Research on the Spatial-Temporal Patterns of Carbon Effects and Carbon-Emission Reduction Strategies for Farmland in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Farmland Carbon Effect Assessment Method
2.2.1. Calculation of Farmland Carbon Emissions
2.2.2. Calculation of Farmland Carbon Uptake
2.3. Spatial Autocorrelation
2.4. Parameter-Comparison Method
3. Results
3.1. Temporal and Spatial Changes in Carbon Emissions from Farmland
3.2. Temporal and Spatial Changes in Carbon Uptake on Farmland
3.3. Temporal and Spatial Changes in Net Carbon Uptake in Farmland
3.4. Carbon-Emission Reduction Potential of Farmland
- Potential for carbon-emission reduction on farmland at a national level
- 2.
- Potential for carbon-emission reduction on farmland at a regional level
4. Discussion
5. Conclusions
- From 2007 to 2020, the carbon emissions from farmland in China displayed a fluctuating downwards trend, with the highest carbon emissions in 2013 at approximately 9.4665 × 108 t. The carbon-emission intensity displayed a downwards trend, from 0.35 kg/CNY in 2007 to 0.12 kg/CNY in 2020, exhibiting a “cold north and hot south” spatial pattern;
- The carbon uptake on farmland in China displayed an overall upwards trend during the study period, increasing by 27.73% compared to that in 2007. Rice, maize, and wheat were the main sources of carbon uptake, and high-carbon-uptake areas were mainly distributed in eastern China; conversely, low-carbon-uptake areas were mainly distributed in southwest China;
- Over the 14 years, net carbon uptake was the main feature of Chinese farmland and increased from 522.81 × 106 t in 2007 to 734.50 × 106 t in 2020. At the same time, there were significant differences in net carbon uptake among 31 provinces in China, with a prominent polarization phenomenon;
- China has a great potential to reduce carbon emissions from farmland, with the average carbon-emission reduction potentials from high to low in main grain sales areas, main production areas, and grain production–sales balance areas being 53.83%, 40.59%, and 37.76%, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, G.J.; Zhang, Q. Impact of global climate change on agro-ecosystem: A review. Chin. J. Appl. Ecol. 2007, 18, 1877–1885. [Google Scholar]
- Yang, H.; Wang, X.; Peng, B. Agriculture carbon-emission reduction and changing factors behind agricultural eco-efficiency growth in China. J. Clean. Prod. 2022, 334, 130193. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2022. Available online: https://www.ipcc.ch/report/ar6/wg1/#fullreport (accessed on 14 April 2023).
- Zheng, B.F.; Liang, H.; Wan, W.; Liu, Z.; Zhu, J.Q.; Wu, Z.J. Spatial-temporal pattern and influencing factors of agricultural carbon emissions at the county level in Jiangxi Province of China. Trans. CSAE 2022, 38, 70–80. [Google Scholar]
- Zeng, X.G.; Yu, C. Studies on carbon emission structure and carbon peak of agriculture and rural areas in China. China Environ. 2022; in press. [Google Scholar]
- Luo, H.L. Advances on carbon storage in crops of China. Ecol. Environ. Sci. 2014, 23, 692–697. [Google Scholar]
- Luo, H.L. Dynamic of Vegetation Carbon Storage of Farm land Ecosystem in Hilly Area of Central Sichuan Basin during the Last 55 Years–A Case of Yanting Country, Sichuan Province. J. Nat. Resour. 2009, 24, 251–258. [Google Scholar]
- Jiang, Q.O.; Deng, X.Z.; Zhan, J.Y.; Liu, X.Q. Impacts of cultivated land conversation on the vegetation carbon storage in the Huang–Huai–Hai Plain. Geogr. Res. 2008, 27, 839–847. [Google Scholar]
- Gao, Z.Q.; Liu, J.Y. A comparative study of the net productivity of vegetation in China. Chin. Sci. Bull. 2008, 53, 317–326. [Google Scholar]
