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Abstract: The knowledge of temporal variability of soil hydraulic properties (SHPs) in agricultural
fields can help in reliable assessment of crop water requirement, thus improving irrigation water
usage efficiency. The Fokker–Planck equation (FPE) and its modified forms are popularly used to
describe temporal variation in SHPs. These models consider statistical description of soil pore size
distribution (PSD) as a probability density function to estimate SHP evolution with time. In this
study, we compare four different models to describe the temporal evolution of PSD and SHPs for
multiple datasets across the world with different soil types, tillage conditions and crop cover. Further,
field experiments were carried out at an experimental agricultural field at IIT Kanpur for rice crops,
and the performance of these models was also evaluated for Indian conditions. It is observed that
existing models have low accuracy for small pore radii values, and the prediction ability of these
models is more affected by soil type rather than tillage conditions. More observations can improve
the performance of FPE-based numerical and analytical models. The POWER Model is the least
accurate because of its inherent power law assumption of PSD, which results in incorrect values for
low pore radii. The FPE analytical model can be reliably used for predicting PSD and SHP evolution
at most of the field sites.

Keywords: soil hydraulic properties; temporal variability; soil pore size distribution; soil water
retention curve

1. Introduction

Sustainable management of water resources in an agricultural field requires an accurate
assessment of water demand as well as losses. Soil plays an important role in this by not
only allowing water and nutrient extraction by roots but also by providing physical support
for crop growth [1]. The overall goal of various agricultural management practices, such as
tillage, crop rotation, and cropping patterns, is to create optimum characteristics for crop
growth and minimize environmental degradation, as well as to optimize water use [2]. Soil
hydraulic properties (SHPs) have a significant role in this. SHPs refer to the soil water
retention function θ(h) and the hydraulic conductivity function K(h) where θ, K and h are
moisture content, hydraulic conductivity, and suction head, respectively [2–4]. The θ(h)
indicates the ability of the soil to hold and retain water while K(h) governs the movement
of water and solute through the unsaturated zone. SHPs not only govern water movement
but also affect plant water and nutrient uptake, thus influencing the dynamics of various
hydrological and biological processes within the unsaturated zone [5,6].

SHPs depend upon soil texture, structure, presence of organic matter and chemical and
biological properties of the soil. Soil structure-dependent properties are highly dynamic
and change with time and depth due to various agronomic practices and environmental
factors [7,8]. Various studies have shown that soil physical properties that depend on
soil structure, such as moisture content, bulk density, macro-porosity, saturated and near-
saturated hydraulic conductivity etc., are heavily influenced by seasonal changes in climate
and climate-induced pedological factors [7,9,10]. Furthermore, various researchers have
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observed that significant changes in soil structure are caused by different soil and crop
management practices [11–18]. A common observation from these studies is that the
temporal variability of SHPs exceeds the variability induced by crops, tillage, or land use.

These above-mentioned studies have quantified the temporal variation in SHPs, but
the findings of these studies are site-specific and vary depending on the climate, soil type,
measurement technique and sampling strategy. Furthermore, the SHP measurements in
most of the studies have been done at only a few time intervals and have been restricted to
the surface soil layer during the study duration.

The SHPs significantly affect various hydrological processes, e.g., evapotranspiration,
surface runoff, infiltration, and groundwater recharge. A few studies have looked at the
effect of temporal variation in SHP on water movement in agricultural fields. The authors
of [19] studied the effect of time-dependent hydraulic conductivity on water flow simula-
tions for an experimental plot located in China under different tillage practices and Maize
crop cover. They observed that the incorporation of time-varying hydraulic conductivity
improved estimates of percolation losses by 6% under wetting conditions and of water
storage by 13–14%. In addition, improvement in estimates of evaporation and transpira-
tion losses was also observed. The authors of [13] investigated the effect of incorporating
time-variable SHPs in a soil water simulation and compared the results against measured
data for different tillage methods in the near-surface soil profile (0–30 cm). They observed
that the inclusion of temporal variability of SHPs led to significant improvement in the
performance of the model for all treatments, resulting in average relative errors of less
than 13%. Another study [6] attempted to characterize the temporal variation in SHP for
an experimental maize plot and analyzed the effect of considering temporally varying
SHPs against constant SHPs on simulations of water movement. The incorporation of time-
varying SHPs significantly improved soil water predictions up to a 30 cm depth. Another
team [20] investigated the temporal and spatial variability of SHPs during a cropping cycle
between April and September 2015 for a surface-irrigated maize field in northern Italy and
quantified the effect of SHPs on simulations of soil water movement using the FEST-WB
model. They observed that a well-parameterized model that accounts for spatiotemporal
variation in SHPs improved the accuracy of simulations. Similar observations were made
by the authors of [21] in an uncultivated Fluvisol field by using both in situ and laboratory
measurements. Recently, the authors of [18] investigated the effect of incorporating sea-
sonal variability of SHPs in hydrological models. They observed the significant impact of
the inclusion of short-term temporal variability of SHPs on soil-water dynamics for both
ploughed and no-till (NT) condition. Variations up to 44% were observed when the water
content was modeled based on SHPs calculated using multiple sampling events vs. that
from single sampling events. They postulated that neglecting temporal variability in a
hydrological model might lead to an underestimation of the extreme values in a simulation.

The above-mentioned studies highlight the need to incorporate temporal variability in
SHPs to improve the simulation of water movement in agricultural fields; however, it is
worth noting that SHPs are still considered constant in most of the modeling studies.

In the last two decades, limited efforts have been directed towards investigating
the temporal dynamics of SHP [5,6,13,16,17,22,23]. Predictive models for SHPs can be
developed using the statistical description of soil pore space as a probability density
function (PDF) [24–28]. The authors of [24] proposed a stochastic modeling framework to
describe the temporal variability of soil PSD. The Fokker–Planck equation (FPE) was used
to combine the probabilistic nature of PSD along with physically based soil deformation
models to account for the dynamics of the mean soil pore radius and its variance, as well as
total porosity. Using the numerical solution of FPE, they modeled the changes in soil PSD
due to the wetting—drying cycles and the resultant Soil Water Retention Curve (SWRC)
and K(h). The initial soil PSD was taken as lognormal.

