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Abstract: Rural electrification is necessary for both the country’s development and the well-being
of the villagers. The current study investigates the feasibility of providing electricity to off-grid
villages in the Indian state of Odisha by utilizing renewable energy resources that are currently
available in the study area. However, due to the intermittent nature of renewable energy sources, it is
highly improbable to ensure a continuous electricity supply to the off-grid areas. To ensure a reliable
electricity supply to the off-grid areas, three battery technologies have been incorporated to find
the most suitable battery system for the study area. In addition, we evaluated various demand side
management (DSM) techniques and assessed which would be the most suitable for our study area.
To assess the efficiency of the off-grid system, we applied different metaheuristic algorithms, and
the results showed great promise. Based on our findings, it is clear that energy-conservation-based
DSM is the ideal option for the study area. From all the algorithms tested, the salp swarm algorithm
demonstrated the best performance for the current study.

Keywords: integrated renewable energy; off-grid; optimization techniques; demand-side management;
different batteries; microgrid

1. Introduction

In isolated rural locations, renewable energy sources, such as solar and biomass, are
being increasingly used to meet electricity demands. Many off-grid areas cannot access
grid-connected power supply, but these regions can take advantage of the readily available
RE sources to power their homes and businesses. Due to the fluctuating nature of major
renewable energy sources that vary depending on the time of day and season, an off-grid
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electric grid that is based on renewable energy cannot guarantee an uninterrupted power
supply [1]. Therefore, an efficient Energy Management Plan is essential for a reliable off-
grid electricity supply, requiring the combination of one or two renewable energy sources
with a battery storage system. The microgrid must be sized appropriately; if undersized,
power losses will occur, and if oversized, the development costs may be excessive and lead
to energy waste. To ensure the RE-based microgrid’s benefits are fully realized, an efficient
Energy Management Plan is vital [2].

This study conducted a techno-economic analysis of three different types of batteries,
including LA, Li-Ion, and Ni–Fe, with a particular focus on the use of the LA battery
technology in developing countries, such as India, Pakistan, Bangladesh, and Sri Lanka,
due to its lower cost compared to other options. Although it has certain drawbacks in terms
of its lifespan and durability, these batteries are still being used to provide electricity to
remote rural areas in these countries. The life of these batteries is shorter than other types,
and their longevity is dependent on the temperature they are in. This means that they
need to be replaced every three to five years, which can present a challenge in more remote
locations due to transportation difficulties. Thus, it is important to consider the technical
and economic characteristics of these batteries, such as their lifespan, durability, round trip
efficiency, high operating temperature capability, capital cost, replacement expense, and
annual O&M cost, prior to initiating a project [3].

In order to tackle the issues discussed previously, this study proposes the use of
Ni–Fe batteries. Although they may not be widely known, they are the most efficient and
durable battery technology available today, making them suitable for off-grid solar and
other green energy initiatives. Historically, Ni–Fe batteries have a 100-year track record.
In the early 1900s, Thomas Edison patented and developed them to be “stronger than
lead–acid batteries”. The first electric car was also equipped with this type of battery in
the early 1910s. They were not used as starting batteries for cars but gained popularity in
the 20th century for forklifts, railroad applications, and standby power. In the 21st century,
these batteries are being utilized again, this time in renewable energy applications due to
their durability, long lifespan, and incredible robustness. Unlike most other batteries, the
life cycle of the Ni–Fe batteries is not impacted by their depth of discharge (DOD). This
allows users to discharge them to 80% of their capacity without significantly reducing their
battery life. By contrast, over-discharging an LA battery even once can result in a drastically
reduced lifespan. The same cannot be said for Ni–Fe batteries, as their life expectancy
is unaffected by discharging beyond 80%, and they can withstand overcharging without
compromising longevity [3].

Optimization problems and theories encompass a wide variety of applied mathematics.
Discovering the optimal size of a hybrid renewable energy system is a type of constrained
optimization issue, which entail one or a few objectives in addition to integral or distinct
variables as well as numerous linear or nonlinear limits. The renewable sizing issue is
believed to have multiple local optimum solutions and a solitary global best optimal
solution. Consequently, exploring the global optimal result is the most essential point to
take into account [4].

Studies into the field of microgrid sizing have been reported in the literature, which can
be categorized into three groups: software tools (such as HOMER, RETScreen, HOGA, and
IHOGA) [5]; deterministic methods (including iterations, numerical, linear programming,
graphical construction, probabilistic and analytical); and metaheuristic algorithms (e.g., GA,
PSO, GOA, and GWO) [4]. Of the three, software tools are user-friendly but limited in their
capacity to pick components. Deterministic methods work efficiently but may be stuck at
local optima. Several times, global best optimal solutions may be unable to be reached [2].

Over the past ten years, scientists have developed and used various metaheuristic
algorithms for the purpose of microgrid sizing. GA, PSO, and DE, for example, are
popular methods among computer scientists and experts from various fields, as they
are flexible, offer a solution that surpasses that of deterministic algorithms, and avoid
local optima traps [4]. Despite the fact that a particular metaheuristic algorithm can
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yield optimal results for one specific objective function, the same algorithm will create
substandard results for other objectives based on the no free lunch theorem [6]. Motivated
by the aforementioned factors, scientists have been exploring novel algorithms to address
microgrid sizing problems [4].