- Zhao, M.Y.; Liu, Y.X.; Zhang, X.Y. A review of research advances on carbon sinks in farmland ecosystem. Acta Ecol. Sin. 2022, 42, 9405–9416. [Google Scholar]
- Dioha, M.O.; Kumar, A. Exploring greenhouse gas mitigation strategies for agriculture in Africa: The case of Nigeria. AMBIO J. Hum. Environ. 2020, 49, 1549–1566. [Google Scholar] [CrossRef]
- Hemingway, C.; Vigne, M.; Aubron, C. Agricultural greenhouse gas emissions of an Indian village—Who’s to blame: Crops or livestock? Sci. Total Environ. 2023, 856, 159145. [Google Scholar] [CrossRef]
- Li, M.Q.; Liu, S.L.; Sun, Y.X.; Liu, Y.X. Agriculture and animal husbandry increased carbon footprint on the Qinghai-Tibet Plateau during past three decades. J. Clean. Prod. 2021, 278, 123963. [Google Scholar] [CrossRef]
- Dyer, J.A.; Desjardins, R.L. Energy based GHG emissions from Canadian agriculture. J. Energy Inst. 2007, 80, 93–95. [Google Scholar] [CrossRef]
- Yan, M.; Luo, T.; Bian, R.; Cheng, K.; Pan, G.; Rees, R. A comparative study on carbon footprint of rice production between household and aggregated farms from Jiangxi, China. Environ. Monit. Assess. 2015, 187, 332.1–332.11. [Google Scholar] [CrossRef]
- Platis, D.P.; Anagnostopoulos, C.D.; Tsaboula, A.D.; Menexes, G.C.; Kalburtji, K.L.; Mamolos, A.P. Energy Analysis, and Carbon and Water Footprint for Environmentally Friendly Farming Practices in Agroecosystems and Agroforestry. Sustainability 2019, 11, 1664. [Google Scholar] [CrossRef] [Green Version]
- Haider, A.; Bashir, A.; Husnain, M. Impact of agricultural land use and economic growth on nitrous oxide emissions: Evidence from developed and developing countries. Sci. Total Environ. 2020, 741, 140421. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.N.; Iqbal, J.; Tanveer, M.; Yang, G.Z.; Hassan, W.; Fahad, S.; Yousaf, M.; Wu, Y.Y. Nitrogen fertilization and conservation tillage: A review on growth, yield, and greenhouse gas emissions in cotton. Environ. Sci. Pollut. Res. 2016, 24, 2261–2272. [Google Scholar] [CrossRef]
- Li, M.; Li, H.; Fu, Q.; Liu, D.; Yu, L.; Li, T. Approach for optimizing the water-land-food-energy nexus in agroforestry. Agric. Syst. 2021, 192, 103201. [Google Scholar] [CrossRef]
- Winiwarter, W.; Leip, A.; Tuomisto, H.L.; Haastrup, P. A European perspective of innovations towards mitigation of nitrogen-related greenhouse gases. Curr. Opin. Environ. Sustain. 2014, 9–10, 37–45. [Google Scholar] [CrossRef]
- Hu, N.J.; Shi, H.; Zhu, L.Q. Effect of different straw returning modes on carbon footprint in a rice-wheat rotation system. Resour. Environ. Yangtze Basin 2018, 27, 2775–2783. [Google Scholar]
- Ismael, M.; Srouji, F.; Boutabba, M.A. Agricultural technologies and carbon emissions: Evidence from Jordanian economy. Environ. Sci. Pollut. Res. 2018, 25, 10867–10877. [Google Scholar] [CrossRef]
- Adennaeuer, L.; Breen, J.; Witzke, P.; Kesting, M.; Hayden, A.; Donnellan, T. The potential impacts of an EU-wide agricultural mitigation target on the Irish agriculture sector. Clim. Policy 2023, 23, 495–508. [Google Scholar] [CrossRef]
- Huang, J.; Sun, Z.; Zhong, P. The Spatial Disequilibrium and Dynamic Evolution of the Net Agriculture Carbon Effect in China. Sustainability 2022, 14, 13975. [Google Scholar] [CrossRef]
- Lin, C.C.; He, R.X.; Liu, W.Y. Considering Multiple Factors to Forecast CO2 Emissions: A Hybrid Multivariable Grey Forecasting and Genetic Programming Approach. Energies 2018, 11, 3432. [Google Scholar] [CrossRef] [Green Version]
- Rehman, E.; Ikram, M.; Rehman, S.; Feng, M.T. Growing green? Sectoral-based prediction of GHG emission in Pakistan: A novel NDGM and doubling time model approach. Environ. Dev. Sustain. 2021, 8, 23. [Google Scholar] [CrossRef]