Another study [25] presented two analytical solutions for modeling PSD evolution
as per the modeling framework presented by the authors of [24]. For the first solution, it
was assumed that the drift and degradation coefficients depend on time; however, for the
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second solution, both were dependent on pore size as well as time. Both solutions were
applied to model the soil PSD evolution for Millville silt loam soil. The predicted soil PSD
was used to obtain θ(h), which was found to be in good agreement with experimental
data. The initial soil PSD was taken as a lognormal distribution. A further attempt was
made by [26] to present an analytical solution for the PSD for the case where drift and
degradation coefficients depend on time, and the dispersion coefficients are proportional to
the drift coefficients. These coefficients could be estimated from PSD or SWRC data as well
as those from mechanistic models.

Following previous work by the authors of [24–26], an alternate modeling framework
was proposed to describe the temporal evolution of the PSD while considering processes
such as tillage, consolidation, and changes in organic matter [28]. Instead of FPE, a modified
transport equation was used that neglected the diffusion term and a time-varying power-
law PSD was obtained as the solution. The obtained solution is different from earlier
studies and has a clear connection to well-known power law for SWRC [29,30]. They
derived expressions for soil properties from the model and linked its parameters to soil
processes and management activities such as tillage, soil consolidation, and changes in
SOM. It was found that the model in this study accurately captured the physical consistency
of key soil parameters as they changed with soil biogeochemistry over time and exhibited
realistic patterns. It was noted that the proposed model did not account for very short-term
changes in soil properties, such as those due to wetting and drying cycles.

The proposed numerical and analytical models attempt to quantify management-
induced changes in soil structure and incorporate these results into mathematical functions
describing temporal changes in the PSD. They can improve our capacity to assess the
overall impacts of different soil and crop management practices on soil physical properties
and water balance. However, as of now, the full potential of these models in predicting the
temporal variation in SHPs is yet to be explored.

The authors of [31] attempted to characterize the alteration in soil structure due to
a crop–pasture rotation at an experimental site at Lincoln University. The measurement
results were incorporated into the analytical models proposed in [25,26]. It was observed
that the adapted pore size evolution model was suitable for predicting management-
induced changes in soil structure. However, a reasonable agreement between the measured
and predicted PSD was obtained only when an assumed time-dependent degradation
of pores was incorporated into the model. The authors of [32] investigated the effect of
crop species with different root systems on field soil pore properties. They conducted a
field experiment with twelve species from different families. The parameters of Kosugi’s
PSD model were determined inversely from the tension infiltrometer data. The measured
root traits were related to pore variables by regression analysis. Then, they used the FPE
solution proposed by [25,26] to analyze if observed pore dynamics followed a diffusion-like
process. However, they observed that the diffusion-type pore evolution model could only
partially capture the observed PSD dynamics.

The authors of [2] reviewed various studies related to the temporal dynamics of SHPs.
They applied the analytical solution of FPE found in [25,26] to two SWRC datasets available
in the literature to evaluate its suitability to predict the evolution of soil PSD following
tillage as well as when there is a change in tillage regime. They observed that the model
performed better for change in tillage regimes as compared to the seasonal evolution of
soil PSD. Another study [3] further investigated the applicability of the model in [24,25] in
terms of the retention data obtained from various studies for different tillage treatments
across the globe. The datasets were categorized for two cases: (a) for change in tillage
regime and (b) for the temporal dynamics of soil pore space in the months following tillage.
They observed that the model provides a reasonable fit. Further, they observed that the
applicability of the model was limited due to the lack of adequate datasets for different
management practices, soil types, and climate regimes. The availability of such data can be
used in calibrating and including new coefficients and sink/source terms for the model.
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While the above studies provide useful insight into the performance of the FPE-based
models [24–26], none of the existing studies have evaluated the performance of all the
existing models for a common dataset. Therefore, the prime objective of this study is to
perform comparison studies for different models to describe the temporal evolution of soil
PSD and, subsequently, the soil hydraulic properties.

2. Governing Equations and Models

In this section, we briefly describe FPE, and the modified transport equation used to
describe the time-evolution of the soil PSD.

2.1. Fokker–Planck Equation

The FPE solution describes the evolution of the probability density function (PDF)
for the attribute [24]. FPE has been used to model the PDF associated with stochastic
processes. Representation of soil PSD in terms of statistical PDF and considering aggregate
deformation and porosity loss in wet soils as a solid diffusion process enables modeling
soil pore space changes as the evolution of soil PSD is governed by external forcing and
soil deformation processes [24].

The FPE is given as follows:

∂ f (r, t)
∂t

=
1
2

∂2

∂r2 [D(r, t) f (r, t)] +
∂

∂r
[V(r, t) f (r, t)]−M(r, t) f (r, t) (1)

where f is the PSD, V(r, t) is the drift coefficient
(

LT−1) or the infinitesimal mean, D(r, t) is
the diffusion coefficient

(
L2T−1) or the infinitesimal variance, and M(r, t) is the source/sink

term or first-order pore degradation factor representing instantaneous pore loss T−1. The
terms r and t refer to pore radius (L) and time

(
T−1), respectively. The application of FPE to

modeling PSD evolution was also motivated by its similarity with the advection-dispersion
equation and a similar decay term that may allow the use of existing analytical solutions.
The boundary conditions of the above equation used are.

f (r, 0) = f0(r), 0 < r < ∞ (2)

V f − D
∂ f
∂r

= 0, r = 0, t > 0 (3)

∂ f
∂r

= 0, r → ∞, t > 0 (4)

with f0 as the initial PSD. The lower boundary condition stipulates a zero-probability flux,
i.e., pores cannot assume a negative radius. To ensure the conservation, the upper boundary
condition requires a zero gradient, i.e., a zero-probability flux for infinitely large pores.
The homogeneous zero flux conditions imply that any loss of probability (PSD) is due to
degradation. The coefficients V(r, t), D(r, t) and M(r, t) can be obtained as defined in [32].