In remote communities, poor load demand coordination and irregular renewables
can lead to higher energy costs. To address this issue, the power system industry has
implemented various demand-side management (DSM) strategies such as “load shaping”,
“load shifting”, “energy conservation”, “load building”, and “peak clipping” (see Figure 1).
These strategies can help to reduce energy costs by improving the coordination of load
demand and incorporating renewable energy sources more effectively [7] as follows:

i. Peak clipping: Its purpose is to reduce the strain on energy systems during peak
demand periods. This is typically achieved by limiting the use of appliances during
peak hours or by offering customers incentives to shift their energy consumption
away from peak times;

ii. Valley filling: The aim of valley filling is to maximize the utilization of facilities by
promoting energy consumption during off-peak hours. To achieve this, governments
can incentivize customers to schedule such activities as charging and loading during
off-peak times. By doing this, customers will be able to take full advantage of available
resources, resulting in more efficient use of energy;

iii. Load shifting: To reduce overall energy consumption, load shifting from peak to
off-peak times is recommended. Customers can store thermal heat during the off-peak
hours, which can then be used to maintain a comfortable temperature throughout
the day. Furthermore, household chores, such as laundry and dishwashing, can be
completed at night to avoid peak loading;

iv. Energy conservation: Its goal is to reduce energy consumption by investing in more
energy-efficient devices. This can help lower load demand, thus leading to more
efficient energy use overall;

v. Load building: Smart grids enable the use of load building and flexible loads through
the improved network connection. This, in turn, increases the grid’s responsiveness
through improved load sharing and the application of energy storage systems;

vi. Flexible load shape: By adjusting the flexible load demand, the reliability conditions
necessary for system reliability can be determined, thus improving the system’s reliability.

In rural areas, the load consumption pattern of most people remains fairly consistent
throughout the day. Since priority loads, such as lamps, fans, and televisions, are usually
used in the evening, and their usage cannot be altered, rural off-grid villagers cannot
participate in peak clipping or load shifting at this time. However, Energy-Conservation-
based Demand Management can still help reduce peak loads without resorting to peak
clipping or load shifting.
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1.1. The Literature Review

• Alpesh and Sunil [1] utilized a combination of PV/Wind Turbine WT)/Biomass Gen-
erator (BMG)/Biogas Generator (BGG)/LA battery technology to electrify hamlets
with 123 households located on the border of India’s Gujarat and Rajasthan states
and analyzed the optimal component selection using multi-variable linear regression
technique along with the gradient descent (MVLRT-GD) algorithm and particle swarm
optimization (PSO) to determine the optimal results;

• Ramesh and Saini [8] conducted a study that assessed the feasibility of PV/WT/Micro
Hydro Power Plant (MHP)/Diesel Generator (DG)/Battery (BAT) configurations with
LA and Li-Ion battery technologies for off-grid un-electrified villages in Chikmagalur
district in India. They used HOMER Pro® software to evaluate three different dispatch
strategies and found that the Li-Ion-battery-based system with a combined dispatch
strategy provided the lowest net present cost (NPC) and cost of energy (COE) com-
pared to the cycle charging and load-following strategy-based systems using the LA
battery technology;

• Haein and Tae [9] studied the most cost-effective way to electrify an off-grid rural area
in Myanmar by using PV/DG/BAT configuration with both LA and Li-Ion battery
technologies. They used the HOMER Pro® software tool to minimize the NPC of
the system and determined that using the LA battery technology provided the most
optimal results;

• Kaabeche and Bakelli [10] evaluated the PV/WT/BAT system with LA, Li-Ion, and
nickel–cadmium battery technologies in Adrarin province, Algeria. They applied vari-
ous optimization algorithms, such as GWO, ALO, Krill Herd, and JAYA, to minimize
the electricity cost of the system and concluded that LA battery-based configuration
with the JAYA algorithm was the most optimal solution, followed by the Li-Ion and
Ni-Cd batteries;
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• Sarah et al. [11] examined the PV/WT/DG/BAT system for Dodoma, Tanzania, with
both LA and Li-Ion battery technologies to identify the most cost-efficient config-
uration. These researchers found that Li-Ion battery configuration with a genetic
algorithm provided the lowest cost of energy (COE);

• Chong Li et al. [12] conducted a study of the WT/DG/BAT system for 280 off-grid
households in Gansu province, China, with LA, Li-Ion, and Zinc–Bromine (ZB) battery
technologies. They used the HOMER Pro® software tool to determine the optimal
option and found that the ZB battery technology provided the optimal results;

• Muhammad Fahad Zia et al. [7] examined the use of a microgrid for remote area
applications, such as oceanic islands, specifically in the context of Ouessant Island in
Brittany, France. The microgrid consists of a PV system, tidal turbine, diesel generator,
and Li-Ion battery, and the economic operation of the system is achieved by taking
into account various factors, such as battery degradation cost, levelized costs of energy,
operating and emission costs of the diesel generator, and network constraints;

• George K. Farinis and Fotios D. Kanellos [13] proposed an energy management system
for microgrids and building prosumers using a multi-agent system, particle swarm
optimization, and thermal and electrical models. It allows for optimal operation
scheduling in grid-connected and autonomous operational modes and can result
in cost savings of around 11%. Simulation results demonstrate its effectiveness in
meeting a large number of operation and technical constraints;

• Vasileios Boglou et al. [14] used a decentralized energy management system based
on multi-agent systems, which was developed for the efficient charging of electric
vehicles. This approach leads to a significant reduction in investment costs, peak load,
and load variances. Furthermore, it increases the total amount of chargeable EVs. This
novel charging management system offers an intelligent approach to the islanding of
distribution grids with high penetration of electric vehicles by offering operational
and financial benefits;

• Eliseo Zarate-Perez et al. [15] used a systematic and bibliometric approach to evaluate
the performance and challenges of integrating battery energy-storage systems into
microgrids. This review finds that optimization methods and cost-benefit analysis
are key elements for developing an optimal battery energy-storage system. Other
considerations include factors, such as reliability, battery technology, power quality,
frequency variations, and environmental conditions. Overall, economic factors are the
biggest challenges for battery energy-storage systems;

• Vasileios Boglou et al. [16] proposed a distributed optimal small-scale PV energy-
system-sizing strategy for residential distribution grids that takes into account indi-
vidual energy needs and EV charging. Fuzzy cognitive maps theory is used to address
the correlation between individual energy parameters and RES characteristics. The op-
timization results showcase that the adopted hybrid approach can reduce energy costs
significantly, with no need for expansion of the utility network. Thus, EV charging
through residential RES can become a viable option;

