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Abstract: In recent years, the intelligent identification and prediction of ore deposits based on deep
learning algorithm and image processing technology has gradually become one of the main research
frontiers in the field of geological and metallogenic prediction. However, this method also has many
problems that need to be solved. For example: (1) There are very few trainable image samples
containing mineral point labels; (2) the geological image features are small and irregular, and the
image similarity is high; (3) it is difficult to calculate the influence of different geological prospecting
factors on ore mineralization. Based on this, this paper constructs a deep learning network model
multiscale feature attention framework (MFAF) based on geoimage data. The results show that
the MFCA-Net module in the MFAF model can solve the problem of scarce mine label images to
a certain extent. In addition, the channel attention mechanism SE-Net module can quantify the
difference in influence of different source factors on mineralization. The prediction map is obtained
by applying the MFAF model in the study of deposit identification and prediction in the research
area of the southern section of the Qin-hang metallogenic belt. The experimental results show that
the areas numbered 5, 9, 16, 28, 34, 41, 50, 72, 74, 75, 80, 97, 101, 124, and 130 have great metallogenic
potential and this method would be a promising tool for metallogenic prediction. A large number
of experimental results show that this method has obvious advantages over other state-of-the-art
methods in the prediction of prospecting target areas, and the prediction effect in the samples with
mines is greatly improved. The multi-scale feature fusion and attention mechanism MFAF in this
paper can provide a new way of thinking for geologists in mineral exploration. The research of this
paper also provides resource guarantees and technical support for the sustainable exploitation of
mineral resources and the sustainable growth of society and economy.

Keywords: artificial intelligence; sustainable development; deep learning; mineral deposit prediction;
multi-scale features; attention mechanism

1. Introduction

Mineral resources are an important resource guarantee for sustainable economic
growth and stable social development. With the continuous exploitation and consumption
of mineral deposits, many precious resources are facing the risk of scarcity. Therefore, geol-
ogists began to explore new techniques and methods to find new deposits. In recent years,
most of the geological prospecting research uses single data source analysis, such as geolog-
ical mapping technology, geochemical metallogenic prediction, geophysical metallogenic
prediction, or remote sensing image prediction. A few scholars use artificial intelligence
image processing techniques to predict mineral deposits. With the development of artificial
intelligence and big data technology in geology, intelligent prediction of mineral resources
based on machine learning algorithm and image processing technology has gradually
become one of the frontier hot spots for geologists and scientific researchers [1–3]. Many
scholars use logistic regression [4], support vector machine (SVM) [5], genetic algorithm [6],
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random forest (RF) [7], artificial neural network (ANN) [8], and other artificial intelligence
algorithms to carry out intelligent prediction and mineral analysis of geological and min-
eral resources. It is proven that machine learning and deep learning algorithms have a
strong prediction ability in identifying the nonlinear relationship between ore deposits
and metallogenic conditions and can significantly improve the accuracy and success rate
of prediction.

However, deep learning technology is still in its exploratory stage in mining and
forecasting geological prospecting information, and there are still some problems to be
solved. Common problems include: (1) Due to the scarcity of mineral points in the study
area, trainable image samples containing mineral point labels are very few; (2) due to the
fine and irregular features of geological images, the image similarity is substantial and it
is difficult to extract effective information; (3) the variation in the degree of influence of
geological prospecting factors of different data sources on ore mineralization. All these
problems bring more challenges and opportunities for geological workers in ore deposit
prediction. Through our research on previous journals, no one has yet adopted deep
learning combined with attention mechanisms to analyze the main ore-forming factors and
ore-forming prediction areas of ore deposits. The research questions and objectives are:
(1) How to enhance the labeled geological image samples? (2) how to use the attention
mechanism to assign different weight coefficients to different geological image data and
avoid the influence of human factors? (3) which artificial intelligence model can be used to
identify and predict ore deposits in the research area more effectively? Based on the above
research questions and objectives, in this paper, the Jinshan research area in the southern
section of the Qin-hang metallogenic belt of China is taken as the study area. A deep
learning model of multiscale feature attention framework (MFAF) is proposed to construct
a forecast map of deposit identification and prediction based on sediment geochemical data
and a mineral geological map. This method may improve the accuracy and success rate of
metallogenic prediction with different data sources and both fine and irregular features of
geological images.

2. Literature Review
2.1. Deep Learning for Metallogenic Prediction

Deep learning has been actively applied in geological information metallogenic pre-
diction and has achieved many innovative results [9–14]. Zuo and Carranza [15] used
the SVM algorithm to predict the Nova Scotia gold deposit in western Canada, which
confirmed that the SVM algorithm has obvious advantages in prediction accuracy and
precision compared with the traditional weight of evidence method. Daviran et al. [16]
used a genetic algorithm to optimize the super parameters of random forest (RF) to improve
the accuracy of mine target prediction. Chen et al. [17] proposed a novel ensemble scheme
for MPM using a wavelet neural network (WNN) and Monte Carlo simulations (MCs) to
address the forementioned issues. The resulting predictive map provides important clues
for W-Sn deposit occurrences, which could stimulate future mineral exploration in the
Nanling Range. Marjanovic et al. [18] adopted convolutional neural network (CNN), recur-
rent neural network (RNN), and multilayer perceptron (MLP) and RF machine learning
algorithms to analyze mineral composition data from 488 sediment samples. The results
show that trained machine learning models can help experts analyze mineral composition
more efficiently and reliably.