The mean change in pore radius and the variance of changes in pore radii with time
are represented by V(r, t) and D(r, t), respectively. The moments are defined by integrating
the PSD with respect to the pore radius.

mn =
∫ ∞

0
rn f (r, t)dr (5)

For example, a zero-order moment (m0) is given as:

m0 =
∫ ∞

0
f (r, t)dr (6)
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Normalized moments (Mn) are calculated through the division of mn by m0. The first-
order normalized moment M1 characterizes the mean pore size 〈r〉 and the second-order
centralized moment µ2 characterizes the variance

(
σ2), and they can be obtained as:

M1 = 〈r〉 = m1

m0
= rm exp

(
σ2

2

)
(7)

µ2 = r2
m exp

(
σ2
)[

σ2 − 1
]

(8)

V can be obtained by:

V(t) =
d
dt
〈r〉 = a

(
1− 〈r〉

b

)
〈r〉;where〈r〉 = b〈r0〉

〈r0〉+ (b− 〈r0〉) exp(−at)
(9)

The cumulative drift term (T) is given by:

T = 〈r〉 − 〈r0〉 =
∫ t

0
V(τ)dτ (10)

D and V are related as:

λ =
D(t)
|V(t)| (11)

2.1.1. Analytical Solution

The analytical solution of FPE (Equation (1)) subjected to the initial and boundary
conditions as per Equations (2) and (3) yields the following solution as found in [25,26]:

f (r, t) = exp
(∫ T

0
M(τ)
V(τ)

) ∫ ∞
0 f0(ξ)

×
{

1√
4πλT

[
exp

(
− (r−ξ+T)2

4λT ]+_
)
+ exp

(
− r

λ −
(r+ξ−T)2

4λT

)]
+ 1

2λ exp
(
− r

λ

)
er f c

(
(r+ξ−T)√

4λT

)}
dξ

(12)

where τ and ξ are the dummy integration variables. As the tillage treatment cannot be
easily transferred to t as an independent variable, T is used in its place, which means that
the evolution of PSD is projected based on the gradual changes in r.

M was taken zero for modeling the soil PSD evolution [25,26]. The same was consid-
ered in [33] while investigating the effect of crop species with different root systems on field
soil pore properties. However, authors of [31] attempted to characterize M by describing it
as an exponential term which was then used by another study [2]. The same is used in this
study as well.

2.1.2. Numerical Solution

The numerical solution of FPE has been used by [24] to describe the temporal variabil-
ity of SHPs. In this study, the FPE equation was discretized by using the Crank–Nicolson
scheme in time and centered finite differences in space to write the equation in the form
of AX = B. It was assumed that the coefficients V and D vary with time only and
degradation, M = 0. Further, the LM algorithm was used to determine the value of λ.

To verify our solution, both the analytical and numerical solutions of FPE were used
to model the PSD evolution for a time-dependent V and M = 0 as per test problem
(3) (see Figure A1). It was observed that except at extremely low r, the numerical model
was able to simulate and match the analytical solution of FPE. This might be due to the
distribution not truly being lognormal and the analytical solution becomes less accurate
when r = 0 [25].
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2.2. Transport Equation

The authors of [28] proposed a time varying power law PSD as the solution of the
generic form of the transport equation as given below to model PSD evolution.

∂ f (r, t)
∂t

=
∂

∂r
[V(r, t) f (r, t)]−M(r, t) f (r, t) (13)

The drift term V(r, t), and source/sink term M(r, t) of the evolution equations are
defined as:

V(r, t) =
r

a(t)b(t)

(
a(t)b′(t)ln(r)− a′(t)

)
(14)

M(r, t) =
b′(t)
b(t)

(1 + ln(r))− a′(t)
a(t)b(t)

(15)

where the time-derivative of the parameters is indicated with a prime (′) symbol. This
was done to modify the given form of evolution equation which then was solved using
the method of characteristics to obtain a power law solution. The initial condition for this
problem is:

f (r, 0) = f0(r) = a(0)r−b(0), 0 ≤ r ≤ Rm(0); t = 0 (16)

The time-varying power law PSD was obtained as

f (r, t) = a(t)r−b(t), 0 ≤ r ≤ Rm(t) (17)

where, a(t) is a scaling parameter, b(t) is the power law exponent, and Rm(t) is the maxi-
mum effective pore radius. In addition, Rm is related to the air-entry or bubbling pressure,
which can be defined as the matric pressure at which air enters the soil pores. Porosity (∅)
was obtained by the integral of the PSD over r.

∅(t) =
a(t)Rm(t)

1−b(t)

1− b(t)
(18)

Obtaining the expression of the scaling parameter a(t) and putting in f (r, t), the
resultant expression was:

f (r, t) =

(
∅(t)(1− b(t))

Rm(t)
1−b(t)

)
r−b(t)b(t) < 1 (19)

The authors of [28] proposed that the power law parameters can be modified and
expanded to account for the various processes in the soil. The power law description of
the PSD is similar to the power law model and has a basis in the fractal fragmentation of
soils [29,30].

2.3. Modeling SWRC Using Soil PSD

The evolution of PSD is reflected in SWRC. The relationship between soil pore radius
(r) and suction head (h) is given as:

r =
A
h

, where A = −0.149 cm2 if h is in cm (20)

The slope of the SWRC, water capacity function C(h) is given as (21)

C(h) =
dθ
dh

= f (r)
dr
dh

(21)
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The soil moisture θ(h) can be obtained as:

θ(h) =
∫ h
−∞ C(h) + θr =

∫ r
0 f (r)dr + θr

where θr = lim
h→∞

θ(h) = lim
r→0

f (r) (22)

In this study, the initial soil PSD was assumed to be lognormal. Kosugi’s parame-
ters [34] can be obtained from the van Genuchten (VG) parameters [35] using the
following equations.

m = 1− 1
n

(23)

h0 =
m1−m

α
(24)

σ2 = (1−m) ln
2

1
m − 1
m

(25)

hm = h0 exp
(

σ2
)

(26)

For the POWER model [27], the resultant SWRC curve is given as

h = −
(

A
Rm(t)

)(
θ(t)
∅(t)

)−1/(1−b(t))
(27)

3. Methodology and Data
3.1. Methodology

To meet the objective of this study, the following methodology will be followed:
(a) formulation of different models for PSD evolution; (b) estimation of Kosugi’s parameters
from initial SWRC datasets; (c) determination of coefficients for FPE for analytical and
numerical models as well as those of power model; (d) use of the LM algorithm to perform
curve-fitting to observed final PSD data to estimate λ for the FPE_1, FPE_2, and FPE_NM
models and to estimate b and Rm for the power model; and (e) a comparison of different
models over different datasets.

The steps used in the methodology have been described in Figure 1. The different
models used in this study are as follows:

(a) FPE_1: It represents the analytical solution of FPE found in [24,25]. In this model, M
was neglected, due to which the first part of the analytical solution, i.e., the exponential
term (refer to Equation (12)), was taken as 1. To obtain λ, the Levenberg–Marquardt
(LM) method was used to fit the observed PSD to the one given by Equation (12).