• Dimitrios Rimpas et al. [17] reviewed various motor technologies available for use
in electric vehicles, such as brushless motors, synchronous reluctance, and induction
motors. By taking into account eleven criteria, such as power density and regenerative
braking efficiency, the motors are classified in terms of their ability to function in
hybrid energy-storage systems to maximize efficiency and sizing. It is concluded
that permanent magnet motors and induction motors are the most suitable for such
applications, with the synchronous reluctance motor offering superior performance
when it comes to the key factors impacting the system;

• Shih-Chieh Huang et al. [18] integrated a structural equation model (SEM) and fuzzy
cognitive map (FCM) to analyze the mutual relationship between the various elements
influencing the development of wind power. Results suggest that “policy” is the main
obstacle to development, and management strategies should focus on the “technology”
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and “environment” in the short term and consider “social” factors in the mid-term,
with a focus on “policy” in the long-term;

• Christos-Spyridon Karavas et al. [19] proposed a decentralized energy management
system for an autonomous polygeneration microgrid topology. A decentralized ar-
chitecture offers advantages, such as greater chances of partial operation in cases of
malfunctions, in comparison with a centralized system. The multi-agent system based
on fuzzy cognitive maps was explored for their implementation and compared to an
existing centralized energy management system in terms of technical performance,
financial efficiency, and operational simplicity. The results showed similar techni-
cal performance between the two systems, along with advantages in financial and
operational terms for the decentralized system;

• Konstantinos Kokkinos et al. [20] proposed a semi-quantitative assessment of biowaste-
based energy transition by engaging stakeholders. To achieve this, a decision support
system (DSS) and a fuzzy cognitive map (FCM) are proposed to evaluate the inter-
play of local and sectoral low-carbon actions. A use case study of a Greek region is
potentially employed to analyze the effect of energy provision on urbanization and the
influence of actors on decision-making related to low-carbon policies. The proposed
decision-making tool utilizes analytics, optimization algorithms, and surveys to guide
competent authorities to sustainable energy transitioning toward decarbonization;

• Lucchi E.’s design policy-related requirements that protect existing history and cultural
values are essential for the successful integration of such renewable energy sources
as photovoltaics into the built environment. As part of this process, he conferred
with heritage authorities to learn about the most up-to-date standards, as well as the
benefits and cons of the potential integration of solar energy and other renewable
sources into the cultural heritage sites. Proper implementation of this strategy can
improve clean and integrated energy production, which, in turn, can help mitigate
climate change and fulfil today’s energy demands;

• Lucchi, E., Baiani, S., and Altamura, P. studied to aid in the design and construction
of historically significant buildings that incorporate active solar technology, such as
photovoltaic and solar thermal systems, by providing a classification system for inter-
national norms. By analyzing and comparing recurring criteria and recommendations
from 44 international guidelines, it develops and identifies shared-design requirements
for the integration of various active solar technologies and works to create a shared
vocabulary to promote their adoption. They also look at how incorporating active solar
technologies can increase a building’s market value, improve occupants’ quality of life,
and reduce energy consumption while also positively supporting energy transition
and climate change mitigation;

• Lucchi E.’s study shows that applied to historic buildings, they can cause significant
conservation problems that endanger the buildings’ cultural significance, biodiversity,
traditional appearance, and even the materials themselves. Based on a survey of the
literature from 2020 to 2023, this study provides an up-to-date summary of the use of
such renewable energy sources as solar, wind, geothermal, and bioenergy to preserve
historic buildings. Acceptability, design requirements, and cutting-edge technologies
are discussed, with examples from real-world applications. The compatibility of wind
turbines with their natural and cultural surroundings and municipal rules is crucial
to the widespread adoption of wind energy in historical sites. Heating and cooling
systems, among other geothermal energy uses, have been effectively incorporated in
both old and new buildings.

1.2. Research Gaps Identified

• From the research in the Indian context, using lithium-lon (Li-Ion), lead–acid (LA),
and nickel–iron (Ni–Fe) batteries for the off-grid microgrids has not been thoroughly
explored. To gain an understanding of the advantages of these technologies in off-grid
microgrids, further research is necessary. This should include an analysis of cost-
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effectiveness, reliability, long-term performance, environmental impact, and a cost-
benefit assessment. Additionally, safety, usability, scalability, and potential integration
with other energy sources should also be considered;

• Further, the majority of studies carried out a techno-economic feasibility analysis with
one or two types of battery technologies to provide a continuous power supply. This
often fails to take into account the unique requirements and characteristics of different
battery technologies. Given that lithium-ion (Li-Ion), lead–acid (LA), and nickel–iron
(Ni–Fe) each have distinct advantages and disadvantages, it is important to explore
the potential for utilizing these technologies for the off-grid microgrids in order to
create an optimal balance between cost, performance, and reliability. Furthermore,
there is a need for further research into the design of these combinations and their
potential for scalability and integration with other energy sources;

• Further research can be conducted to compare the proposed algorithm with other
algorithms in terms of robustness, efficiency, and scalability. Such studies would
help identify the best algorithms for different conditions, such as complexity, grid
constraints, load profiles, and cost considerations. Additionally, other approaches,
such as meta-heuristics and optimization techniques, could also be applied to the off-
grid microgrid-sizing problem. This would enable a more comprehensive comparison
between various algorithms in terms of performance and implementation;

• Demand side management (DSM) strategies have the potential to play a major role
in achieving better energy balance and overall efficiency of the off-grid microgrids.
However, there is still a need for more studies to explore the potential benefits of
different DSM approaches for off-grid microgrids. Research should focus on the
assessment of individual DSM techniques, such as time-of-use pricing, demand–
response programs, dynamic pricing, and the potential for their combinations with
other distributed energy resources, such as solar PV, storage, and wind turbines.
Further, there is an urgent need to investigate the potential of energy-conservation
DSM strategies for off-grid microgrids, such as energy-efficiency measures, demand
management, and load shifting. Such research could help to identify cost-effective
approaches that can improve the operational efficiency and overall economic viability
of the off-grid microgrids.