In previous studies, some scholars have used CNN methods [19], deep convolutional
neural network (DCNN) [20] and long short-term memory network (LSTMN) [21], genera-
tive adversarial network (GAN) [22], transfer learning (TL) [23], and other deep learning
algorithms to carry out intelligent prediction of geochemical mineral resources, proving
that deep learning algorithms are a powerful tool for geochemical element concentration
analysis and metallogenic prediction. For example, Chen and Shayilan [24] used deep
learning technology to establish a learning model for multi-geochemical anomaly detection
oriented to prospecting targets. The test results show that the model algorithm is wor-
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thy of further study in the field of prospecting with complex geochemical backgrounds.
He et al. [25] made a review of the research of machine learning in the field of geochemistry,
and the research results predicted that deep learning and machine learning technology
would achieve great breakthroughs in the research of geochemistry. Huang et al. [26] used
the deep learning method to capture the characteristics of geochemical elements and build
a deep intelligent prospecting target prediction framework. The experimental results show
that the multi-scale feature deep learning framework has significant advantages compared
with other deep learning methods.

2.2. Multi-Scale Feature Fusion Technology for Mineral Prospecting

In recent years, some geological experts have applied multi-scale feature fusion tech-
nology to geological prospecting and geochemical analysis and achieved fruitful results.
For example, Guan et al. [27] proposes a feature fusion convolutional autoencoder to extract
and fuse the spatial structural features and compositional relationships of multivariate
geochemicals for identifying geochemical anomalies. The results show that the method is
applicable and reliable for mineral resource exploration. Zhou et al. [28] combined multi-
scale geophysical prospecting technology with geological prospecting in typical deposit
areas to provide evidence for geologists to understand the metallogenic background and
discover new deposits. Li et al. [29] presents a multi-modal feature fusion based frame-
work to improve the geographic image annotation. The comprehensive experiments show
that this feature fusion based method achieves much better performances compared to
traditional methods.

2.3. The Mechanism of Attention Used in Geodata Analysis

At present, many scholars have conducted in-depth studies on the mechanism of
attention and achieved good results [30–32]. Some earth science experts have combined
the channel attention mechanism with geoscience images, and the image classification
effect has been significantly improved. For example, Zhu et al. [33] proposed super-
resolution model employs residual channel attention networks as a backbone structure.
The experimental results confirmed that the enhanced multi-temporal images can bring
substantial improvements to classification. Gajbhiye et al. [34] combined the channel
attention mechanism and convolutional neural network to generate letters for remote
sensing images and conducted model evaluation in the test set, obtaining good results.
Additionally, many scholars have integrated the spatial attention module into the deep
learning network model to improve the training effect of the model [35–37]. Some geological
experts focus on the spatial distribution of geological images and data and achieve good
results in image modeling and image classification. For example, Pan et al. [38] proposed
an integrated method to effectively integrate multi-source complex spatial data, which
combined a spatial model with complex stratigraphic modeling technology to realize the
visualization of the spatial model. Zhao and Wang [39] used the machine learning method
to analyze the spatial distribution of geochemical elements such As Au, As, Sb, and Hg.
The results show that the geochemical anomalies extracted using this method are consistent
with the known metallogenic areas, which proves that this method is feasible and effective
in identifying geochemical anomalies.

3. Materials and Methods
3.1. Materials

The study area Jinshan is located in the southern section of China’s Qin-hang (Qinzhou
Bay—Hangzhou Bay) metallogenic belt, which is a giant structural junction belt located
in the middle of two ancient landmasses (Yangtze and Huaysia). The belt extends from
Hangzhou Bay in the northeast to Qinzhou Bay in the southwest with a total length of
2000 km and has good metallogenic potential. Figure 1 shows a general map of geology
and mineral resources in the study area. Red dots are known deposit locations and blue
dots are stream sediment sampling locations. There are five major strata in the study area:
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Triassic, Permian, Carboniferous, Devonian, and Quaternary. Among them, the Triassic
lithologic is given priority to gray, gray, sandy mudstone, lower than the white, thin layer
and, therefore, tuffaceous shale. Permian lithology is light gray thick-bedded bioclastic
limestone, sand-clastic limestone, and microcrystalline limestone. The Carboniferous
lithology is composed of gray middle-thick bedded bioclastic limestone, gray-white thick
bedded dolomite, and biooritic microcrystalline limestone. Devonian lithology is dark gray
thin bedded limestone, microcrystalline limestone, and marbled limestone. The structural
development in this area is dominated by faults, including regional major faults, northeast
trending faults, northwest faults, near south–north faults, and interlayer fracture zones.
Regional metallogenic composition is influenced by lithology and tectonic common control
and the Triassic ore formation. Therefore, known ore deposits are situated near the faults
and fissures, obviously controlled by fracture structure. The data sources analyzed in
this study include mineral geological maps and stream sediment geochemical element
data. According to statistics, we sampled 3568, 1559, 1942, 342, and 101 samples from
each formation, for a total of 7512 samples. The data analyzed via stream sediment survey
include Ag, Au, B, Sn, Cu, Ba, Mn, Pb, Zn, As, Sb, Hg, Mo, W, Bi, and F. Table 1 shows that
part of the geochemical element data, X and Y, correspond to sampling point coordinates.
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Table 1. Geochemical element data set (The units of Au and Ag are ng/g, other element units
are µg/g).