(b) FPE_2: It represents the analytical solution of FPE used by [3,30]. In this, M was
described as M = d× exp(ct). λ, c and d were obtained using the LM method, same
as that of the FPE_1 model.

(c) NM: It is the numerical model obtained from the finite difference-based discretization
of the FPE equation used by [24]. In this model, M was neglected.

(d) POWER: It represents the power law model given by [28]. The model coefficients
were obtained by curve fitting using the LM method.

3.2. Data

In this study, to compare the performance of four different models to predict the
temporal evolution of PSD and SWRC, datasets from various studies across the world have
been collected. In addition, the comparison was performed on the SWRC data collected
from an experimental agricultural plot at IIT Kanpur, India, for the rice season in 2022. The
WP4C Dewpoint Potentiometer from the Meters’ group was used to estimate SWRC from
the soil samples taken from the experimental plot. Figure A2 shows a world map showing
the various datasets used in the study as well as the experimental site at IIT Kanpur. Table 1
provides the summary of different soil datasets and their classification based on soil type,
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agriculture practice, land use/cover, and crop type, which have been used in this study for
comparison of different models. From the datasets under consideration, the tillage regimes
considered are conventional tillage (CT), usually using a moldboard plow, no tillage (NT)
with none or very minimal disturbance to the soil, and rototillage (RoT).
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Table 1. Summary of different soil datasets and their classification upon soil type, agriculture practice,
cover, crop grown, etc., used in the study.

S. No. Study Area Study Period Soil Type Field and Tillage
Condition Data Collection and Summary Reference

1 Germany 1984 Silt loam No tillage and annual
moldboard tillage

The study was conducted in Germany
over a period of 18 years. SWRC were
determined for the pressure head range
(h = −20, −50, −100, −300, −1000,
−15,000 cm) on undisturbed
soil samples.

[36]

2 West-central
Alberta 2001

Inseptic and
oxyaquic,
haplocryalfs,
and typic
dystrocryepts

Empty and loaded pass

The study was conducted on boreal
forest soils over different traffic cycles
for fourteen sites. At every site, skidding
was performed for 3, 5 and 7 cyclic
passes, and after each pass, soil samples
were collected from 4 randomly selected
sampling points. SWRC were
determined for the pressure head range
(h = −20, −50, −100, −300, −1000,
−15,000 cm) on undisturbed
soil samples.

[37]
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Table 1. Cont.

S. No. Study Area Study Period Soil Type Field and Tillage
Condition Data Collection and Summary Reference

3 Washington,
USA 2001–2002 Chernozem

CT with winter wheat
(Triticum aestivum L.)
and spring pea (Pisum
sativum) and NT with
winter wheat

Primary tillage operations were
performed in October 2000 and 2001 and
soil samples were taken on 16 May
(46 days after tillage) and 30 November
in 2001 and on 22 April, 26 June and
18 September, 18 in 2002. Undisturbed
soil sample were used to determine the
SWRC at different pressure heads
(h = −1, −2, −4, −8, −10.5, −12.5, −30,
−40, −100, −200, −300, −400, −600,
−1000 cm).

[38]

4

University of
Chile,
Antumapu,
Chile

2003 Sandy clay
alluvial soil

CT and NT with spring
wheat (Triticum
turgidum L. var. durum)

Two sites were prepared, one for 4 years
and another for 7 years. The soil samples
were collected between July 2003 and
January 2004 at depths 0–2, 2–5, and
5–15 cm at two sites per plot.
Undisturbed soil cores were used to
obtain SWRC at different pressure heads
(h = −100, −330, −1000, −3000 and
−15,000 cm) by fitting the data to the
VG model.

[39]

5 Raasdorf,
Austria 2008–2010 Silt loam

CT, RT and NT with
winter wheat (Triticum
aestivum)

Ten infiltration measurements were
made using tension disc infiltrometer
between August 2008 and June 2010 at
h = 0, −1, −4, −10 cm for the topsoil
layer (0–30 cm) to inversely estimate the
parameters of the VG model.

[14]

6 Canterbury,
New Zealand 2008–2009 Haplic

Cambisol

CT with wheat (Triticum
aestivum L.) and pasture
(G) with sheep and beef
cattle grazing

Undisturbed soil cores were used to
determine SWRC at different pressure
heads (h = −10, −31, −100, −316,
−1000, −15,800 cm) and fitted to the
Kosugi model.

[31]

7 Raasdorf,
Austria 2009–2012 Chernozem

CT with fallow and
with mustard (Sinapis
alba L.) and rye (Secale
cereal L.)

Three different soil cover treatments
were integrated during the fallow period
between cash crops of a three-year crop
rotation. Infiltration experiments were
conducted twelve times between
September 2009 and July 2012. Tension
disc infiltrometer method was used
(h = 0, −1, −4, −10 cm) for the topsoil
layer (0–30 cm) to inversely estimate the
parameters of the VG model using the
2D Richards’ equation.

[7]

8 Lamothe,
France 2012

Stagnic
Luvisol with
an illuvial
clay horizon

Spring moldboard
plowing with maize

Undisturbed soil samples were collected
at sowing, maize flowering and one
month before harvest. Tension disk
infiltrometers were used between
pressure heads −15 and −1 cm at the
soil surface and at 20 cm depth. SWRC
was made using measurements at
different pressure heads (h = 0, −16, −33,
−100, −330, −1000, −6300, −10,000 and
−16,000 cm) using pressure plates.

[6]

9
Zhongghou
Catchment,
China

2012–2013 Silt loam

CT at the beginning.
The end area was
covered by black locust
(Robinia pseudoacacia L.)
plantation.

The field measurements were conducted
under black locust plantation, grass, and
rape cultivation in June and September
2012 and March 2013. For the cropland,
the measurements were carried out 2
weeks after harvesting, 2 weeks after
sowing, and during the flowering phase
of rape. Undisturbed soil cores were
used to determine the SWRC by means
of evaporation method (h = −10, −20,
−31, −63, −100, −200, −316, and
−15,000 cm).

[40]



Sustainability 2023, 15, 10133 10 of 26

Table 1. Cont.

