, Y.; Wei, Z.; Zhao, M.; Jia, L.; He, P. Insight into the Effects of Regulating Denitrification on Composting: Strategies to Simultaneously Reduce Environmental Pollution Risk and Promote Aromatic Humic Substance Formation. Bioresour. Technol. 2021, 342, 125901. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.; Tan, W.; Yue, D.; Yu, H.; Dang, Q.; Xi, B. Reduction Capacity of Humic Acid and Its Association with the Evolution of Redox Structures during Composting. Waste Manag. 2022, 153, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Dang, Q.; Zhang, C.; Yang, T.; Gong, T.; Xi, B. Revisiting Organic Waste-Source-Dependent Molecular-Weight Governing the Characterization within Humic Acids Liking to Humic-Reducing Microorganisms in Composting Process. J. Hazard. Mater. 2023, 442, 130049. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Li, X.; Dong, B.; Huang, J.; Wei, Y.; Dai, X.; Dai, L. Effect of Aromatic Repolymerization of Humic Acid-like Fraction on Digestate Phytotoxicity Reduction during High-Solid Anaerobic Digestion for Stabilization Treatment of Sewage Sludge. Water Res. 2018, 143, 436–444. [Google Scholar] [CrossRef]
- Xu, Z.; Qi, C.; Zhang, L.; Ma, Y.; Li, G.; Nghiem, L.D.; Luo, W. Regulating Bacterial Dynamics by Lime Addition to Enhance Kitchen Waste Composting. Bioresour. Technol. 2021, 341, 125749. [Google Scholar] [CrossRef]
- Wang, B.; Yan, J.; Li, G.; Cao, Q.; Chen, H.; Zhang, J. The Addition of Bean Curd Dreg Improved the Quality of Mixed Cow Manure and Corn Stalk Composting: Enhancing the Maturity and Improving the Micro-Ecological Environment. Environ. Sci. Pollut. Res. 2021, 28, 27095–27108. [Google Scholar] [CrossRef]
PS | BS | FS | Wheat Straw | PS Mixture | BS Mixture | FS Mixture | |
---|---|---|---|---|---|---|---|
MC (%) | 81.6 ± 0.0 | 59.1 ± 1.3 | 59.0 ± 1 | 6.2 ± 0.2 | 55.6 ± 2.3 | 54.1 ± 0.7 | 54.1 ± 0.5 |
OM (%DM) | 48.3 ± 0.1 | 45.6 ± 0.3 | 41.2 ± 0.9 | 92.6 ± 0.1 | 84.9 ± 1.6 | 84.4 ± 0.9 | 77.3 ± 0.4 |
EC (μs/cm) | 137 ± 11 | 214 ± 3 | 848 ± 51 | 1486 ± 72 | 1800 ± 52 | 1690 ± 8 | 2070 ± 33 |
pH value | 6.94 ± 0.06 | 7.46 ± 0.06 | 9.12 ± 0.15 | 7.27 ± 0.03 | 7.35 ± 0.03 | 7.68 ± 0.13 | 7.89 ± 0.06 |
TOC (g/kg) | 227.6 ± 2.2 | 207.5 ± 12.7 | 155.4 ± 21.2 | 387.5 ± 6.5 | 343.0 ± 5.3 | 339.3 ± 0.7 | 310.4 ± 1.8 |
TN (g/kg) | 39.2 ± 0.8 | 36.3 ± 0.3 | 28.3 ± 0.4 | 4.7 ± 0.1 | 18.4 ± 1.2 | 16.1 ± 0.2 | 15.9 ± 6.5 |
C/N ratio | 5.8 | 5.7 | 5.5 | 82.4 | 18.6 | 21.1 | 19.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Chen, S.; Gu, J.; Liu, Y.; Yang, G.; Su, W.; Xie, Y.; Zhu, J.; Yu, R. Biolysed Sludge Composting for Nitrogen Conservation and Humification Improvements and Mechanisms. Sustainability 2023, 15, 10119. https://doi.org/10.3390/su151310119
Wang H, Chen S, Gu J, Liu Y, Yang G, Su W, Xie Y, Zhu J, Yu R. Biolysed Sludge Composting for Nitrogen Conservation and Humification Improvements and Mechanisms. Sustainability. 2023; 15(13):10119. https://doi.org/10.3390/su151310119
Chicago/Turabian StyleWang, Hongyi, Shihong Chen, Jun Gu, Yan Liu, Guangping Yang, Wenqiang Su, Yongfang Xie, Jian Zhu, and Ran Yu. 2023. "Biolysed Sludge Composting for Nitrogen Conservation and Humification Improvements and Mechanisms" Sustainability 15, no. 13: 10119. https://doi.org/10.3390/su151310119
APA StyleWang, H., Chen, S., Gu, J., Liu, Y., Yang, G., Su, W., Xie, Y., Zhu, J., & Yu, R. (2023). Biolysed Sludge Composting for Nitrogen Conservation and Humification Improvements and Mechanisms. Sustainability, 15(13), 10119. https://doi.org/10.3390/su151310119