X Y Ag Au B Sn Cu Ba Mn Pb Zn As Sb Hg Mo W Bi F

421.63 2416.85 0.078 0.54 4 2.56 7 88 209 12 23 0.9 0.29 0.04 0.82 1.16 0.42 204
420.93 2416.80 0.06 0.81 3 3.74 5 885 305 33 22 0.58 0.36 0.04 0.82 1.11 1.41 222
420.95 2416.35 0.086 0.94 4 2.41 5 797 267 53 35 1.15 0.34 0.09 0.51 1.16 0.42 212
421.21 2415.85 0.043 0.81 3 1.52 5 1111 423 42 14 0.51 0.35 0.07 0.59 0.38 0.23 222
420.30 2416.35 0.046 0.37 2 1.65 6 941 498 38 17 0.53 0.31 0.02 0.57 0.33 0.61 222
419.86 2416.15 0.033 1.09 4 1.53 8 427 338 37 29 0.74 0.28 0.07 1.68 0.73 0.47 204

3.2. Methods
3.2.1. Data Pre-Processing

In this study, the preprocessing of the original geological data is divided into four steps.
(1) Screen out favorable geochemical elements for mineralization. In this study, the

support vector model was used to obtain the area under curve (AUC) value of each element,
and the ZAUC value was calculated using Formulas (1)–(3):

Q1 =
AUC

2− AUC
, Q2 =

2AUC2

1 + AUC
(1)

SAUC =

√
AUC(1− AUC) +

(
Cp − 1

)
(Q1 − AUC2) + (Cn − 1)(Q2 − AUC2)

Cp × Cn
(2)

ZAUC =
AUC− 0.5

SAUC
(3)

The random variable ZAUC meets the standard normal distribution, and the critical
value is obtained by comparing the standard normal distribution table, which is used to
detect whether there is a significant difference between AUC and 0.5. The results are shown
in Table 2. When the ZAUC value is greater than 0.01, the critical value of 2.58 is selected;
that is, Ag, Au, Sn, Cu, Ba, Sb, Hg, and Mo are selected as favorable prospecting factors.

Table 2. The results of AUC and ZAUC.

Element AUC ZAUC Element AUC ZAUC

Au 0.6024 2.8395 B 0.5901 2.4839
Sn 0.6065 2.9595 Cu 0.6311 3.6977
Ag 0.6762 5.1563 Ba 0.6147 3.2020
Mn 0.5573 1.5617 Pb 0.5778 2.1341
Zn 0.5450 1.2232 As 0.5655 1.7893
Sb 0.5942 2.6017 Bi 0.5901 2.4839
Hg 0.6393 3.9516 Mo 0.5983 2.7203
W 0.5778 2.1341 F 0.5696 1.9037

(2) The inverse distance weight method was used to interpolate the above eight
geochemical element data sets, and the corresponding element concentration contour
map was obtained. This interpolation calculation experiment references [40] and the
experimental results generated T grid points of element concentration map, where W is
the width of the image, H is the height, and T is the number of element distribution maps.
The calculation formula of the inverse distance weighting method is shown in (4) and (5),
where the Euclidean distance from the discrete point (xi, yi) to the grid point (x0, y0) is
the valuation of the position, i is the observed value at the discrete point, and N is the
number of discrete points involved in the calculation. In this study, the inverse distance
weight method was applied to Ag, Au, Sn, Cu, Ba, Sb, Hg, Mo, and other elements to
generate eight isoline maps of element concentration with a size of 1560 × 1560. Finally,
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the isoline map of element concentration, the geological layer, and the fault structure layer
were superimposed with the known ore deposit layer, respectively, to generate 10 new
images of geological prospecting factors, as shown in Figure 2.