S. No. Study Area Study Period Soil Type Field and Tillage
Condition Data Collection and Summary Reference

10 Attica, Greece 2011–2013 Eutric
Fluvisol RoT

SWRC were determined in the
laboratory using a sand-kaolin box for
the pressure head range h = 0 to
−200 cm (h = 0, −40, −80, −120, −160,
−200 cm) on undisturbed soil samples.

[15]

11 Zaragoza,
Spain

November
2011–
November
2012

Hypercalcic
Calcisol

CT and NT in the long
fallow phase

Five different soil samplings during the
fallow period were performed (a)
pre-tillage (b) post-tillage before rain (c)
post-tillage and rain; (d) late fallow; and
(e) end-fallow. The undisturbed soil
samples were saturated, and decreasing
pressure heads were sequentially
applied (h = −5, −15, −30, −100, −500,
−1000, −5000 and −15,000 cm) to obtain
respective SWRC.

[41]

12

North Dakota
State
University,
western
North
Dakota, USA

2014–2019

Lihen sandy
loam (sandy,
mixed, frigid
Entic
Haplustoll).

CT and NT with crop
rotation of corn (Zea
mays L.)-soybean (Glycine
max [L.])

Undisturbed soil cores were collected
from 0–15 cm and 15–30 cm depths in
corn rows at one sample per plot on 8
October 2014; 26 October 2015; October
2016; and 16 October 2017. Soil core
sampling was replicated five times.
Measured SWRC obtained by the
HYPROP.

[42]

13

Indian
Institute of
Technology
Kanpur, Uttar
Pradesh,
India

September–
December
2022.

Silt loam NT with wheat

This study was conducted on an
experimental plot at the Indian Institute
of Technology Kanpur, Uttar Pradesh,
India from September–December 2022.
Soil samples were taken at depths of
10 cm, 25 cm and 50 cm at monthly
intervals. Saturated hydraulic
conductivity was measured using a
falling head permeability test,
gravimetric soil moisture content (θ) was
determined from the oven drying
method, and suction head (ψ) was
obtained using WP4C Dew Point
Potential Meter (manufactured by
METER Group, Inc. Pullman, WA, USA).

4. Results and Discussion

The ability of the four different models described earlier to predict PSD evolution, and
SWRC was evaluated in this section. The SWRC was obtained for both initial and final
conditions using the VG equation for the observed data. The suitability of the models was
checked for various agricultural and management practices, such as the crop used, tillage
conditions, effects of land-use change and soil type.

Figure 2 shows the prediction of PSD and SWRC evolution over time by different
models for chernozem soil in Washington, USA [38]. All the models predicted the PSD
evolution very well within the range of observed values. The POWER model over-predicts
the PSD values for both the initial (CT) as well as final condition (NT) when r < 1 µm
(see Figure 2a,c). FPE_1, FPE_2 and NM perform well when predicting PSD evolution.
However, for predicting SWRC, it was observed that the FPE_1, FPE_2 and NM models
underpredict compared to the observed values, while the POWER model is only able to
partially predict the values (see Figure 2b,d). The increase in performance of the POWER
model can be attributed to higher values of observed r.
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Figure 2. Comparison of performance of different models of PSD evolution for USA dataset [38].
The soil parameters at initial conditions (CT) are θs = 0.5560, θr = 0.152, σ = 1.9760 and
rm = 30.4709 (µm) while soil parameters at final conditions (NT) are θs = 0.5450, θr = 0.0010,
σ = 2.3314 and rm = 4.6355 (µm), respectively.

Figure 3 shows the comparison of performances of different models for predicting the
evolution of both soil PSD and SWRC against the observed values for Haplic Cambisol soil
from the New Zealand dataset [31]. It was observed that all the models performed well ex-
cept for the NM model, which underpredicted the soil PSD when r < 1 µm (see Figure 3a,c).
Similarly, for predicting SWRC, the FPE_1 and FPE_2 models performed well despite FPE_1
slightly underpredicting. Both the NM and POWER models slightly underpredicted and
overpredicted the final SWRC values, respectively (see Figure 3b,d).
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Figure 3. Comparison of performances of different models of PSD evolution for New Zealand [31].
The soil parameters at initial conditions (CT) are θs = 0.4536, θr = 0.1401, σ = 0.1073 and
rm = 5.2043 (µm) while soil parameters at final conditions (pasture) are θs = 0.4093, θr = 0.0830,
σ = 2.314 and rm = 1.2481 (µm), respectively.
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Figure 4 shows the performances of different models for predicting PSD and SWRC
evolution from CT to the plantation for Eutric Fluvisol soil in China [40]. It was observed
that NM performed best compared to other models for predicting soil PSD. The FPE_1
and FPE_2 models predicted similar values for both soil PSD as well as SWRC evolution.
The PSD values predicted by FPE_1 and FPE_2 was higher as compared to the observed
PSD values, while POWER overpredicted soil PSD (see Figure 4c). For predicting SWRC,
POWER performed well as compared to others. The FPE_1 and FPE_2 models overpre-
dicted SWRC near saturation and underpredicted it near dryness. NM predicted the least
SWRC values for both initial as well as the final condition (see Figure 4a–d).
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The soil parameters at initial conditions (CT) are θs =0.4300, θr = 0.0840, σ = 2.4600 and
rm = 7.4700 (µm) while soil parameters at final conditions (forest) are θs = 0.4920, θr = 0.0830,
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Figure 5 shows the comparison of different models for predicting PSD and SWRC
evolution for Eutric Fluvisol soil from Greece [18]. It was observed that within the observed
range of pore radii, all the models accurately predicted PSD as well SWRC (see Figure 5a–d);
however, when r < 1 µm, the POWER model highly overpredicts soil PSD as compared
to other models for both initial as well as final condition. For SWRC, when r < 1 µm,
POWER overpredicted the values for the initial state, while for the final condition, the
model performed well like other models.