1.3. Novelties of This Article

• The techno-economic reliability of providing energy to five off-grid communities in the
Rayagada region of Odisha state in India was studied, leveraging existing renewable
energy sources in the area, such as solar and biomass. Furthermore, a novel method of
combining these two energy sources was proposed to create a reliable energy system
that optimizes cost-effectiveness and maximizes sustainability. This new approach could
be applied to other off-grid communities to provide secure and affordable energy access;

• Six specific configurations are modeled by the available RE sources and suggested bat-
teries “PV/BMG/LA@70% DOD, PV/BMG/LA@80% DOD, PV/BMG/Li-Ion@50%
DOD, PV/BMG/Li-Ion@70% DOD, PV/BMG/Li-Ion@80% DOD, and PV/BMG/Ni–
Fe@80% DOD” with their varying depths of discharge to figure out which configura-
tion will provide the most reliable power supply;

• To identify the most reliable power supply, six specific configurations of renewable
energy sources and suggested batteries have been modeled, with varying depths of dis-
charge. The configurations are PV/BMG/LA@70% DOD, PV/BMG/LA@80% DOD,
PV/BMG/Li-Ion@50% DOD, PV/BMG/Li-Ion@70% DOD, PV/BMG/Li-Ion@80%
DOD; and PV/BMG/Ni–Fe@80% DOD;

• This research has presented a unique solution for solving optimization problems—the
salp swarm algorithm. This algorithm is a novel metaheuristic algorithmic approach
that does not rely on predetermined parameters. Furthermore, the results obtained
from testing this algorithm demonstrate superior performance to existing optimization
algorithms across various metrics. This algorithm shows a high degree of robustness
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and convergence efficiency compared to eight other algorithms, including the particle
swarm optimization (PSO) [21], differential evolutionary algorithm (DE) [22], genetic
algorithm (GA) [23], ant lion optimization (ALO) [24], grasshopper optimization al-
gorithms (GOA) [25], grey wolf optimization (GWO) [26], moth flame optimization
(MFO) [27], and dragonfly algorithm (DA) [28]. It is clear that the salp swarm algo-
rithm is a reliable and effective algorithm for solving optimization problems and can
be used to significantly improve the performance of optimization solutions;

• This research not only explored various demand-side management techniques but also
implemented energy-conservation-based demand-side management for the current
study area. The results were impressive, as it effectively reduced peak-load demands
and improved customer satisfaction while providing a reliable and cost-effective
power system. Furthermore, with these successes in mind, this strategy can be applied
to other areas in need of a demand-side management technique, allowing for a larger-
scale approach to energy conservation and security. As such, this method proves
to be an innovative, effective, and much-needed solution for meeting the growing
energy requirements.

2. Development of the Integrated Renewable Energy System

In order to reap the numerous benefits of an Integrated Renewable Energy System
(IRES) in isolated rural communities, a comprehensive, strategic plan should be developed
and followed. Such a plan should involve extensive research and analysis of the local
environment, resources, and infrastructure, as well as the development of detailed goals
and objectives. It should also incorporate detailed implementation strategies, including the
selection of the right technologies, equipment, and services for the region and a timeline
for the IRES installation. By properly planning and executing such a system, these remote
communities can gain access to clean, renewable energy and benefit from sustainable
energy sources. In order for an Integrated Renewable Energy System to be successfully
implemented in isolated rural areas, a deliberate approach must be taken. To ensure the
successful installation and functioning of the IRES, a carefully developed and executed
plan is necessary, the steps of which are listed as follows:

Step 1—Study-area identification

The research area, located at 19◦37′16.6944′′ N and 83◦29′50.6688′′ E, is situated 206 m
above sea level in the Muniguda of Rayagada region in the Indian state of Odisha (as
depicted in Figure 2). This area consists of 5 un-electrified communities with 266 homes
and a total population of 1213 people who struggle to access reliable electricity.

Step 2—Estimation of electrical energy demand

This study examined the load demands of three different types of appliances: low-
power-rated appliances of high cost (LPRAHC), medium-power-rated appliances of mod-
erate cost (MPRAMC), and high-power-rated appliances of low cost (HPRALC). These
load demands were assessed across multiple sectors, including community, residential,
commercial, agricultural, and small-scale industrial. These load demands are depicted in
Figure 3.
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Step 3—Resource assessment

Solar and biomass energy sources are the only renewable energy sources available in
the study area. On average, the annual average of daily solar radiation is 5.18 kWh/m2,
while the temperature average is 26 ◦C celsius annually. Furthermore, 87 hectares of forest
surround the location, which provides 60% of its foliage for collection. This foliage includes
leaves, pine needles, and firewood, yielding approximately nine tons of biomass each year.
Figures 4 and 5 are drawn using the data collected from the National Renewable Energy
Laboratory to illustrate the hourly solar radiation and temperature trends from 2005–2015.
These figures demonstrate the potential of these renewable energy sources in the study area.
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Figure 4. Annual solar radiation in the area under study.
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Figure 5. The annual ambient temperature in the area under study.
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3. The IRES Component’s Mathematical Modeling

The mathematical modeling of the components is explained below, as illustrated in
Figure 6. The schematic diagram shows how the components work together to achieve the
desired outcome.
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3.1. Solar Energy

The output power generated by the solar PV panel is expressed as follows [2]:

PPV(t) = PVrated × (G(t)/Gre f )×
[
1 + KT ×

(
TC − Tre f

)]
(1)

To determine the temperature inside a solar cell, the following formula will be useful:

TC = Tamb(t) + (0.0256× G(t)) (2)

3.2. Biomass Generator

The following expression describes the Biomass Generator’s output power [1]:

