Effects of Rhizophagus intraradices and Acinetobacter calcoaceticus on Soybean Growth and Carbendazim Residue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soybean Variety
2.2. AMF Inocula and Phosphorous-Solubilizing Inocula
2.3. Pesticides
2.4. Experimental Design
2.5. Sample Collection
2.6. Determination of the AMF Infection Rate and AMF Spore Density in the Rhizosphere Soil of Soybean
2.7. Determination of the Incidence of Soybean Root Rot
2.8. Determination of Nodule Number in Soybean Plants
2.9. Analysis of Soybean Growth
2.10. Determination of Total Bacterial Colonies and Phosphorus-Solubilizing Bacterial Colonies in Soybean Rhizosphere Soil
2.11. Determination of Carbendazim Residue in Soybean Grains and Rhizosphere Soil
2.12. Statistical Analysis
3. Results
3.1. Effects of Different Treatments on the AMF Infection Rate and AMF Spore Density
3.2. Effects of Different Treatments on the Incidence of Soybean Root Rot
3.3. Effects of Different Treatments on Nodule Numbers
3.4. Effects of Different Treatments on Soybean Plant Growth
3.5. Effects of Different Treatments on the Total Number of Culturable Bacterial Colonies and Phosphorus-Solubilizing Bacterial Colonies in Soybean Rhizosphere Soil
3.5.1. Effects of Different Treatments on the Total Number of Culturable Bacterial Colonies in Rhizosphere Soil of Soybean
3.5.2. Effects of Different Treatments on the Total Number of Culturable Phosphorus-Solubilizing Bacteria Colonies in the Rhizosphere Soil of Soybean
3.6. Effects of Different Treatments on Carbendazim Residue in Soybean Grains and Rhizosphere Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rizzo, G.; Baroni, L. Soy, soy foods and their role in vegetarian diets. Nutrients 2018, 10, 43. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, C.; Gleddie, S.; Xiao, C.W. Soybean bioactive peptides and their functional properties. Nutrients 2018, 10, 1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Li, X.M.; Liu, C.L.; Liu, L.; Li, Y.G. First report of fusarium brachygibbosum causing root rot on soybean in Northeastern China. Plant Dis. 2021, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Detranaltes, C.; Cai, G. First report of mycolep to discus terrestris causing root rot of soybean in Indiana. Plant Dis. 2020, 51, 1235. [Google Scholar]
- Jie, W.G.; Yu, W.J.; Cai, B.Y. Research on the relationship between Funneliformis mosseae and the root rot pathogen Fusarium oxysporum in the continuous cropping of soybean. Soybean Sci. 2016, 35, 637–642. [Google Scholar]
- Yang, Y.T.; Zhang, S.F.; Yang, J.Y.; Bai, C.; Tang, S.H.; Ye, Q.F.; Wang, H.Y. Superabsorbent hydrogels coating increased degradation and decreased bound residues formation of carbendazim in soil. Sci. Total Environ. 2018, 630, 1133–1142. [Google Scholar] [CrossRef]
- Ding, H.Z.; Zhang, X.Z.; Zhang, J.; Yu, Y.S.; Chen, J.H. Influence of chlorothalonil and carbendazim fungicides on the transformation processes of urea nitrogen and related microbial populations in soil. Environ. Sci. Pollut. Res. 2019, 26, 31133–31141. [Google Scholar] [CrossRef]
- Kumawat, K.C.; Razdan, N.; Saharan, K. Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiol. Res. 2022, 254, 126901. [Google Scholar] [CrossRef]