Figure 6 shows the performance of different models for predicting PSD and SWRC
evolution from CT to NT for Hypercalcic Calcisol soil in Spain [41]. The performance of
the NM model was best while predicting both soil PSD as well as SWRC evolution. The
lowest performance was observed for the POWER model (see Figure 6a–d). FPE_1 and
FPE_2 predicted similar values, but they underestimated both soil PSD and SWRC values
for the final condition (see Figure 6a–d).
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Figure 5. Comparison of the performances of different models of PSD evolution for the Greece
dataset [18]. The soil parameters at initial conditions (RoT, t = 1 day) are θs = 0.521, θr = 0.065,
σ = 1.1591 and rm = 4.7692 (µm) while soil parameters at final conditions (RoT, t = 346 day) are
θs = 0.520, θr = 0.065, σ = 1.3421 and rm = 7.3706 (µm), respectively.
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Figure 6. Comparison of the performances of different models of PSD evolution for the Spain
dataset [41]. The soil parameters at initial conditions (CT, t = 1 day) are θs = 0.4800, θr = 0.23,
σ = 1.0890 and rm = 38.5687 (µm) while soil parameters at final conditions (CT, t = 62 day) are
θs = 0.4800, θr = 0.21, σ = 1.0807 and rm = 48.4099 (µm), respectively.
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The performances of different models were compared for predicting PSD and SWRC
evolution from CT to NT for Lihen sandy loam soil from the Dakota, USA dataset [42]
(Figure 7). It was observed that the FPE_1, FPE_2 and NM models performed well for
predicting soil PSD evolution, whereas the POWER overpredicted soil PSD when r < 10 µm
and underpredicted soil PSD values when r > 10 µm for both initial as well as final
condition (see Figure 7a,c). For predicting SWRC evolution, the POWER model performed
well as compared to the others. FPE_1 and FPE_2 predicted similar results, which were
lower than observed SWRC values for both initial as well as final conditions, while NM
highly underpredicted SWRC values (see Figure 7b,d).
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soil parameters at initial conditions (NT, t = 1 day) are θs = 0.3916, θr = 0.0596, σ = 1.1717 and
rm = 1.5617 (µm) while the soil parameters at final conditions (NT, t = 365 days) are θs = 0.3836,
θr = 0.06370, σ = 1.2988 and rm = 1.1932 (µm), respectively.

Figure 8 shows the performance of different models for predicting PSD and SWRC
evolution from t = 1 day to t = 30 days under NT conditions for silty loam soil in the
experimental agricultural plot at IIT Kanpur, India. Both the FPE_1 and FPE_2 models
predicted similar results. However, we were unable to fit the NM and POWER into the
observed data. While the performance of the models was poor, they were able to show the
temporal evolution of both PSD and SWRC. Modeling of seasonal, temporal variability
of SHPs as well as the inclusion of SHPs information for different subplots, may lead to
improvement in the performance of the models.

The performance of the models was compared for several more datasets, the results
of which are not shown for brevity (see Appendix A). Different models for predicting
PSD evolution and SWRC were compared for the German dataset of silty loamy soil [34]
(see Figure A3). It was observed that the FPE_1 and FPE_2 models well predicted PSD and
SWRC evolution. The PSD and SWRC curves by NM and POWER models were found to
be underpredicted and overpredicted, respectively. NM predicted PSD and SWRC with
higher accuracy when r > 1 µm and the model performance decreases when r < 1 µm.
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POWER model underpredicted the initial soil PSD and SWRC at initial conditions when
r > 1 µm and overpredicted the final PSD and SWRC when r > 1 µm.
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Figure 8. Comparison of performance of different models of PSD evolution for IIT Kanpur. The
soil parameters at initial conditions (NT, t = 1 day) are θs = 0.377, θr = 0.01, σ = 1.4789 and
rm = 0.1281 (µm) while soil parameters at final conditions (NT, t = 30 day) are θs = 0.222, θr = 0.01,
σ = 1.3331 and rm = 0.0684 (µm), respectively.

The four models were compared for datasets from Boreal Forest soils due to com-
paction by harvesting equipment [35] for the 0th and 3rd skidding cycles (see Figure A4).
It was observed that both FPE_1, FPE_2 and POWER models underpredict the final PSD
while the final SWRC predicted by FPE_1 and FPE_2 was quite close. The performance of
the POWER model was extremely poor for this dataset. The prediction by NM was close to
the final soil PSD as well as that of SWRC values (Figure A4b,d).

Figure A5 shows the performance of different models in predicting PSD and SWRC
evolution for the 4-year dataset in Chile at depths 0–2 cm and 2–5 cm for sandy clay
alluvial soil for initial (CT) and final conditions (NT) [39]. It was observed that the soil
PSD as well as SWRC values predicted by FPE_1 and FPE_2 were quite similar and close
to the observed values of PSD and SWRC for both depths 0–2 cm and 2–5 cm. FPE_1 and
FPE_2 had the best performance among all the models except for predicting SWRC at a
depth 0–2 cm, where they overpredicted. For soil PSD prediction, it was observed that the
POWER model overpredicts the values for low pore radii for depths 0–2 cm and 2–5 cm.
NM overpredicts the values at depths of 0–2 cm, and between 2–5 cm depth, the accuracy
of the NM model was improved. However, for predicting SWRC values, it was observed
that at the initial condition, the POWER model over and underpredicted at depths 0–2 cm
and 2–5 cm, respectively; however, at the final condition, the values predicted by POWER
were close to observed values (see Figure A5g,h). For predicting SWRC, NM performed
best as compared to others (see Figure A5c,d,g,h). It was observed that with an increase in
depth from 0–2 cm to 2–5 cm, the performance of the models improved, and they were able
to model soil PSD evolution well.

The PSD and SWRC evolution for the Chile 7-year dataset [39] at depths 0–2 cm
and 2–5 cm for sandy clay alluvial soil for initial (CT) and final condition (NT) were best
described by the NM (see Figure A6a–e). Both NM and POWER models predicted the
final SWRC better as compared to the FPE_1 and FPE_2 models at both 0–2 cm and 2–5 cm
depths (see Figure A6g,h). Furthermore, it was observed that, like in the previous case, an
improvement in the performance of the FPE_1 and FPE_2 models was observed for the
prediction of soil PSD upon an increase in depth from 0–2 cm to 2–5 cm. In addition, the
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POWER model was found to overpredict the SWRC as well as soil PSD values for the initial
condition, but its performance improved for the final condition as well as with an increase
in depth.

For the silt loam soil dataset from Austria [14], soil PSD and SWRC evolution were
modeled for initial (CT) and final conditions (NT). It was observed that the performances
of all the models were satisfactory when r lies between the range of observed r values
(see Figure A7a,b). However, when r < 100 µm, the performance of the models varies
greatly. The POWER model predicted very large PSD values, while the FPE_1, FPE_2,
and NM models predicted lower PSD values in correspondingly decreasing order (see
Figure A7a,b). All the models performed well in terms of predicting SWRC. POWER model
captured the final SWRC despite overpredicting the initial SWRC. In addition, for the final
condition, the SWRC curves from FPE_1 and NM models are higher than that of observed
SWRC values, while the FPE_2 model predicted SWRC values close to the observed values
(see Figure A7b,d).

