A Numerical Simulation Study on the Probable Maximum Typhoon Wave in the South China Sea
Abstract
:1. Introduction
2. Study Areas and Data Sources
2.1. Study Area
2.2. Representation of the Study Area and Data Sources
3. Model Description
3.1. Fusion Wind Field Model
3.1.1. Typhoon Pressure Field Model
3.1.2. Fusion of the Background Wind Field
3.1.3. Wind Field Verification
3.2. SWAN Wave Model
3.2.1. Delineation and Determination of SWAN
3.2.2. Verification of the Typhoon Wave Model
4. Results and Discussion
4.1. Calculation of the Probable Maximum Typhoon Wave
4.1.1. Typhoon Outer Pressure
4.1.2. Calculation of P0 with the Probability Theory Method
4.1.3. Maximum Wind Speed Radius of the Typhoon
4.1.4. Typhoon Moving Speed
4.1.5. Typhoon Paths
4.2. Analysis of the Probable Maximum Typhoon Wave Results
4.3. Actual Maximum Typhoon Wave
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Year | Typhoon No | Pressure (hPa) | Month | Day | Hour | Longitude (°) | Latitude (°) |
---|---|---|---|---|---|---|---|
1949 | - | 990 | 7 | 9 | 18 | 115.5 | 20.7 |
1950 | - | 986 | 10 | 4 | 18 | 115.7 | 21.3 |
1951 | - | 970 | 8 | 1 | 0 | 115.3 | 20.3 |
1952 | - | 960 | 6 | 12 | 0 | 112.6 | 20.6 |
1953 | - | 960 | 8 | 13 | 6 | 114.5 | 19.5 |
1954 | - | 930 | 8 | 29 | 0 | 115.3 | 20.5 |
1955 | - | 958 | 9 | 24 | 18 | 112.8 | 18.2 |
1956 | - | 974 | 10 | 23 | 18 | 114.2 | 19.7 |
1957 | - | 970 | 9 | 22 | 0 | 115.1 | 20.9 |
1958 | - | 975 | 9 | 10 | 18 | 110.8 | 17.6 |
1959 | - | 996 | 7 | 5 | 12 | 115.8 | 21.2 |
1960 | 6001 | 970 | 6 | 6 | 6 | 112.6 | 17.7 |
1961 | 6103 | 975 | 5 | 19 | 0 | 113.8 | 21.5 |
1962 | 6213 | 960 | 8 | 31 | 18 | 115.7 | 21.6 |
1963 | 6311 | 958 | 9 | 6 | 6 | 115.3 | 20.1 |
1964 | 6403 | 955 | 7 | 1 | 12 | 112.6 | 18.4 |
1965 | 6508 | 965 | 7 | 14 | 12 | 114.2 | 19.8 |
1966 | 6608 | 970 | 7 | 25 | 18 | 111 | 20 |
1967 | 6706 | 970 | 8 | 2 | 0 | 111.4 | 20.3 |
1968 | 6808 | 963 | 8 | 21 | 6 | 114.7 | 21.6 |
1969 | 6903 | 970 | 7 | 28 | 12 | 114.5 | 23.5 |
1970 | 7013 | 952 | 10 | 16 | 6 | 112.4 | 17.5 |
1971 | 7118 | 959 | 8 | 15 | 12 | 114.9 | 19.1 |
1972 | 7220 | 940 | 11 | 8 | 0 | 110.8 | 18.6 |
1973 | 7314 | 925 | 9 | 13 | 18 | 111.2 | 19.1 |
1974 | 7423 | 958 | 10 | 25 | 6 | 114.3 | 18.2 |
1975 | 7514 | 965 | 10 | 14 | 0 | 115.5 | 21.9 |
1976 | 7610 | 970 | 7 | 25 | 0 | 112.8 | 20.5 |
1977 | 7703 | 957 | 7 | 20 | 12 | 110.4 | 19.3 |
1978 | 7801 | 955 | 4 | 23 | 18 | 113.1 | 17.7 |
1979 | 7908 | 955 | 8 | 2 | 6 | 114.3 | 22.5 |
1980 | 8007 | 961 | 7 | 22 | 12 | 110.3 | 20.2 |
1981 | 8105 | 965 | 7 | 3 | 12 | 110.7 | 17.7 |
1982 | 8217 | 955 | 9 | 13 | 0 | 113.1 | 17.7 |
1983 | 8309 | 965 | 9 | 8 | 12 | 115 | 21.2 |
1984 | 8410 | 955 | 9 | 5 | 0 | 112.2 | 18.4 |
1985 | 8515 | 965 | 9 | 5 | 12 | 113.1 | 20.6 |
1986 | 8616 | 955 | 9 | 4 | 6 | 115.3 | 19.3 |
1987 | 8721 | 960 | 11 | 27 | 12 | 113.1 | 17.6 |