- Munir, N.; Hanif, M.; Abideen, Z. Mechanisms and strategies of plant microbiome interactions to mitigate abiotic stresses. Agronomy 2022, 12, 2069. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, W.W.; Qi, S.S.; Cheng, H.; Li, Q.; Ran, Q.; Dai, Z.C.; Du, D.L.; Egan, S.; Thomas, T. Arbuscular mycorrhizal fungi improve the growth and disease resistance of the invasive plant Wedelia trilobata. J. Appl. Microbiol. 2021, 130, 582–591. [Google Scholar] [CrossRef]
- Mei, L.; Yang, X.; Cao, H.; Zhang, T.; Guo, J. Arbuscular mycorrhizal fungi alter plant and soil C: N: P stoichiometries under warming and nitrogen input in a semiarid meadow of China. Int. J. Environ. Res. Public Health 2019, 16, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sistani, N.R.; Desalegn, G.; Kaul, H.P.; Wienkoop, S. Seed metabolism and pathogen resistance enhancement in Pisum sativum during colonization of arbuscular mycorrhizal fungi: An integrative metabolomics-proteomics approach. Front. Plant Sci. 2020, 11, 872. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.Q.; Sun, H.B.; Sun, M.B.; Liang, R.T.; Jie, W.G.; Cai, B.Y. Effects of Funneliformis mosseae on root metabolites and rhizosphere soil properties to continuously-cropped soybean in the potted-experiments. Int. J. Mol. Sci. 2018, 19, 2160. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.G.; Liu, M.H.; Li, Y.; Che, Y.Y.; Xiao, Y. Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Sci. Total Environ. 2019, 655, 1150–1158. [Google Scholar] [CrossRef]
- Jiang, H.; Tian, Y.Q.; Chen, J.J.; Zhang, Z.X.; Xu, H.H. Enhanced uptake of drip-applied flonicamid by arbuscular mycorrhizal fungi and improved control of cotton aphid. Pest Manag. Sci. 2020, 76, 4222–4230. [Google Scholar] [CrossRef]
- Pandit, A.; Adholeya, A.; Cahill, D.; Brau, L.; Kochar, M. Microbial biofilms in nature: Unlocking their potential for agricultural applications. J. Appl. Microbiol. 2020, 129, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, H.; Fraga, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 1999, 17, 319–339. [Google Scholar] [CrossRef]
- Adnane, B.; Elhaissoufi, W.; Said, K.; Benmrid, B.; Rchiad, Z. Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus. Microbiol. Res. 2021, 252, 126842. [Google Scholar]
- Long, Z.N.; Wang, X.G.; Wang, Y.J.; Dai, H.; Fang, H. Characterization of a novel carbendazim-degrading strain Rhodococcus sp. CX-1 revealed by genome and transcriptome analyses. Sci. Total Environ. 2021, 754, 142137. [Google Scholar] [CrossRef] [PubMed]
- Jie, W.G.; Yao, Y.X.; Guo, N.; Zhang, Y.Z.; Qiao, W. Effects of Rhizophagus intraradices on plant growth and the composition of microbial communities in the roots of continuous cropping soybean at maturity. Sustainability 2021, 13, 6623. [Google Scholar] [CrossRef]
- Alvarado-Gutiérrez, M.L.; Ruiz-Ordaz, N.; Galíndez-Mayer, J. Degradation kinetics of carbendazim by Klebsiella oxytoca, Flavobacterium johnsoniae, and Stenotrophomonas maltophilia strains. Environ. Sci. Pollut. Res. 2020, 27, 28518–28526. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Liu, P.; Wang, Z.Y.; Xu, G.D. The effects of rapeseed root exudates on the forms of aluminum in aluminum stressed rhizosphere soil. Crop Prot. 2011, 30, 631–636. [Google Scholar] [CrossRef]