PBMG(t) =
QBM × ηBMG × CVBM × 1000

DOHBMG × 365× 860
(3)

3.3. Battery Bank

The following expression is useful for the battery bank charging [2,29]:

EBat(t) = (1− σ)×EBat(t− 1) + (EG(t)− EL(t)/ηConv)× ηCC × ηrbat (4)

The energy generated by the Renewable Energy resources is calculated as follows:

EG(t) = [EDC(t) + EAC(t)]× ηConv (5)

The DC energy produced by the Renewable Energy resources is expressed as follows:

EDC(t) = EPV(t) (6)

The AC energy produced by the Renewable Energy resources is expressed as follows:

EAC(t) = EBMG(t) (7)

The discharging of the battery bank is expressed as follows [4,5]:

EBat(t) = (1− σ)×EBat(t− 1)− (EL(t)/ηConv − EG(t))/ηrbat (8)

4. Economic Analysis of the IRES

The life-cycle cost of the system is calculated as follows [1]:

LCC = ICC + EREC + PV,O&M + PV,REP + PV,FUEL (9)

The initial capital cost (ICC) is considered as follows [1]:

ICC =

 (CBMG,cap
)
+
(

NPV × CPV,cap
)
+
(

NBAT × CBAT,cap

)
+(

CBDC−CC,cap
)
+
(
CMEM,cap

)
+
(
CWTA,cap

)
+
(
CCHE,cap

)
 (10)

The erection is considered as follows [1]:

EREC =



(NPV × CPV,erect)+(NBAT × CBAT,erect)×
Nr

∑
b=1

(1 + x)bNc−1

(1 + y)bNc

+

CBDC−CC,erect ×
Nr

∑
d=1

(1 + x)dNc−1

(1 + y)dNc

+

CBMG,erect ×
Nr

∑
g=1

(1 + x)gNc−1

(1 + y)gNc




(11)
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The O&M cost of the system is considered as follows [1]:

PV,O&M =

[ (
NPV × CPV,o&m

)
+ (CBMG,o&m)(

NBAT × CBAT,o&m
)
+ (CBDC−CC,o&m)

]
×

N

∑
i=1

(1 + x)i−1

(1 + y)i (12)

where y is defined as follows [1]:

y =
Inom − x

1 + x
(13)

The replacement cost of the components is calculated as follows [1]:

PV,REP =



NBAT × CBAT,rep ×
Nr

∑
b=1

(1 + x)bNc−1

(1 + y)bNc

+

CBMG,rep ×
Nr

∑
g=1

(1 + x)gNc−1

(1 + y)gNc

+

CBDC−CC,rep ×
Nr

∑
d=1

(1 + x)dNc−1

(1 + y)dNc




(14)

where Nr is defined as follows [1]:

Nr = int
(

N − Nc

Nc

)
(15)

The fuel cost is considered as follows [1]:

PV,FUEL = [(CBM ×QBM)]×
N

∑
i=1

(1 + x)i−1

(1 + y)i (16)

5. The Objective Function and Its Constraints

The objective function of the system and its constraints are discussed as follows [1]:

5.1. Life-Cycle Cost

The objective function is considered as follows:

minLCC(NPV , NBAT) =
min

∑
C=PV,BMG,BAT,ROD,BDC−CC

(LCC)C (17)

5.2. Upper and Lower Bounds

We assume a 5-kW biomass generator that operates throughout the evening peak
demand period (6–10 p.m.) and produces 4 kWh of energy as part of our analysis.

The solar energy resource is constrained as follows:

0 ≤ NPV ≤ NPV−max (18)

The following limitation applies to the battery bank:

0 ≤ NBAT ≤ NBAT−max (19)

5.3. Battery Bank Energy Storage Limits

The energy that is stored in the battery bank is limited as follows [29]:

EBat_min ≤ EBat(t) ≤ EBat_max (20)
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The following calculation illustrates the range of the battery bank’s energy storage
capacity:

EBat_max =

(
NBAT ×VBAT × SBAT

1000

)
× SOCmax−bat (21)

EBat_min =

(
NBAT ×VBAT × SBAT

1000

)
× SOCmin−bat (22)

The minimum and maximum SOC of the battery bank is expressed as follows:

SOCmin−bat = 1− DOD

SOCmax−bat = SOCmin−bat + DOD

5.4. Power Reliability Index

The Loss of Power Supply (LPS) of the system is expressed as follows [30–32]:

LPS(t) =
EL(t)
ηConv

− EG(t)− [(1− σ)× EBat(t− 1)− EBat_min]× ηrbat (23)

The LPSP is calculated as follows [33]:

LPSP =
∑T

t=1 LPS(t)

∑T
t=1 EL(t)

(24)

6. Methodology

Mode 1: The amount of energy that can be produced by renewable energy sources
surpasses the current demand. As a result, the batteries are charged using the excess energy
generated from these renewable sources;

Mode 2: The load demand necessitates greater energy than what is available from
renewable sources. For this reason, the battery provides adequate power to fulfill the
requirements of the load;

Mode 3: The energy produced by renewable sources is sufficient to meet the needs of
the load, and the batteries have already reached their max capacity. Therefore, the excess
energy generated must be disposed of into the waste load;

Mode 4: The demand for power exceeds the energy generated by renewable sources,
and the batteries are fully discharged, resulting in a loss of power supply.

7. Results and Discussions

The current study aimed to determine the best way to set up an IRES to meet the power
needs of five distant communities in India’s Odisha state. These communities are powered
by such RE sources as biomass and solar. There is no guarantee that these RE sources
will be available at all times; a consistent battery system is mandatory to ensure constant
power generation. As a result, this study attempted to identify the most appropriate battery
technology among the three battery technologies, lithium-ion, lead–acid, and nickel–iron,
which would be the most technically and economically viable for the study area.