- Abbas, N.A.; Hamrani, A.; Madramootoo, C.A.; Zhang, T.Q.; Tan, C.S.; Goyal, M.K. Modelling carbon dioxide emissions under a maize-soy rotation using machine learning. Biosyst. Eng. 2021, 212, 1–18. [Google Scholar] [CrossRef]
- Kolasa-Wiecek, A. Neural Modeling of Geenhouse Gas Emission from Agriculture Sector in European Union Member Countries. Water Air Soil Pollut. 2018, 229, 205.1–205.12. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.P. Analysis of influencing factors and peak forecast of non-CO2 greenhouse gas emissions from provincial agricultural sources in China. Acta Sci. Circumstantiae 2021, 41, 5174–5189. [Google Scholar]
- Yang, F.; Han, Y.H.; Wei, X.; Bi, H.T.; Wang, X.Y. Estimation of Agricultural Greenhouse Gas Emissions and Emission Reduction Potential of Beijing During the “14th Five-Year Plan” Period Under the Background of “Carbon Peak and Neutrality”. Environ. Sci. 2022; in press. [Google Scholar]
- Cai, Y.R.; Wang, L.G. Carbon sequestration and greenhouse gas mitigation paths and modes in a typical agroecosystem in northern China. Chin. J. Eco-Agric. 2022, 30, 641–650. [Google Scholar]
- Blace, A.; Cuka, A.; Siljkovic, Z. How dynamic is organic? Spatial analysis of adopting new trends in Croatian agriculture. Land Use Policy 2020, 99, 105036. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. No-till technology has limited potential to store carbon: How can we enhance such potential? How dynamic is organic? Agric. Ecosyst. Environ. 2021, 313, 107352. [Google Scholar] [CrossRef]
- Singh, H.; Northup, B.K.; Baath, G.S.; Gowda, P.P.; Kakani, V.G. Greenhouse mitigation strategies for agronomic and grazing lands of the US Southern Great Plains. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 819–853. [Google Scholar] [CrossRef]
- Ntiamoah, E.B.; Appiah-Otoo, I.; Li, D.; Twumasi, M.A.; Yeboah, E.N.; Chandio, A.A. Estimating and mitigating greenhouse gas emissions from agriculture in West Africa: Does threshold matter? Environ. Dev. Sustain. 2023; in press. [Google Scholar] [CrossRef]
- Chen, M.P.; Chen, Y.R.; Jiang, S.; Forsell, N. Toward carbon neutrality before 2060: Trajectory and technical mitigation potential of non-CO2 greenhouse gas emissions from Chinese agriculture. J. Clean. Prod. 2022, 368, 133186. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Wang, J.L. Spatial-temporal pattern and trend analysis of carbon emission from farmland ecosystem. J. China Agric. Univ. 2023, 28, 89–101. [Google Scholar]
- IPCC. Climate Change 2021: Change 2013-The Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2014. Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 14 April 2023).
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Wu, F.L.; Li, L.; Zhang, H.L.; Chen, F. Effects of conservation tillage on net carbon flux from farmland ecosystems. Chin. J. Ecol. 2007, 26, 2035–2039. [Google Scholar]
- Chen, X.; Shuai, C.; Wu, Y.; Zhang, Y. Analysis on the carbon emission peaks of China’s industrial, building, transport, and agricultural sectors. Sci. Total Environ. 2020, 709, 135768. [Google Scholar] [CrossRef]
- Zhang, L.; Pang, J.; Chen, X.; Lu, Z. Carbon emissions, energy consumption and economic growth: Evidence from the agricultural sector of China’s main grain-producing areas. Sci. Total Environ. 2019, 665, 10–1025. [Google Scholar] [CrossRef]
- Wang, G.F.; Liao, M.L.; Jiang, J. Research on Agricultural Carbon Emissions and Regional Carbon Emissions Reduction Strategies in China. Sustainability 2020, 12, 2627. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.C.; Zha, L.S. Research on dynamic change of vegetation carbon storage of crops in the Wan Jiang city belt. Resour. Environ. Yangtze Basin 2012, 21, 1507–1513. [Google Scholar]