Different models were compared in Figure A8 for predicting soil PSD and SWRC
evolution against observed values for chernozem soil in the Austria-II dataset [7]. It was
observed that all the models performed well while predicting PSD evolution from initial
to final state for the observed range of r values; however, when predicting SWRC, the
performance of the models varies greatly. When r < 100 µm, both FPE_2 and POWER
models predict high values of the soil PSD while FPE_1 predicts the low PSD values, the
predicted PSD values by NM lie in between (see Figure A8b). While predicting SWRC,
the POWER and NM models were the most accurate and FPE_2 highly overpredicted,
and FPE_1 underpredicted the SWRC values (see Figure A8d). Furthermore, the POWER
predicted high values of SWRC as well as soil PSD for the initial condition (see Figure A8a,b),
which might be due to its inherent power law assumption.

Different models were compared for Stagnic Luvisol soil with Spring moldboard
plowing with maize in France [6]. It was observed that within the observed range of pore
radii, POWER and NM models exhibit the best performance in predicting PSD as well
SWRC, whereas FPE_1 and FPE_2 models overpredicted (see Figure A9a–d); however,
when r < 1 µm, it was observed that all the models highly overpredict PSD and SWRC.

4.1. Effect of Tillage

In the above section, it was observed that the performance of different models varies
across different sites across the world. In this section, we attempt to discuss how the
performance of models varies for similar tillage practices across the world.

For the USA-I (Figure 2), Chile (Figures A4 and A5), Austria-I (Figure A6),
Spain (Figure 6) and USA-II (Figure 7), the agricultural practice changes from CT to
NT [37,38,40,41]. It was observed that NM performed well in most of the cases while
the performance of FPE_1 and FPE_2 was good, but they overpredicted the SWRC values,
whereas the POWER performed poorly in most cases except for the Chile dataset, where it
was able to predict PSD and SWRC values close to that observed at final conditions despite
predicting lower values at initial conditions. Overall, it can be postulated that POWER
performed poorly.

The effect of the change of tillage practice from CT to pasture; Moldboard ploughing to
NT; CT to the forest were observed in Germany (Figure A3), New Zealand (Figure 3), and
China (Figure 4), respectively. It was observed that the FPE_1 and FPE_2 models did not
perform as expected; however, the NM and POWER models performed well in those cases.

Overall, it is observed that the FPE_1, FPE_2 and NM Models were able to predict PSD
and SWRC evolution for change in tillage as well as the continuation of the same tillage.
For better performance of models, higher numbers of observations are required. NM model
performed poorly for low pore radii but better as compared to the POWER model.
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4.2. Effect of Soil Type

The effect of soil types on models’ performance efficiency was observed for silt loam
in Austria-I (Figure A8), Germany (Figure A3) and China (Figure 4) [13,36,40], for sandy
clay alluvial soil in Chile (Figures A5 and A6); for Chernozem soil in USA (Figure A2)
and Austria-II (Figure A9); Hypercalcic Calcisol soil in New Zealand (Figure 3), for Eutric
Fluvisol soil in Greece (Figure 5), respectively. It was observed that for silt loam soil, the
values of soil PSD and SWRC for FPE_1 and FPE_2 are quite close to each other as well as
close to the observed values except for the China dataset. The POWER and NM models
performed well for predicting both PSD and SWRC values.

For sandy clay alluvial soil in Chile, 4- and 7-year datasets from two stations were
used to evaluate the models’ performance. It was observed that for silt loam soil, FPE_1
and FPE_2 predicted similar values of PSD and SWRC, which were close to the observed
values. NM had the next best performance for both sets of datasets, and while the POWER
model underpredicts PSD and SWRC values at the initial state, however, its performance
improves for the final condition. Further, it was observed that with an increase in depth,
the models’ performance improved (see Figures A5 and A6). For Chernozem soil, it was
observed that the FPE_1, FPE_2 and NM models predicted close values of soil PSD but
underpredicted SWRC; the POWER model performed best in predicting both PSD and
SWRC (see Figures 2 and A9). Furthermore, it was observed that FPE_1 and FPE_2 models
predicted different values for both soil PSD and SWRC, unlike previous cases.

It is observed that the performance of the models is highly dependent upon the soil
type as it determines the soil PSD as well as available observation data. FPE_1 and FPE_2
predicted similar values and were able to predict the soil PSD and SWRC well for most
soil types. NM performed similarly to the FPE_1 and FPE_2 models when predicting
both SWRC and PSD. However, the performance of POWER varied highly from the initial
condition to the final condition depending upon soil type. POWER performed well if a
higher number of observations were present. It was also able to improve its prediction of
the final condition despite poor estimation of initial PSD and SWRC values.

5. Conclusions

SHPs exhibit significant spatiotemporal variability and have a strong influence on flow
in unsaturated soils. SHPs depend upon the soil structure, which can be described using
the soil PSD. The soil PSD and its statistical description as a probability density function are
used in the existing predictive models to describe the temporal variation in SHPs. In this
study, we compared the performance of four models to describe the temporal evolution
of soil PSD and SHPs for various datasets across the world. In addition, the model’s
performance was compared to SWRC data collected from an experimental agricultural
field at IIT Kanpur. These models were compared for different tillage conditions as well
as changes in tillage conditions, soil types, and crop types. Further, an attempt was
made to compare the performance of the models for both short-term as well as long-term
temporal variability.

Among the four models, two were obtained from the analytical solution of the FPE
equation (FPE_1 and FPE_2), and the other two from the POWER and NM models were
obtained from the numerical solution of the FPE and power law solution of the generic
transport equation. It was observed that when pore radii values were low, the accuracy of
the models decreased. The models perform better when the soil pore radii are comparatively
high, especially for the POWER and NM models. This correlates to the earlier assumption
by [25] that pore-size evolution may affect larger pores as compared to smaller pores.
Further, the NM model did not perform well when the number of observed matric potential
values were low. The predictive ability of different models was not much affected by
changes in tillage condition as that by soil type. The performance of the models was not
affected by the crop type. The NM model’s performance can be improved by having
more observations, whereas the POWER model is not recommended due to its inherent
assumption that soil PSD should follow power law which leads to erroneous values for low
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soil pore radii. The POWER model performed well when a low number of observations
were present, while the FPE_1 and FPE_2 models performed well for most of the cases.
For the SWRC dataset obtained from an experimental plot IIT Kanpur, the performance
of the POWER and NM models was poor, while the FPE_1 and FPE_2 models performed
similarly to each other.