1988 | 8823 | 980 | 10 | 22 | 0 | 111.7 | 17.8 |
1989 | 8905 | 960 | 6 | 9 | 18 | 111 | 17.6 |
1990 | 9003 | 965 | 5 | 17 | 18 | 113.2 | 18.1 |
1991 | 9106 | 960 | 7 | 12 | 18 | 110.8 | 18.6 |
1992 | 9204 | 960 | 6 | 28 | 0 | 109.8 | 18.5 |
1993 | 9302 | 960 | 6 | 27 | 0 | 115.3 | 20 |
1994 | 9419 | 975 | 8 | 28 | 6 | 108.6 | 20.6 |
1995 | 9514 | 950 | 9 | 20 | 6 | 113 | 17.9 |
1996 | 9615 | 935 | 9 | 8 | 12 | 115.7 | 20.4 |
1997 | 9710 | 968 | 8 | 2 | 6 | 113.9 | 21.1 |
1998 | 9803 | 985 | 8 | 10 | 6 | 113.2 | 20.2 |
1999 | 9902 | 970 | 4 | 30 | 0 | 114.5 | 18.3 |
2000 | 0016 | 960 | 9 | 9 | 0 | 110.6 | 18.5 |
2001 | 0103 | 970 | 7 | 1 | 18 | 110.8 | 20.8 |
2002 | 0212 | 980 | 8 | 4 | 18 | 115.5 | 22 |
2003 | 0307 | 950 | 7 | 23 | 18 | 112.9 | 20 |
2004 | 0409 | 990 | 7 | 16 | 0 | 115.1 | 21.5 |
2005 | 0518 | 940 | 9 | 25 | 6 | 112.4 | 19 |
2006 | 0601 | 950 | 5 | 16 | 18 | 115.3 | 19.5 |
2007 | 0703 | 990 | 7 | 5 | 6 | 108.3 | 21.2 |
2008 | 0814 | 940 | 9 | 23 | 6 | 115.7 | 20.4 |
2009 | 0915 | 960 | 9 | 14 | 18 | 113.3 | 21.4 |
2010 | 1003 | 970 | 7 | 21 | 18 | 112 | 19.9 |
2011 | 1117 | 960 | 9 | 28 | 18 | 113.8 | 18.8 |
2012 | 1208 | 960 | 7 | 23 | 18 | 113.3 | 21.7 |
2013 | 1329 | 950 | 11 | 2 | 6 | 115.3 | 19.9 |
2014 | 1409 | 910 | 7 | 18 | 6 | 111.3 | 19.9 |
2015 | 1522 | 935 | 10 | 4 | 6 | 110.5 | 21.1 |
2016 | 1622 | 955 | 10 | 21 | 0 | 115.7 | 21.8 |
2017 | 1713 | 935 | 8 | 23 | 3 | 113.8 | 21.8 |
2018 | 1822 | 945 | 9 | 16 | 0 | 115.4 | 20.6 |
2019 | 1907 | 982 | 7 | 31 | 15 | 111.8 | 19.7 |
References
- Wu, Z.; Jiang, C.; Deng, B.; Cao, Y. Simulation of the storm surge in the South China Sea based on the coupled sea-air model. Chin. Sci. Bull. 2018, 63, 3494–3504. [Google Scholar]
- Huang, S.C.; Zhao, X.; Lou, H.F.; Xie, Y.L. Typhoon-generated wave height due to the super typhoon in the coastal region of Zhejiang Province. Mar. Sci. Bull. 2012, 31, 369. [Google Scholar]
- Wang, K. Research on the Spatio-Temporal Characteristics of Disastrous Ocean Dynamics under the Influence of Typhoon and Its Effect on Hazard-Bearing Bodies. Ph.D. Thesis, Chinese Academy of Sciences, Qingdao, China, 2020. [Google Scholar]
- Zheng, X.J. Analysis of probable maximum typhoon wave for key coastal project in the Ningde City of Fujian Province. Trans. Oceanol. Limnol. 2021, 4, 55–61. [Google Scholar]
- Zhang, L. Numerical Simulation of Wind and Waves in the South China Sea Based on Different Typhoon Field Models. Master’s Thesis, Dalian Ocean University, Dalian, China, 2015. [Google Scholar]
- Holland, G.J. An analytic model of the wind and pressure profiles in hurricanes. Mon. Weather. Rev. 1980, 108, 1212–1218. [Google Scholar] [CrossRef]
- Jelesnianski, C.P. A numerical calculation of storm tides induced by a tropical storm impinging on a continental shelf. Mon. Weather. Rev. 1965, 93, 343–358. [Google Scholar] [CrossRef]