7.1. Various Configurations Using Battery Technologies and Renewable Energy Sources

For this study, models of three different lithium-ion battery configurations (“PV/BMG/
Li-Ion@50% DOD, PV/BMG/Li-Ion@70% DOD, and PV/BMG/Li-Ion@80% DOD”) have
been created due to the versatility of lithium-ion batteries which can operate at various
depths of discharge (DODs). Additionally, two lead–acid (LA) battery configurations,
“PV/BMG/LA@70% DOD and PV/BMG/LA@80% DOD”, have also been modeled in
order to demonstrate the versatility of this technology. Additionally, the PV/BMG/Ni–
Fe@80% DOD configuration was taken into account due to the fact that Ni–Fe batteries can
operate at both @50% and @80% DOD with a 30-year or longer lifespan at both.
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Using an HPRALC-based scenario (Without DSM) as a starting point, six different
topologies are evaluated and compared in order to find the optimal configuration for
bringing electricity to the area under investigation. This optimal configuration is then
further evaluated by taking into account the demand side management (With DSM) in the
MPRAMC and LPRAHC-based scenarios. Through this process, the most cost-effective
and practicable configuration can be determined and implemented.

The Supplemental File includes information about the technical specifications and costs
of this study’s components, as well as the control parameters of the proposed algorithms.

7.2. The Optimal Configuration from the Lead–Acid Battery Technology

The lead–acid battery is modeled in two different configurations with 70% and 80%
depth-of-discharge (DOD) settings. Using an HPRALC scenario, the optimal results for
each configuration were determined, which are listed in Table 1. It was found that the lead–
acid-battery-based IRES @80% DOD had the most financial viability, with an optimal LCC
value of $1,595,267, which was 2% less than the lead–acid-battery-based IRES @70% DOD.
Furthermore, its optimal values for NPV and NBAT(LA) were 1367 and 367, respectively.
These results suggest that the lead–acid-battery-based IRES @80% DOD should be further
explored in comparison to other battery-based IRESs.

Table 1. Optimization Results of the IRESs using HPRALC-based Scenario at an LPSP Value of 0%.

Configuration Q&C GA PSO DE GWO ALO DA MFO GOA SSA

PV/
BMG/
Ni–Fe

@DOD = 80%

NPV 1469 1469 1485 1469 1469 1469 1469 1469 1469

NBAT 950 950 962 950 950 950 950 950 950

LCC ($) 951,257 951,257 962,065 951,257 951,257 951,257 951,257 951,257 951,257

PV/
BMG/

LA
@DOD = 70%

NPV 1364 1364 1364 1422 1364 1364 1364 1364 1364

NBAT 420 420 420 422 420 420 420 420 420

LCC ($) 1,620,231 1,620,231 1,620,231 1,640,650 1,620,231 1,620,231 1,620,231 1,620,231 1,620,231

PV/
BMG/

LA
@DOD = 80%

NPV 1367 1367 1383 1367 1367 1367 1367 1367 1367

NBAT 367 367 369 367 367 367 367 367 367

LCC ($) 1,595,267 1,595,267 1,605,861 1,595,267 1,595,267 1,595,267 1,595,267 1,595,267 1,595,267

PV/
BMG/
Li-Ion

@DOD = 50%

NPV 1264 1264 1266 1264 1536 2000 1264 1264 1264

NBAT 419 419 420 419 411 398 419 419 419

LCC ($) 2,712,794 2,712,794 2,718,907 2,712,794 2,736,122 2,779,547 2,712,794 2,712,794 2,712,794

PV/
BMG/
Li-Ion

@DOD = 70%

NPV 1649 1268 1268 1268 1364 1730 1272 1242 1268

NBAT 291 299 299 299 297 290 300 300 299

LCC ($) 2,804,117 2,773,053 2,773,053 2,773,053 2,781,007 2,816,370 2,782,117 2,774,594 2,773,053

PV/
BMG/
Li-Ion

@DOD = 80%

NPV 1245 1354 1408 1245 1953 2000 1245 1245 1245

NBAT 262 260 259 262 249 249 262 262 262

LCC ($) 3,025,532 3,032,498 3,035,855 3,025,532 3,070,686 3,082,473 3,025,532 3,025,532 3,025,532

7.3. The Optimal Configuration from the Lithium-Ion Battery Technology

The lithium-ion battery has been configured with three different depths of discharge
(DODs): 50%; 70%; and 80%. According to a comprehensive HPRALC-based analysis, the
Li-Ion-battery-based IRES @50% DOD was determined to be the most financially viable
option, boasting an optimal life-cycle cost (LCC) of $1,595,267, which is 2% and 10%
less than the optimal LCCs for lithium-ion-battery-based IRESs @70% and 80% DODs.
Furthermore, the optimal NPV and NBAT(Li-Ion) values for this configuration are 1264 and
419, respectively, which are listed in Table 1. Consequently, the lithium-ion-battery-based
IRES @50% DOD has been taken into consideration for further comparisons with other
battery-based IRESs.
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7.4. The Optimal Configuration from the Nickel–Iron Battery Technology

The nickel–iron battery has a lifespan of more than 30 years at both DOD levels of
50% and 80%. For this reason, the research undertaken was only analyzed with a DOD of
80%. The results given in Table 1 show that the most cost-effective life-cycle cost (LCC) of an
iron-based IRES with a DOD of 80% is $951,257 when using an HPRALC-based scenario. This
configuration features NPV = 1469 and NBAT(Ni-Fe) = 950 as its optimal component values.

7.5. Optimal Configuration from the HPRALC, MPRAMC, and LPRAHC-Based Configurations

Three different efficiency-based scenarios—“HPRALC”, “MPRAMC”, and “LPRAHC”—
were analyzed in order to establish the optimum set for the system.”