It was observed that models based on the analytical solutions of FPE (FPE_1 and
FPE_2) were the best among the models considered, and between them, FPE_1 should be
preferred to model the temporal variability of SHPs and PSD. Furthermore, to improve
the performance of models, more observations are required for modeling both short and
long-term temporal variation in SHPs. Future studies should focus not only on modeling
the temporal variability of SHPs but also on relating the parameters of FPE with the various
agricultural practices in the field, which can be useful for effective water management.
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Figure A1. Comparison of analytical and numerical solution of FPE with time-dependent term V(t),
where λ = 1, θs = 0.469, θr = 0.191, σ = 0.253, r0 = 7.3 (µm), rm = 7.5 (µm), a = 0.01, b = 5 and
θ = 0.5. Analytical refers to analytical solution models used by both [2,22,23], and numerical refers to
the numerical solution of FPE.
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Figure A3. Comparison of performances of different models of PSD evolution for Germany dataset 
[33]. The soil parameters at initial conditions (Moldboard Plowing) are 𝜃௦ = 0.469, 𝜃 = 0.104, 𝜎 =2.27 and 𝑟 = 6.36 (μm) while soil parameters at final conditions (NT) are 𝜃௦ = 0.392, 𝜃 = 0.097, 𝜎 = 2.33 and 𝑟 = 2.15 (μm), respectively. 

  

Figure A3. Comparison of performances of different models of PSD evolution for Germany
dataset [33]. The soil parameters at initial conditions (Moldboard Plowing) are θs = 0.469, θr = 0.104,
σ = 2.27 and rm = 6.36 (µm) while soil parameters at final conditions (NT) are θs = 0.392, θr = 0.097,
σ = 2.33 and rm = 2.15 (µm), respectively.
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Figure A4. Comparison of performance of different models of PSD evolution for test of compaction 
between empty and loaded pass in West-central Alberta [34]. The soil parameters at initial condi-
tions (0th skidding cycle) are 𝜃௦ =  0.55, 𝜃 = 0.24 , 𝜎 = 0.984  and 𝑟 = 9.87 (μm)  while soil pa-
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Figure A4. Comparison of performance of different models of PSD evolution for test of compaction
between empty and loaded pass in West-central Alberta [34]. The soil parameters at initial con-
ditions (0th skidding cycle) are θs = 0.55, θr = 0.24, σ = 0.984 and rm = 9.87 (µm) while
soil parameters at final conditions (3rd skidding cycle) are θs = 0.52, θr = 0.27, σ = 0.991 and
rm = 6.51 (µm), respectively.
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Figure A5. Comparison of performances of different models of PSD evolution for the Chile 4-year dataset at depths 0–2 cm and 2–5 cm [36]. For depth 0–2 cm, the
soil parameters at initial conditions (CT) are θs = 0.4810, θr = 0.0004, σ = 1.9856, and rm = 2.1101 (µm) while soil parameters at final conditions (NT) are θs = 0.4288,
θr = 0.0933 , σ = 1.4922 and rm = 1.8491 (µm) respectively, while for depth 2–5 cm, the soil parameters at initial conditions (CT) are θs = 0.4971, θr = 0.0344,
σ = 2.0504 and rm = 4.8852 (µm) while soil parameters at final conditions (NT) are θs = 0.4555, θr = 0.0912, σ = 1.7555 and rm = 1.2992 (µm), respectively.
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Figure A6. Comparison of performances of different models of PSD evolution for the Chile 7-year dataset at 0–2 cm depths [36]. For depth 0–2 cm, the soil
parameters at initial conditions (CT) are θs = 0.5134, θr = 0.0006, σ = 2.0815 and rm = 4.4805 (µm) while soil parameters at final conditions (NT) are θs = 0.4571,
θr = 0.1670, σ = 1.6107 and rm = 1.5397 (µm) respectively, while for depth 2–5 cm, the soil parameters at initial conditions (CT) are θs = 0.4971, θr = 0.0344,
σ = 2.0504 and rm = 4.8852 (µm) while soil parameters at final conditions (NT) are θs = 0.4555, θr = 0.0912, σ = 1.7555 and rm = 1.2992 (µm), respectively.
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Figure A7. Comparison of performance of different models for PSD evolution for Austria I
dataset [11]. The soil parameters at initial conditions (CT) are θs = 0.4900, θr = 0.0650, σ = 1.0815
and rm = 126.3140 (µm), while soil parameters at final conditions (NT) are θs = 0.4100, θr = 0.0650,
σ = 1.2239 and rm = 192.1514 (µm), respectively.
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Figure A8. Comparison of performances of different models for PSD evolution for Austria II dataset 
[6]. The soil parameters at initial conditions (CT; t = 1 day) are 𝜃௦ = 0.4400 , 𝜃 = 0.0670 , 𝜎 =1.2639 and 𝑟 = 98.1089 (μm) while soil parameters at final conditions (CT; t = 181 day) are 𝜃௦ =0.5100 , 𝜃 = 0.0670 , 𝜎 = 1.7129 and 𝑟 = 80.9441 (μm) respectively. 

  

Figure A8. Comparison of performances of different models for PSD evolution for Austria II
dataset [6]. The soil parameters at initial conditions (CT; t = 1 day) are θs = 0.4400, θr = 0.0670,
σ = 1.2639 and rm = 98.1089 (µm) while soil parameters at final conditions (CT; t = 181 day) are
θs = 0.5100 , θr = 0.0670 , σ = 1.7129 and rm = 80.9441 (µm) respectively.
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Figure A9. Comparison of performances of different models of PSD evolution for the France dataset 
[4]. The soil parameters at initial conditions (NT, t = 1 day) are 𝜃௦ = 0.342, 𝜃 = 0, 𝜎 =  3.0868 and 𝑟 =  0.002324405 (μm) while soil parameters at final conditions (NT, t = 147 day) are 𝜃௦ = 0.322, 𝜃 = 0, 𝜎 = 3.5738 and 𝑟 = 0.000195 (μm), respectively. 
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