Di =

√
(x0 − xi)

2 + (y0 − yi)
2 (4)

Z(x0, y0) =
N

∑
i=1

1

(Di)
2 Zi/

N

∑
i=1

1

(Di)
2 (5)
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(3) This step further processes the geoimage generated in Step 2 to obtain the geoimage
data set. Firstly, a sliding window is defined, and the element content of each sampling
point is obtained by sliding the geographic image with the appropriate step size. After
many experiments, the geographic image data set required by the cost research is generated.
It is assumed that the geoinformation training set contains N samples, which are various
characteristic elements and are their corresponding real labels. C is the number of geological
information channels, where 0 represents “no ore” data and 1 represents “ore” data. In
this experiment, 128 × 128 windows and 128 pixels were used for sliding operation on the
geoinformation map to generate the geoimage data set needed for the final model training.
This image data set includes 428 image data (128 × 128 × 10), among which 342 data are
included in the training set, including 56 “ore” data and 286 “no ore” data. The test set
contains 86 data, including 14 “ore” data and 72 “no ore” data.

(4) Enhance the number of geological images generated in the previous step with
Smote. In order to effectively train the deep learning network model, this experiment
enhanced the image data by adding Gaussian noise with an average value of 0 and a vari-
ance of 0.01. In this paper, according to smote algorithm [41] and the SMOTE method [42],
we gave a sample extension to the original geoscience image data set, and enhanced the
completeness of the deep learning training model. Through this step, the final generated
data set includes 654 data (128 × 128 × 10), among which 524 data are generated in the
training set, including 224 “ore” data and 300 “no ore” data. The test set has 130 data,
including 56 “ore” data and 74 “no ore” data. After data preprocessing in these four steps,
the geoimage data set generated can be used as the input data of the MFAF in this study.

3.2.2. Multiscale Feature Attention Framework (MFAF)

The framework of MFAF research is shown in Figure 3. It mainly consists of two parts:
multiscale feature channel attention net (MFCA-Net) and convolution spatial attention
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net (CSA-Net). MFCA-Net uses the set of expansion coefficients α = {α1, α2, α3, . . . , αn}
and the channel attention mechanism squeeze and excitation block (SE-Net) module. The
framework consists of three steps: (1) The expansion coefficient set α is used to generate
convolution kernels of different scales, and the feature maps of different scales are obtained
to solve the question of a small number of known deposits in the study area and to provide
data support for the convolution operation to extract more and more detailed feature
information in this area. (2) The feature image generated after expansion convolution
will pass through the channel attention module, which comprises both compression and
excitation processes. In the compression stage, the global compression feature quantity
is obtained via global pooling on the feature graph. At the bottleneck phase, the weights
of each channel in the feature map are obtained through a bottleneck structure that is
fully connected at two layers, and the weighted feature map is used as input to the next
layer network. Therefore, the extracted features are re-calibrated, and different weight
values are assigned to the features in different channels W = {W1, W2, . . . , Wn}, so as to
solve the problem that different geochemical elements have different influence degrees on
mineralization. (3) The CSA-Net module mainly includes a series of convolution operations.
Considering that the element contents of different spatial locations in the feature map have
different influences on mineralization, the last layer of convolution is added with the spatial
attention module to assign different weight coefficients to the features of different locations.
In order to reduce the number of training parameters and accelerate the model convergence,
each channel was finally classified by the shared full connection layer.
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3.2.3. Multi-Scale Feature Fusion

With the deepening of the number of layers in the deep learning network, the semantic
expression ability is enhanced; however, this also reduces the resolution of the image, and
many detailed features become more and more fuzzy after the convolution operation of
the multi-layer network. The traditional target detection model results in the reduction of
the effective information of small targets on the last feature map. In this paper, multi-scale
feature fusion is used to solve this problem. Instead of using the feature map of the last
layer for detection, multi-layer features are selected for fusion and then detection so as to
obtain images of multiple scales, and then the classification algorithm is adopted to realize
the task of image classification [43,44]. The multi-scale feature fusion diagram is shown in
Figure 4.
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In order to solve the problem of few mineral points and few ore-bearing label images
in the study area, geological layers, fracture images, and a variety of geochemical elements
can be used to generate geological image data of different scales, and image data sets can
be generated by asynchronously long sliding windows to increase the diversity of data
samples. For the input geological data bases set x′ = {xi}N

i=1, the expansion coefficient set
α = {α1, α2, α3, . . . , αn} generates convolution of different sizes to check the convolution op-
eration and generates an image of multi-scale features. Specifically, we use the convolution
operation of the convolution kernel M = {M1, M2, . . . , Mn} and the set α of expansion
coefficients to obtain the multi-scale feature graph F = {F1, F2, . . . , Fn}, where the ith feature
is Fi. The specific generation Formula (6) is shown as follows: Where xi represents the ith
feature element, Mi represents the convolution weight corresponding to the generation of
the ith feature graph, αi represents the expansion convolution coefficient corresponding to
the generation of the ith feature graph, and r represents the convolution channel.