- Weng, L.Y.; Zhu, Z.Y.; Han, X.G.; Tan, J.Z. Spatial-temporal pattern of net carbon sink of farmland vegetation in Jiangsu Province. Trans. CSAE 2018, 34, 233–241. [Google Scholar]
- Cheng, Y.Q.; Wang, Z.Y.; Ye, X.Y.; Wei, Y.H. Spatiotemporal dynamics of carbon intensity from energy consumption in China. J. Geogr. Sci. 2014, 24, 631–650. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.X.; He, A.Z.; Zhao, J. Regional disparity and dynamic evolution of carbon emission reduction maturity in China’s service industry. J. Clean. Prod. 2020, 244, 118926. [Google Scholar] [CrossRef]
- Zhang, J.W.; Zhang, J.H.; Wu, F.W. Analysis of carbon emissions from grain production and the pathways to reduce them in China. Stat. Decis. 2018, 34, 168–172. [Google Scholar]
- Wang, L.F.; Duan, W.J.; Lai, M.Y.; Liu, L.J. Study on the regional differences and industry differences of energy-saving potentiality in China’s manufacturing industry. Geogr. Res. 2015, 34, 109–121. [Google Scholar]
- Zhang, G.; Wang, X.K.; Zhang, L.; Xiong, K.N.; Zheng, C.Y.; Lu, F.; Zhao, H.; Zheng, H.; Ouyang, Z.Y. Carbon and water footprints of major cereal crops production in China. J. Clean. Prod. 2018, 194, 613–623. [Google Scholar] [CrossRef]
- Pang, J.X.; Li, H.J.; Lu, C.P.; Lu, C.Y.; Chen, X.P. Regional differences and dynamic evolution of carbon emission intensity of agriculture production in China. Int. J. Environ. Res. Publ. Health 2020, 17, 7541. [Google Scholar] [CrossRef]
- Wang, W.; Guo, L.P.; Li, Y.C.; Su, M.; Lin, Y.B.; Christian, D.P.; Ju, X.T.; Lin, E.D.; Dominic, M. Greenhouse gas intensity of three main crops and implications for low-carbon agriculture in China. Clim. Chang. 2015, 128, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.D.; Xu, C.C.; Li, Y.C.; Ji, L.; Feng, J.F.; Li, F.B.; Zhou, X.Y.; Fang, F.P. Effects of multi-cropping system on temporal and spatial distribution of carbon and nitrogen footprint of major crops in China. Glob. Ecol. Conserv. 2019, 22, e00895. [Google Scholar] [CrossRef]
- Liu, W.W.; Zhang, G.; Wang, X.K.; Lu, F.; Ouyang, Z.Y. Carbon footprint of main crop production in China: Magnitude, spatial-temporal pattern and attribution. Sci. Total Environ. 2018, 654, 1296–1308. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.Y.; Xue, L.; Xue, Y. Spatial-temporal Characteristics of China’s Agricultural Net Carbon Sink. J. Nat. Resour. 2016, 31, 596–607. [Google Scholar]
- Tian, Y.; Zhang, J.B. Spatial-temporal Regional Differentiation Research on Net Carbon Effect of Agricultural Production in China. J. Nat. Resour. 2013, 28, 1298–1309. [Google Scholar]
- Cui, Y.; Khan, S.U.; Sauer, J.; Zhao, M.J. Exploring the spatiotemporal heterogeneity and influencing factors of agricultural carbon footprint and carbon footprint intensity: Embodying carbon sink effect. Sci. Total Environ. 2022, 846, 157507. [Google Scholar] [CrossRef]
- Tian, P.P.; Li, D.; Lu, H.W.; Feng, S.S.; Nie, Q.W. Trends, distribution, and impact factors of carbon footprints of main grains production in China. J. Clean. Prod. 2021, 278, 123347. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.C.; Shui, W.; Kang, Y.H. Research on carbon footprint of agricultural ecosystem in southwest China based on EKC model. J. Agrotech. Econ. 2013, 2, 120–128. [Google Scholar]
Carbon-Emission Pathway | Carbon-Emission Coefficient | Reference Sources |
---|---|---|
Phosphate fertilizer | 0.200 g/g | [37] |
Potash fertilizer | 0.150 g/g | [37] |
Diesel | 0.597 g/g | [38] |
Irrigation | 266.480 kg/hm2 | [39] |
Ploughing | 3.126 kg/hm2 | [40] |
Agricultural film | 5.180 g/g | [41] |