7.5.1. The HPRALC-Based Scenario (without DSM)

Without DSM, the Ni–Fe-battery-based IRES @80% DOD (base case) provides the
lowest life-cycle cost (LCC) of $951,257 for the HPRALC-based scenario. Compared to
this, the LA battery-based IRES provided an LCC of $1,595,267 at 80% DOD, which is
approximately 68% higher. If the IRES were powered by a lithium–ion battery at 50% DOD,
its optimal life-cycle cost would be $2,712,794, which is approximately 185% higher than
the base case LCC. It is, thus, evident that nickel–iron batteries offer the most economical
solution in this study area, followed by lead–acid and lithium-ion batteries. Therefore,
they are omitted from additional analysis in Section 7.5.2 (MPRAMC-based scenario) and
Section 7.5.3 (LPRAHC-based scenario).

7.5.2. Medium Efficiency Appliances Usage-Based Scenario (MPRAMC) (with DSM)

In the HPRALC scenario, the Ni–Fe-battery-based IRES (base case) was found to
have the lowest LCC when compared to other battery-based IRESs. This configuration
was then thoroughly examined using a scenario based on the use of appliances with an
MPRAMC-based scenario (i.e., with DSM). The MPRAMC scenario describes a situation in
which consumers use medium-power-rated appliances of moderate cost. Table 2 reveals
that the LCC provided by the MPRAMC-based scenario is 33% lower than the base case
LCC of the HPRALC-based scenario, i.e., $635,271. Moreover, the optimal values of the NPV
and NBAT(Ni-Fe) components, in this case, are 1005 and 612, respectively. This demonstrates
that the use of MPRAMC appliances has a remarkable effect on the system performance,
resulting in a lower LCC and fewer components required when compared to the optimal
values obtained using the HPRALC-based scenario.

Table 2. Optimization results of the IRESs using MPRAMC-based scenario at an LPSP Value of 0%.

Configuration Q&C GA PSO DE GWO ALO DA MFO GOA SSA

PV/
BMG/
Ni–Fe

@DOD = 80%

NPV 1005 1005 1008 1005 1005 1005 1005 1005 1005

NBAT 612 612 625 612 612 612 612 612 612

LCC ($) 635,271 635,271 643,385 635,271 635,271 635,271 635,271 635,271 635,271

7.5.3. High-Efficiency Appliances Usage-Based Scenario (LPRAHC) (with DSM)

Based on the results of the HPRALC-based situation, it was determined that the nickel–
iron-battery-based IRES (base case) offered the lowest LCC. As a result, we conducted
additional research on this configuration using the LPRAHC-based scenario to gain further
insights. Table 3 demonstrates that the LCC provided by the base case using HPRALC
and MPRAMC-based scenarios and the LCC provided by the LPRAHC-based scenario
is approximately 44% and 17% lower than the HPRALC and MPRAMC-based scenarios,
respectively. For this case, the optimal values for the individual components are (NPV = 852)
and (NBAT(Ni-Fe) = 496). When compared with the HPRALC-based scenario, the number
of necessary PV panels is reduced by 617, from 1469 to 852, while the number of required
batteries is decreased by 454, from 950 to 496. The scenario values from the MPRAMC
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enabled us to reduce the number of PV panels from 1005 to 852, a decrease of 153 panels,
and the number of batteries from 612 to 496, a drop of 116. The adoption of an LPRAHC-
based scenario has a substantial impact on the system’s performance, as it reduces both the
LCC and the number of components needed relative to the optimum values determined by
the use of medium and low-efficiency appliances. Finally, it can be concluded that among
various battery-based IRESs and efficiency-based scenarios, the LPRAHC-based scenario is
the most suitable for electrifying the study area.

Table 3. Optimization results of the IRESs using LPRAHC-based scenario at an LPSP value of 0%.

Configuration Q&C GA PSO DE GWO ALO DA MFO GOA SSA

PV/
BMG/
Ni–Fe

@DOD = 80%

NPV 852 852 852 852 852 852 852 852 852

NBAT 496 496 500 496 496 496 496 496 496

LCC ($) 530,603 530,603 532,868 530,603 530,603 530,603 530,603 530,603 530,603

Figures 7 and 8 show the energy graphs of the components of the IRES for one week
throughout both the summer and winter months for the LPRAHC-based scenario of the
nickel–iron-battery-based IRES.
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Figure 7. The energy outputs of the different components of the nickel-iron-battery-based IRES were
measured over the course of one week in November during the winter season.
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Figure 8. During the summer season of one week in June, the energy outputs of various components
of the Ni-Fe-battery-based IRES.
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7.6. The Algorithm’s Ability to Find the Global Best Optimal Solutions

The results presented in Tables 1–3 for the three efficiency scenarios of eight config-
urations demonstrate that the SSA algorithm is the most robust, offering the global best
optimal values for all configurations. The DE algorithm came in fourth, providing the
global best optimal values for only two configurations. The ALO and DA algorithms
ranked third, each providing the global best optimal values for five configurations. The
GA, PSO, GWO, MFO, and GOA algorithms obtained a second place, as they provided
the global best optimal values for seven configurations. Overall, the SSA algorithm clearly
proved to be the most reliable in finding the global best optimal values.

7.7. The Algorithms’ Effectiveness in Achieving the Global Best Optimal Solutions

Figure 9 presents the convergence curves of the various algorithms used to analyze
nickel–iron-based IRES@80% DOD with an HPRALC-based scenario. The lowest possible
LCC is achieved by GA, PSO, GWO, ALO, DA, MFO, GOA, and SSA algorithms at the
28th, 48th, 69th, 36th, 63rd, 61st, 94th, and 15th iterations, respectively.
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Figure 9. IRES powered by Ni–Fe batteries, complete with an HPRALC scenario and their respective
convergence curves.

Figure 10 shows the converging curves of all algorithms for the LA-based IRES at 80%
DOD with the HPRALC-based scenario. The GA, PSO, GWO, ALO, DA, MFO, GOA, and
SSA algorithms yielded the least LCC values on the 38th, 52nd, 61st, 33rd, 66th, 56th, 93rd,
and 25th iterations, respectively.