Fi = r(xi, Mi, αi) (6)

3.2.4. Channel Attention

In the research of deep learning algorithms, the channel attention (CA) mechanism
is a resource allocation mechanism that can make the model training of neural network
focus on the important features of the image and improve the efficiency and accuracy of
the neural network. Each channel of a feature map is a feature detector, and the channel
attention mechanism pays different attention to different image channels [45]. The channel
attention module is shown in Figure 5. For image input features, firstly, the maximum
pooling and average pooling algorithms are used simultaneously, and transformation
results are then obtained through several Multilayer perceptron and MLP layers, and,
finally, the transformation results are respectively applied to the two channels so that the
sigmoid function can obtain the attention results of the channels. The calculation procedure
is shown in Formula (7). In Formula (7), Mc is the channel attention result, F is the input
feature, σ is the sigmoid function, MLP is the multilayer perceptron, AvgPool is the average
pooling, and MaxPool is the maximum pooling.

Mc = σ(MLP(AvgPool(F) + MaxPool(F))) (7)



Sustainability 2023, 15, 10269 9 of 17

Sustainability 2023, 15, x FOR PEER REVIEW 9 of 18 
 

feature, σ is the sigmoid function, MLP is the multilayer perceptron, AvgPool is the aver-

age pooling, and MaxPool is the maximum pooling. 

Mc = σ(MLP(AvgPool(F) + MaxPool(F))) (7) 

 

Figure 5. Channel attention module. 

In this paper, mineral geological images and geochemical element images are used 

to study the identification and prediction of ore deposits. Different data sources contain a 

variety of geological prospecting factors, and different geological prospecting factors have 

different degrees of influence on ore deposits. Therefore, in order to reduce the influence 

of human factors, this study adopted a channel attention module in the process of training 

data. According to the value of loss in the experiment, the weight values on different chan-

nels are adjusted reversely and dynamically, the weight values of important features are 

increased, the importance of features with little influence is suppressed, and the represen-

tational power of our network training model is improved. By assigning the optimal 

weight value to each channel, the convergence of the network model is accelerated, and 

the accuracy of the deposit prospecting prediction is improved. In the geological image 

data, the corresponding degree of labeled mineral point image and different geological 

prospecting factors can correspond to the weight coefficient. 

3.2.5. Spatial Attention  

In the study of using artificial intelligence technology to analyze image data, different 

areas in the image have different contribution degrees to the task, and we need to pay the 

most attention to the areas related to the task. Spatial attention (SA) can be regarded as an 

adaptive spatial region selection mechanism: where to focus [46]. In the spatial attention 

module of Figure 6, we firstly reduce the dimension of the channel itself, obtain the results 

of maximum pooling and mean pooling, respectively, assemble them into a feature map, 

and then use a convolution layer for learning. The calculation procedure is shown in For-

mula (8). In Formula (8), Ms is spatial attention as a result, F for the input characteristics, 

σ as sigmoid function, f7 × 7 is 7 × 7 size of convolution kernels, AvgPool for average pool-

ing, and MaxPool for maximum pool. 

Ms = σ(f7 × 7 (AvgPool(F); MaxPool(F))) (8) 

 

Figure 6. Spatial attention module. 

Figure 5. Channel attention module.

In this paper, mineral geological images and geochemical element images are used
to study the identification and prediction of ore deposits. Different data sources contain
a variety of geological prospecting factors, and different geological prospecting factors
have different degrees of influence on ore deposits. Therefore, in order to reduce the
influence of human factors, this study adopted a channel attention module in the process
of training data. According to the value of loss in the experiment, the weight values on
different channels are adjusted reversely and dynamically, the weight values of important
features are increased, the importance of features with little influence is suppressed, and
the representational power of our network training model is improved. By assigning the
optimal weight value to each channel, the convergence of the network model is accelerated,
and the accuracy of the deposit prospecting prediction is improved. In the geological image
data, the corresponding degree of labeled mineral point image and different geological
prospecting factors can correspond to the weight coefficient.

3.2.5. Spatial Attention

In the study of using artificial intelligence technology to analyze image data, different
areas in the image have different contribution degrees to the task, and we need to pay
the most attention to the areas related to the task. Spatial attention (SA) can be regarded
as an adaptive spatial region selection mechanism: where to focus [46]. In the spatial
attention module of Figure 6, we firstly reduce the dimension of the channel itself, obtain
the results of maximum pooling and mean pooling, respectively, assemble them into a
feature map, and then use a convolution layer for learning. The calculation procedure is
shown in Formula (8). In Formula (8), Ms is spatial attention as a result, F for the input
characteristics, σ as sigmoid function, f 7 × 7 is 7 × 7 size of convolution kernels, AvgPool
for average pooling, and MaxPool for maximum pool.

Ms = σ(f 7 × 7 (AvgPool(F); MaxPool(F))) (8)
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In this paper, considering the difference of geological prospecting factors in different
spatial locations on mineralization of ore deposits, the spatial attention module is adopted
in the model. The spatial attention module can use spatial attention as a supplement
to the convolution operation, which enhances or supposes image features at different
spatial locations.
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3.2.6. Fully Connected Layer, Softmax, and Voting

In the CNN structure, after image data pass through multiple convolution layers
and pooling layers, one or more fully connected layers (FC) are connected, and each
neuron in the FC layer is fully connected with all the neurons in the previous layer. It can
integrate different types of information in the convolution layer and the pooling layer. In
order to improve the performance of the CNN network, the excitation function of each
neuron in the fully connected layer generally adopts the ReLu function [47]. After passing
through the fully connected layer, we used softmax to classify the image data and used the
voting mechanism to predict and classify the positions with and without ore in the study
area. Through the above steps, we could improve the overall prediction accuracy of the
network model.