Pesticide | 4.934 g/g | [42,43] |
Crop Type | Nitrogen Content in Straw | Economic Coefficient | Root-to-Crown Ratio | Carbon Absorption Rate | Moisture Content |
---|---|---|---|---|---|
Rice | 0.00753 | 0.489 | 0.125 | 0.414 | 0.12 |
Wheat | 0.00516 | 0.434 | 0.166 | 0.485 | 0.12 |
Maize | 0.00580 | 0.438 | 0.170 | 0.471 | 0.13 |
Bean | 0.02005 | 0.405 | 0.130 | 0.450 | 0.13 |
Potato | 0.01100 | 0.667 | 0.050 | 0.423 | 0.70 |
Cotton | 0.00548 | 0.383 | 0.200 | 0.450 | 0.08 |
Rapeseed | 0.00548 | 0.271 | 0.150 | 0.450 | 0.10 |
Peanut | 0.01820 | 0.556 | 0.200 | 0.450 | 0.10 |
Sesame | 0.01310 | 0.417 | 0.200 | 0.450 | 0.15 |
Hemp | 0.01310 | 0.830 | 0.200 | 0.450 | 0.15 |
Sugarcane | 0.83000 | 0.750 | 0.260 | 0.450 | 0.50 |
Beet | 0.00507 | 0.667 | 0.050 | 0.407 | 0.75 |
Tobacco | 0.01440 | 0.830 | 0.200 | 0.450 | 0.85 |
Parameter | 2007 | 2010 | 2015 | 2020 |
---|---|---|---|---|
I | 0.146081 | 0.181396 | 0.149956 | 0.125180 |
Z | 2.778227 | 3.310540 | 3.215307 | 2.887993 |
P | 0.005466 | 0.000931 | 0.001303 | 0.003877 |
Classification | Scope | Region | Amount |
---|---|---|---|
Low reduction potential | ≤20% | Beijing (0%), Shaanxi (16.27%), Qinghai (11.86%) | 3 |
Medium reduction potential | 20~50% | Tianjin (34.36%), Hebei (33.60%), Shanxi (30.39%), Inner Mongolia (45.72%), Liaoning (46.67%), Shandong (20.33%), Henan (30.34%), Chongqing (48.60%), Sichuan (43.03%), Tibet (30.34%), Gansu (33.26%), Xinjiang (41.32%) | 12 |
High reduction potential | 50~70% | Jilin (64.95%), Heilongjiang (63.41%), Shanghai (56.61%), Jiangsu (55.49%), Zhejiang (59.85%), Anhui (69.90%), Fujian (58.09%), Hubei (61.75%), Hunan (69.72%), Guizhou (51.12%), Ningxia (51.05%) | 11 |
Highest reduction potential | ≥70% | Jiangxi (79.75%), Guangdong (82.75%), Guangxi (96.37%), Hainan (85.20%), Yunnan (85.96%) | 5 |
Main Grain Production Area | Grain Production–Sales Area | Main Grain Sales Area | |||
---|---|---|---|---|---|
Region | Reduction Potential | Region | Reduction Potential | Region | Reduction Potential |
Heilongjiang | 54.07% | Shanxi | 21.02% | Beijing | 0.00% |
Jilin | 56.01% | Ningxia | 44.46% | Tianjin | 34.36% |
Inner Mongolia | 31.87% | Qinghai | 0.00% | Shanghai | 56.61% |
Henan | 12.57% | Gansu | 24.27% | Zhejiang | 59.85% |
Jiangxi | 74.59% | Tibet | 20.96% | Fujian | 58.09% |
Anhui | 62.22% | Yunnan | 84.07% | Guangdong | 82.75% |
Hebei | 16.65% | Guizhou | 44.54% | Hainan | 85.20% |
Liaoning | 33.07% | Chongqing | 41.68% | ||
Hubei | 51.99% | Guangxi | 95.88% | ||
Hunan | 62.00% | Shaanxi | 5.00% | ||
Jiangsu | 44.14% | Xinjiang | 33.42% | ||
Shandong | 0.00% | ||||
Sichuan | 28.50% | ||||
Average | 40.59% | Average | 37.76% | Average | 53.83% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yang, J.; Duan, C. Research on the Spatial-Temporal Patterns of Carbon Effects and Carbon-Emission Reduction Strategies for Farmland in China. Sustainability 2023, 15, 10314. https://doi.org/10.3390/su151310314
Wang Y, Yang J, Duan C. Research on the Spatial-Temporal Patterns of Carbon Effects and Carbon-Emission Reduction Strategies for Farmland in China. Sustainability. 2023; 15(13):10314. https://doi.org/10.3390/su151310314
Chicago/Turabian StyleWang, Ying, Juan Yang, and Caiquan Duan. 2023. "Research on the Spatial-Temporal Patterns of Carbon Effects and Carbon-Emission Reduction Strategies for Farmland in China" Sustainability 15, no. 13: 10314. https://doi.org/10.3390/su151310314
APA StyleWang, Y., Yang, J., & Duan, C. (2023). Research on the Spatial-Temporal Patterns of Carbon Effects and Carbon-Emission Reduction Strategies for Farmland in China. Sustainability, 15(13), 10314. https://doi.org/10.3390/su151310314