The convergence curves of all algorithms used for an HPRALC-based scenario on the
lithium-ion IRES at 50% DOD are presented in Figure 11. The GA, PSO, GWO, MFO, GOA,
and SSA algorithms achieved the lowest LCCs at the 61st, 54th, 93rd, 42nd, 82nd, and 29th
iterations, respectively.

The convergence curves of all techniques for a nickel–iron-battery-based IRES operat-
ing at 80% DOD with an MPRAMC-based scenario are depicted in Figure 12. The GA, PSO,
GWO, ALO, DA, MFO, and SSA algorithms had the lowest LCC at the 28th, 59th, 95th,
30th, 81st, 93rd, and 23rd iterations, respectively.

Figure 13 shows the convergence curves of the nickel–iron-battery-based IRES with
an LPRAHC-based situation at 80% DOD. The minimum LCC of this configuration was
obtained at the 32nd, 29th, 96th, 59th, 64th, 26th, 91st, and 21st iterations using the GA,
PSO, GWO, ALO, DA, MFO, GOA, and SSA algorithms, respectively.
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Figure 10. Curves of convergence for the lead–acid-battery-based IRES under the conditions of
HPRALC.
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Figure 11. Curves of convergence for the IRES powered by Li-Ion batteries in the HPRALC scenario.
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Figure 12. Curves of convergence for the nickel–iron-battery-based IRES with the MPRAMC scenario.
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Figure 13. Convergence curves of the Ni–Fe-battery-based IRES with LPRAHC scenario.

The proposed SSA algorithm has been demonstrated to be reliable and efficient in
achieving the global best optimal values for all efficiency-based scenarios, as evidenced in
Sections 7.6 and 7.7. Consequently, it is recommended for use in addressing all microgrid
size issues.

7.8. The Impact of LPSP on the System Efficiency

The Ni–Fe-battery-based IRES with the LPRAHC-based scenario was identified as the
optimal configuration for the electrification of the study area at 0% LPSP. The proposed
SSA algorithm was used to analyze this optimal configuration over a range of LPSP values
from 0 to 5%, and the results are presented in Table 4.

Table 4 and Figure 14 show a significant difference in optimal values obtained with 0%
and 1% loss of power supply probability values. The LCC value is reduced by 10%; the
number of Photovoltaic (PV) panels is reduced from 852 to 737, and the number of batteries
is reduced from 496 to 452 when a 1% LPSP value is assumed. With 1% power loss, the
total number of power lost hours is only 173 out of 8760. Furthermore, increasing the LPSP
values from 2% to 5% further reduces the achieved LCCs and component values, but with
a small increase in the number of lost power hours. Hence, the Ni–Fe-battery-based IRES
with an LPSP value of 1% can be used to provide power supply to the study area with
notable cost savings at minimal loss of power hours when compared to the optimal values
at 0% LPSP.
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Table 4. The results of the optimal configuration at different LPSP values.

Configuration Quantity
and Cost LPSP (0%) LPSP (1%) LPSP (2%) LPSP (3%) LPSP (4%) LPSP (5%)

PV/
BMG/
Ni–Fe

@DOD = 80%

NPV 852 737 700 679 662 647

NBAT 496 452 438 424 413 400

LCC ($) 530,603 476,846 459,639 446,445 435,953 424,829

LPSH 0 173 310 467 579 649
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8. Conclusions

The optimal design for electrifying the study area has been determined by modeling
six different configurations that leveraged renewable energy resources and battery tech-
nologies. These configurations include PV/BMG/LA at 70% depth of discharge (DOD),
PV/BMG/LA at 80% DOD, PV/BMG/Li-Ion at 50% DOD, PV/BMG/Li-Ion at 70% DOD,
PV/BMG/Li-Ion at 80% DOD, and PV/BMG/Ni–Fe at 80% DOD. The analysis of these
configurations is necessary to identify the most cost-effective and efficient solution for the
study area. Nine metaheuristic algorithms, such as particle swarm optimization, grey wolf
optimization, genetic algorithm, ant lion optimization, differential evolutionary algorithm,
moth flame optimization, dragonfly algorithm, grasshopper optimization algorithm, and
salp swarm algorithms, were assessed in a MATLAB environment under a scenario of
low-efficiency appliances usage-based scenario. Our research showed that the salp swarm
algorithm is an efficient and reliable one for finding the global best optimal values. Our
study revealed that this algorithm is capable of providing effective solutions quickly and
accurately. The Ni–Fe-battery-based IRES has been found to be an optimal configuration
with a low-efficiency-appliance usage-based scenario, which was further evaluated with
both medium and high-efficiency-appliance usage-based scenarios. The results indicate
that the Ni–Fe-battery-based IRES is the optimal choice in all scenarios. The summary of
these results is listed as follows:

• The Ni–Fe-battery-based IRES with low-efficiency-appliance usage-based scenario
obtained a life-cycle cost (LCC) of $951,257, which was 40% and 65% lower than the LA
(@80% DOD) and lithium-ion (@50% DOD) battery-based IRESs LCCs, respectively;
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• The Ni–Fe-battery-based IRES with medium-efficiency appliance usage-based scenario,
i.e., with demand side management (DSM), yielded an LCC of $635,271, which was
33% lower than its LCC when using the low-efficiency appliance usage-based scenario;

• The Ni–Fe-battery-based IRES system with the integration of high-efficiency appliance
usage-based scenario, i.e., with DSM, led to a significant decrease in the LCC by
44% and 17% when compared to the scenarios based on low and medium-efficiency
appliance usage-based scenarios, respectively, to $530,603;

• This study determined that the Ni–Fe-battery-based IRES with DSM was the most
cost-effective and efficient system for the study area. Future research should explore
other renewable energy sources, control strategies, and innovative energy storage
technologies in order to optimize the design of renewable energy-based systems.
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