In this paper, the characteristics of input geological prospecting factors X = {xi}N
i=1

through expansion convolution of different coefficients can obtain the set F = {F1, F2, F3, . . . , Fk}
of its feature map, where Fi =

{
Fi

j

}N

j=1
. Our network model firstly extracts features from set

F, then performs global pooling operations, allocates different weights to different positions
through the spatial attention module, and finally obtains its output results through the
fully connected layer. The optimal cross entropy method was adopted to optimize the
network structure of the classification model, as shown in Formula (9). In Formula (9), ∂i is
the weight parameter in SACNet, yi is the label value of the i geological prospecting factor
feature, and loss(*) is the calculation of cross entropy loss after Softmax is activated.

L = ∑M
i=1 ∑N

j=1 loss
(

∂i; Pi
j ; yi

)
(9)

After the above calculation, we vote on the probability distribution calculated using
softmax for each channel network and obtain the final prediction result. The probability
distribution after using softmax is, P = {Pi}k

i=1, Pi = [P0, P1], where P0 is the probability
predicted to be “ore free” and P1 is the probability predicted to be “ore present”. We obtain
the prediction results of each channel network through Formula (10) and determine the
final prediction results through the vote of Formula (11).

ŷi = argmax(Pi) (10)

ŷ = vote
(
{ŷi}k

i=1

)
(11)

4. Results and Discussion
4.1. Experiment Settings

The evaluation indexes of the model in this paper are accuracy, recall rate, AUC
value, and F1-Score. All experiments are programmed and implemented with the Pytorch
framework and one GeForce RTX 3090 GPU. In this experiment, ResNet18 [48] and Shuf-
fleNetV2 [49] were used as the basic network, MFAF was adopted for optimization, and
the comparison experiment was conducted with the mainstream deep learning model. We
used an SGD optimizer to iterate the experimental model with momentum of 0.2, weight
decay of 1 × 10−4, cycle iteration of 220 times, initial learning rate set at 0.02, decay of 40%
every 30 times, and batch size of 32. In this paper, MFAF uses α = {α1, α2, α3, . . . , αn} MFI
Framework [26] expansion coefficient is set to α = {1, 6, 12, 18, 24}.

4.2. Experiment Results and Analysis

In this experiment, we compare deep learning algorithms and some state-of-the-
art classification methods with MFAF to demonstrate that it outperforms other models
in prospecting target prediction tasks. Specifically, we compare the following methods,
including the deep learning methods ResNet 18 [48], ShuffleNetV2 [49], GoogLeNet [50],
MobileNetV2 [51] and MnasNet [52]. In a deep learning algorithm, we compress each data
point in the geochemical dataset into a one-dimensional tensor as the input to the algorithm.
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The experimental results of different methods are shown in Table 3. It can be seen
from the comparison results in Table 3 that the optimized modules using MFAF are better
than the original models. For example, compared with the unoptimized ResNet18 model,
the performance of the optimized ResNet18 model has been greatly improved, with the
accuracy increased by 7.82%, the AUC value increased by 10.33%, the recall rate increased
by 10.61% and the F1-Score value increased by 4.30%. Compared with the unoptimized
ShuffleNetV2, the optimized ShuffleNetV2 model also has a great improvement in perfor-
mance, with the accuracy rate increased by 4.86%, the AUC value increased by 3.99%, the
recall rate increased by 18.89%, and the F1-Score value increased by 9.74%. The experimen-
tal results prove that MFAF has good generalization and has certain advantages compared
with current popular frameworks. MFAF outperforms the other methods in terms of ac-
curacy, AUC, recall, and F1-score. This indicates that MFAF has excellent performance in
prospecting target prediction and has the highest improvement in the prediction of samples
with mines. Meanwhile, this also proves that our method can effectively solve problems
such as the small number of labeled geological image samples and the irregular features of
mineral distribution in research area.

Table 3. Experimental results of different methods (* is an optimized model based on MFAF).

Methods Accuracy AUC Recall F1-Score

ResNet18 [48] 64.84 63.13 32.05 59.41
ResNet18* 72.66 73.46 42.66 63.76

ShuffleNetV2 [49] 62.37 61.43 18.43 53.98
ShuffleNetV2* 67.23 65.42 37.32 63.72

GoogLeNet [50] 62.38 61.45 20.14 56.33
MobileNetV2 [51] 64.23 64.13 16.23 58.36

MnasNet [52] 68.79 67.23 17.69 60.86

4.3. Correlation Analysis Experiment

We present the experimental results based on the relevant modules of MFAF in
Section 4.3.1. Then, in Section 4.3.2, we verify the effect of the coefficient of self-distillation
loss on MFAF.