- Myers, V.A. Maximum Hurricane Winds. Bull. Am. Meteorol. Soc. 1957, 38, 227–228. [Google Scholar]
- Fujita, T.T. Pressure distribution within typhoon. Geophys. Mag. 1952, 23, 437–451. [Google Scholar]
- Takahashi, K. Distribution of pressure and wind in a typhoon. J. Meteorol. Soc. Jpn. 1939, 17, 417–421. [Google Scholar]
- Bjerknes, V. On the dynamics of the circular vortex with applications to the atmosphere and atmospheric vortex and wave motions. By V. Bjerknes. Kristiania, Geofvsiake Publikationer, 2, No. 4, 1921. 4°. Pp. 89. Kr. 6,00. Q. J. R. Meteorol. Soc. 1922, 48, 375–376. [Google Scholar] [CrossRef]
- Yan, L.Y. Typhoon Gradient Wind Field Model. Mar. Forecast. Serv. 1984, 1, 12–17. [Google Scholar]
- Ji, H.D.; Lin, Y.H.; Lan, Y.Y.; Tu, Z.S.; Xiao, Z. Research on Application of SWAN Model in Design Wave Element Calculation. J. Appl. Oceanogr. 2021, 40, 477–484. [Google Scholar]
- Li, M.; Jiang, D.C. A review on the study of mild-slope equation. Mar. Sci. Bull. 1999, 18, 70–92. [Google Scholar]
- Ris, R.C.; Holthuijsen, L.H.; Booij, N. A spectral model for waves in the near shore zone. Coast. Eng. 1994, 1, 6–7. [Google Scholar]
- Ge, Y.J.; Zhong, Z.; Li, J. Influences of discretization scheme in spectral space on the simulation of typhoon-generated waves with SWAN. Mar. Sci. Bull. 2008, 27, 1–8. [Google Scholar]
- Liang, S.X.; Sun, Z.C.; Yin, H.Q.; Niu, H.Y. Influence factors of typhoon wave forecast in the South Sea by SWAN model. Adv. Mar. Sci. 2015, 33, 19–30. [Google Scholar]
- Wang, K.; Hou, Y.J.; Feng, X.R.; Li, S.Q.; Fu, C.F. Risk assessment of overtopping seawall under waves and surges for Fujian coast: A case study of typhoon usage. Oceanol. Limnol. Sin. 2020, 51, 51–58. [Google Scholar]
- Ji, H.D.; Lan, Y.Y.; Zhao, D.B. Combined application of SWAN wave model and mild-slope equation model in the numerical simulation of waves for 0903 typhoon Lotus. J. Appl. Oceanogr. 2013, 32, 108–116. [Google Scholar]
- Xin, J. A Practice Report on Translation of Key Factors for the Successful Development of Offshore Wind in Emerging Markets (Excerpts). Ph.D. Thesis, Dongbei University of Finance and Economics, Shenyang, China, 2012. [Google Scholar]
- Wang, L.Z.; Hong, Y.; Gao, Y.Y.; Huang, M.F.; Guo, Z.; Lai, Y.Q.; Zhu, R.H.; Yang, Q.M.; He, B. Dynamic Catastrophe and Control of Offshore Wind Power Structures in Typhoon Environment. Chin. J. Theor. Appl. Mech. 2023, 51, 51–58. [Google Scholar]
- Young, I. A review of the sea state generated by hurricanes. Mar. Struct. 2003, 16, 201–218. [Google Scholar] [CrossRef]
- Nair, M.A.; Kumar, V.S.; George, V. Evolution of wave spectra during sea breeze and tropical cyclone. Ocean. Eng. 2021, 219, 108341. [Google Scholar] [CrossRef]
- GB/T 18710-2002; Methodology of Wind Energy Resource Assessment for Wind Farm. China Communications Press: Beijing, China, 2002.