4.3.1. Ablation Experiments

To evaluate the performance of the method proposed in this paper and to explore
the role of channel and spatial attention module in MFAF, we perform MFAF ablation
experiments. Specifically, we design the following ablation experiments: (1) remove channel
attention in ResNet18* (R-CA-ResNet18*), (2) remove channel attention in ShuffleNetV2*
(R-CA-ShuffleNetV2*), (3) remove spatial attention in ResNet18* (R-SA-ResNet18*) and
(4) remove spatial attention in ShuffleNetV2* (R-SA-ShuffleNetV2*).

The experimental results are shown in Table 4. Compared with ResNet18* and R-
CA-ResNet18*, the accuracy increased by 3.12%, the AUC value increased by 8.57%, the
recall increased by 8.68%, and the F1-Score increased by 5.07% after the channel attention
module was used. This can be compared with ShuffleNetV2* and R-CA-ShuffleNetV2*,
wherein the accuracy increased by 3.81%, the AUC value increased by 2.18%, the Recall
increased by 1.81%, and the F1-Score increased by 2.73%. The comparison results of the
two groups showed that the overall indicators were improved after the channel attention
module was used in MFAF, and the model effect was more ideal. Compared with ResNet18*
and R-SA-ResNet18*, the accuracy increased by 1.53%, the AUC value increased by 1.78%,
the recall increased by 3.20%, and the F1-Score increased by 2.37% after the spatial attention
module was used. Compared with ShuffleNetV2* and R-SA-ShuffleNetV2*, the accuracy
increased by 2.75%, the AUC value increased by 1.46%, the recall increased by 2.2%, and
the F1-Score increased by 1.68%. The comparison results of the two groups showed that
the overall indicators were improved after the spatial attention module was used in MFAF,
and the model effect was more ideal.
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Table 4. Ablation experimental results (* is an optimized model based on MFAF).

Methods Accuracy AUC Recall F1-Score

ResNet18* 72.66 73.46 42.66 63.71
R-CA-ResNet18* 69.54 64.89 33.98 58.64

ShuffleNetV2* 67.23 65.42 37.32 63.72
R-CA-ShuffleNetV2* 63.42 63.24 35.51 60.99

ResNet18* 72.66 73.46 42.66 63.71
R-SA-ResNet18* 71.13 71.68 39.46 61.34
ShuffleNetV2* 67.23 65.42 37.32 63.72

R-SA-ShuffleNetV2* 64.48 63.96 35.12 62.04

Table 4 presents the experimental results. The following observations are made:

1. Different geological prospecting factors have different degrees of influence on ore
deposits. This study adopted channel attention module in the process of training
data can reduce the influence of human factors. According to the value of loss in
the experiment, the weight values on different channels are adjusted reversely and
dynamically, the weight values of important features are increased, the importance of
features with little influence is suppressed. the accuracy of the deposit prospecting
prediction is improved.

2. Spatial attention module is adopted in the MFAF model can consider the difference of
geological prospecting factors in different spatial locations on mineralization of ore
deposits. The spatial attention module can use spatial attention as a supplement to the
convolution operation, which enhances image features at different spatial locations.

3. The contributions of these methods to MFAF are different. According to the contribu-
tion from large to small, they are ranked as follows: channel attention, spatial attention.

4.3.2. Parameter Analysis Experiments

The objective function of MFAF includes distillation loss. The setting of dilation rate
will exert certain influence on the effect of deep learning network [53,54]. To evaluate the
effect of the coefficient of self-distillation loss β on MFAF, we set β = {0, 0.1, 0.4, 0.6, 0.7, 0.8}
to perform a total of six experiments. Based on the ResNet18 network structure, we
conducted MFAF optimization experiment and obtained the comparison results. Table 5
shows the experiment results with different auxiliary loss function coefficients. From
the table, we can find the following: (1) β has a certain effect on the MFAF performance.
(2) The best prospecting target prediction results can be obtained when β is 0.4. (3) When
the coefficient of loss function is 0, it means the original result of ResNet18. When the
coefficients are set to 0.6, 0.7 and 0.8, the output results of the network architecture gradually
deteriorate with the increase of the coefficients.

Table 5. Comparison of experimental results of different auxiliary loss functions.

Loss Function Accuracy AUC Recall F1-Score

0 64.84 63.13 32.05 59.41
0.1 71.21 70.22 39.12 60.34
0.4 72.66 73.46 42.66 63.71
0.6 71.45 70.32 38.49 60.19
0.7 68.44 65.54 37.55 58.84
0.8 64.96 63.27 32.64 60.34

To discuss the effect of expansion coefficient on MFAF, we set up a total 4 groups of
comparison experiments. The expansion coefficient of this study is based on 6, and a set of
experiments are set every 2. The expansion coefficient is divided into rate 1 = {1, 2, 4, 8, 10},
rate 2 = {1, 4, 8, 12, 16}, rate 3 = {1, 6, 12, 18, 24}, and rate 4 = {1, 8, 16, 24, 32}. Based on the
ResNet18 network structure, we conducted MFA network optimization experiment and ob-
tained the comparison results. Table 6 shows the experimental results of different expansion
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coefficients, and Figure 7 shows the effect analysis diagram of each expansion coefficient.
It can be seen from Table 6 and Figure 7: (1) As the expansion coefficient increases, the
performance of the target networks first increases and then decreases (including accuracy,
AUC, recall, and F1-Score). (2) The above result is caused by the performance of the model
being affected with the increase in expansion coefficient, but at the same time, distillation
can improve the performance of the target network, leading to first the increase and then
the decrease. (3) When the expansion coefficient reaches rate 4, the accuracy, AUC, recall,
and F1-Score of our model are all reduced. This indicates that the larger the coefficient of
expansion is not the best option, and the most appropriate coefficient of expansion should
be selected to make the model better.

Table 6. Experimental results based on expansion coefficient.

Dilation Rate Accuracy AUC Recall F1-Score

rate 1 63.45 62.02 32.79 50.43
rate 2 67.34 66.22 38.28 61.14
rate 3 72.66 73.46 42.66 63.71
rate 4 70.22 68.86 31.46 55.65
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4.4. Visualization

In this section, we use the MFAF trained in Section 4.2 to predict the prospecting target
area in the study area and visualize the prediction results. Specifically, 654 128 × 128 × 10
geoimage datasets were selected as input sources. Then, we use the trained MFAF to predict
and visualize it. Figure 8 shows the visualization result. Based on the visualization, we
come to the following conclusions: (1) The predicted prospecting target area (No. 10, 19, 26,
49, 56, 58, 96, 123, and 128) covers 100% of the known deposits and ore spots in the study
area. (2) The predicted result area (No. 5, 9, 16, 28, 34, 41, 50, 72, 74, 75, 80, 97, 101, 124,
and 130) is different from the known deposit and ore spot location, and it also has good
metallogenic conditions and can be used as a deposit prediction area for further study. As
seen from Figure 8, we can find that: (1) Most of the mining areas correspond to the fault
area. This proves that faults have important influence on mineralization. (2) Most of the
predicting area are in the Triassic stratum and the rest are located between the Triassic and
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Permian strata. (3) In summary, we can conclude that MFAF can fit the distribution of the
prospecting target area in the Jinshan study area.
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4.5. Significant Criticism and Research Limitations

Although the results of intelligent deposit identification and prediction in this paper
are better than other models, the accuracy, AUC, recall, and F1-Score are relatively low.
The accuracy of ResNet18* is only 72.66, these indicators are far lower than the recognition
effect in other fields. The main reasons are as follows: (1) The small amount of original
geoscience image data. (2) The uncertainty of geological and metallogenic factors. (3) Our
research conditions are limited. In order to improve the above problems, we can use
transfer learning to research, such as using a public image database for modeling and then
transferring it. We can also enrich the geographical knowledge background and artificial
intelligence technology.

5. Conclusions

In this paper, a deep learning (MFAF) for ore deposit identification and prediction is
proposed based on the characteristics of geological data. Taking the Jinshan research area
of Qin-hang metallogenic belt in China as the research object, the geological image data
processing and ore deposit prediction are carried out. The results show that, compared
with other research methods, the optimized model MFAF in this study is more suitable



Sustainability 2023, 15, 10269 15 of 17

for intelligent identification and prediction of ore deposits in research area. Our model
has obvious advantages in accuracy, AUC value, and F1-Score, and the effect is better than
other current mainstream deep learning models. The main conclusions of this paper are
as follows:

1. The deep learning model of MFAF can effectively solve the problems of fine features of
geological images and few mineral points in the region. In this model, the expansion
coefficient and multi-scale features are used to extract more and more detailed geolog-
ical image feature information, and expansion convolution with different convolution
kernel sizes is used to generate more labeled sample data.

2. The network architecture of channel attention and spatial attention mechanism was
used to assign different weight coefficients to the geological image feature data of
different channels and different spatial locations. It can avoid the influence of human
subjective factors and improve the accuracy of intelligent identification and prediction
of ore deposits based on geoimage data.

3. The smote method was used to enhance the labeled geological image samples. This
can effectively expand the number of samples in geoscience image data set, ensure the
data sent to the neural network to achieve balance, and complete the effective training
of deep learning network model.

4. In this study, MFAF was adopted to identify and predict the deposit in Jinshan
research area. Experimental results showed that the predicted prospecting target
area covered 100% of the known deposits in the study area. The other prediction
areas have good metallogenic conditions and can be used as ore deposit prediction
areas for further study. The research of this paper can provide resource guarantee
and technical support for the sustainable exploitation of mineral resources and the
sustainable growth of society and economy.

5. Based on the limitations of our research conditions, the accuracy, AUC, recall, and
F1-Score are all relatively low. The geological conditions are uncertain and data are dif-
ficult to obtain. We can try to adopt transfer learning in the geographic image research
and enrich our geoscience and artificial intelligence knowledge in future work.
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