- Wang, A.M. Typhoon Wave Assimilation Model Establishment and South China Sea Typhoon Wave Characteristics under the Background of Winter Monsoon. Ph.D. Thesis, University of Chinese Academy of Sciences, Peking, China, 2013. [Google Scholar]
- NB/T 31147-2018; Technical Code for Wind Energy Resource Measurement and Assessment of Wind Power Projects. National Energy Administration: Beijing, China, 2018.
- National Oceanic and Atmospheric Administration. ETOPO1 [DB/OL]. (7 January 2018). Available online: https://maps.ngdc.noaa.gov/viewers/wcs-client (accessed on 28 October 2022).
- Appendini, C.M.; Torres-Freyermuth, A.; Oropeza, F.; Salles, P. Gulf of Mexico and Caribbean Wave Hindcast: Climatology and Wind Reanalysis Assessment; Instituto De Ingenieria Unam: Mexico City, Mexico, 2011. [Google Scholar]
Statistics | Dongsha Station (20°40′ N, 116°43′ E) | Xisha Station (16°50′ N, 112°20′ E) | ||
---|---|---|---|---|
Typhoon Field | Fusion Wind Field | Typhoon Field | Fusion Wind Field | |
RMSE | 1.9756 | 0.8940 | 0.8875 | 0.5421 |
CORREL | 0.95159 | 0.99114 | 0.92181 | 0.97688 |
Direction | Max Moving Speed (km/h) | Range of Velocity (km/h) |
---|---|---|
W | 39.8 | 10~40 |
WNW | 37.7 | 10~38 |
NW | 30.0 | 10~30 |
Extreme Wave | Water Depth 50 m | Water Depth 60 m | Water Depth 70 m | |||
---|---|---|---|---|---|---|
Hs (m) | T (s) | Hs (m) | T (s) | Hs (m) | T (s) | |
Once-in-a-millennium | 17.2 | 16.5 | 17.5 | 16.5 | ||
Probable maximum typhoon wave | 16.5 | 16.2 | 17.1 | 16.3 | ||
Once-in-a-hundred-year | 13.2 | 14 | 13.8 | 14.3 | ||
Once-in-50-year | 12.1 | 13.4 | 12.6 | 13.7 | ||
Actual typhoon wave | 12.01 | 13.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, J.; Zhang, X.; Zou, G.; Zhang, K.; Wang, J. A Numerical Simulation Study on the Probable Maximum Typhoon Wave in the South China Sea. Sustainability 2023, 15, 10254. https://doi.org/10.3390/su151310254
Yi J, Zhang X, Zou G, Zhang K, Wang J. A Numerical Simulation Study on the Probable Maximum Typhoon Wave in the South China Sea. Sustainability. 2023; 15(13):10254. https://doi.org/10.3390/su151310254
Chicago/Turabian StyleYi, Jianjun, Xingnan Zhang, Guoliang Zou, Ke Zhang, and Jianquan Wang. 2023. "A Numerical Simulation Study on the Probable Maximum Typhoon Wave in the South China Sea" Sustainability 15, no. 13: 10254. https://doi.org/10.3390/su151310254
APA StyleYi, J., Zhang, X., Zou, G., Zhang, K., & Wang, J. (2023). A Numerical Simulation Study on the Probable Maximum Typhoon Wave in the South China Sea. Sustainability, 15(13), 10254. https://doi.org/10.3390/su151310254