- Nacoon, S.; Jogloy, S.; Riddech, N.; Mongkolthanaruk, W.; Ekprasert, J. Combination of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria on growth and production of Helianthus tuberosus under field condition. Sci. Rep. 2021, 11, 6501. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y. Interaction Between root exudates of the Poisonous Plant Stellera chamaejasme L. and arbuscular mycorrhizal fungi on the growth of Leymus chinensis (Trin.) Tzvel. Microorganisms 2020, 8, 364. [Google Scholar]
- Wen, Z.L.; Yang, M.K.; Han, H.W.; Fazal, A.; Liao, Y.H.; Ren, R.; Yin, T.M.; Qi, J.L.; Sun, S.C.; Lu, G.H.; et al. Mycorrhizae enhance soybean plant growth and aluminum stress tolerance by shaping the microbiome assembly in an acidic soil. Microbiol. Spectr. 2023, 11, e0331022. [Google Scholar] [CrossRef]
- Salihu, B.O.; Ajayi, I.A.; Adedara, E.O. 6-Gingerol-rich fraction prevents disruption of histomorphometry and marker enzymes of testicular function in carbendazim-treated rats. Andrologia 2017, 49, e12782. [Google Scholar] [CrossRef]
- Jie, W.G.; Yang, D.Y.; Yao, Y.X.; Guo, N. Effects of Rhizophagus intraradices on soybean yield and the composition of microbial communities in the rhizosphere soil of continuous cropping soybean. Sci. Rep. 2022, 12, 17390. [Google Scholar] [CrossRef]
- Spagnoletti, F.N.; Leiva, M.; Chiocchio, V.; Lavado, R.S. Phosphorus fertilization reduces the severity of charcoal rot (Macrophomina phaseolina) and the arbuscular mycorrhizal protection in soybean. J. Plant Nutr. Soil Sci. 2018, 181, 855–860. [Google Scholar] [CrossRef]
- Ku, Y.L.; Xu, G.Y.; Tian, X.H.; Xie, H.Q.; Yang, X.N.; Cao, C.L. Root colonization and growth promotion of soybean, wheat and Chinese cabbage by Bacillus cereus YL6. PLoS ONE 2018, 13, e0200181. [Google Scholar]
- Abbasi, M.K.; Manzoor, M. Biosolubilization of phosphorus from rock phosphate and other P fertilizers in response to phosphate solubilizing bacteria and poultry manure in a silt loam calcareous soil. J. Plant Nutr. Soil Sci. 2018, 181, 345–356. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.R.; Glick, B.R. Contribution of arbuscular mycorrhizal fungi, phosphate-solubilizing bacteria, and silicon to P Uptake by plant. Front. Plant Sci. 2021, 12, 699618. [Google Scholar] [CrossRef]
- Sharma, S.; Compant, S.; Ballhausen, M.B.; Ruppel, S.; Franken, P. The interaction between Rhizoglomus irregulare and hyphae attached phosphate solubilizing bacteria increases plant biomass of Solanum lycopersicum. Microbiol. Res. 2020, 240, 126556. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, M.G.; Liu, Y.; Zhang, F.S.; Hodge, A.; Feng, G. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol. 2016, 210, 1022–1032. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Shi, N.; Jiang, R.F.; Zhang, F.S.; Feng, G. In situ stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere. J. Exp. Bot. 2016, 67, 1689–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, G.L.; Gao, X.X.; Nan, J.; Zhang, T.; Xie, X.; Cai, Q. Fungicides alter the distribution and diversity of bacterial and fungal communities in ginseng fields. Bioengineered 2021, 12, 8043–8056. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.G.; Song, M.; Wang, Y.Q.; Gao, C.; Zhang, Q.; Chu, X.; Fang, H.; Yu, Y. Response of soil bacterial community to repeated applications of carbendazim. Ecotoxicol. Environ. Saf. 2012, 75, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Guo, Y.E.; Christensen, M.J.; Gao, P.; Li, Y.Z.; Duan, T.Y. An arbuscular mycorrhizal fungus and Epichloë festucae var. lolii reduce Bipolaris sorokiniana disease incidence and improve perennial ryegrass growth. Mycorrhiza 2018, 28, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Berdeni, D.; Cotton, T.E.A.; Daniell, T.J.; Bidartondo, M.I.; Cameron, D.D.; Evans, K.L. The effects of arbuscular mycorrhizal fungal colonisation on nutrient status, growth, productivity, and canker resistance of apple (Malus pumila). Front. Microbiol. 2018, 9, 1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.L.; Zhang, S.Z.; Shan, X.Q.; Chen, B.D.; Zhu, Y.G.; Bell, J.N.B. Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil. Environ. Pollut. 2007, 146, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Gong, A.D.; Wang, G.Z.; Song, M.; Yang, P. Dual activity of Serratia marcescens Pt-3 in phosphate-solubilizing and production of antifungal volatiles. BMC Microbiol. 2022, 22, 26. [Google Scholar] [CrossRef]
- Gu, Y.L.; Wang, J.; Xia, Z.Y.; Wei, H.L. Characterization of a versatile plant growth-promoting rhizobacterium Pseudomonas mediterranea strain S58. Microorganisms 2020, 8, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatments | AMF Infection Rate (%) | AMF Spore Density Per Gram of Soil | Incidence of Soybean Root Rot (%) | Number of Rhizosphere Nodules per Plant |
---|---|---|---|---|
NCK | 0.49 ± 0.04 e | 1.20 ± 0.09 e | 0.70 ± 0.02 a | 64.00 ± 6.24 d |
NR | 0.93 ± 0.02 b | 3.40 ± 0.07 c | 0.27 ± 0.05 d | 86.00 ± 6.24 c |
NA | 0.65 ± 0.02 d | 2.14 ± 0.14 d | 0.33 ± 0.05 cd | 72.00 ± 8.73 cd |
NRA | 0.95 ± 0.01 a | 4.28 ± 0.16 a | 0.07 ± 0.01 e | 175.00 ± 6.34 a |
NDCK | 0.43 ± 0.04 f | 0.62 ± 0.14 f | 0.47 ± 0.05 b | 42.00 ± 6.16 e |
NDR | 0.81 ± 0.01 c | 1.32 ± 0.06 e | 0.27 ± 0.05 d | 64.00 ± 7.13 d |
NDA | 0.52 ± 0.03 e | 1.02 ± 0.04 e | 0.33 ± 0.06 cd | 61.00 ± 5.73 d |
NDRA | 0.85 ± 0.02 bc | 2.44 ± 0.13 cd | 0.13 ± 0.01 e | 124.00 ± 4.49 b |
MR | 0.87 ± 0.04 bc | 2.28 ± 0.10 d | - | - |
MRA | 0.89 ± 0.03 ab | 3.70 ± 0.19 b | - | - |
MDR | 0.81 ± 0.03 c | 0.60 ± 0.08 f | - | - |
MDRA | 0.84 ± 0.03 bc | 1.28 ± 0.17 e | - | - |
Treatments | Plant Height (cm) | Stem Diameter (mm) | Root Length (cm) | Fresh Weight (g) | Dry Weight (g) | Pod Number Per Plant | 100-Grain Weight (g) | Root/Shoot Ratio (%) |
---|---|---|---|---|---|---|---|---|
NCK | 56.94 ± 4.08 de | 7.25 ± 0.30 bcde | 15.24 ± 0.37 h | 62.55 ± 1.17 g | 24.04 ± 0.59 fgh | 23 ± 1.63 cd | 20.09 ± 0.24 fgh | 6.33 ± 0.30 defg |
NR | 61.16 ± 2.09 bcd | 7.75 ± 0.26 abc | 19.07 ± 0.59 cde | 76.66 ± 0.83 b | 31.45 ± 1.18 b | 28 ± 2.82 ab | 24.18 ± 0.38 b | 6.07 ± 0.13 fg |
NA | 58.66 ± 3.08 cde | 7.73 ± 0.22 abc | 18.71 ± 0.20 cde | 75.87 ± 0.63 b | 29.91 ± 1.50 bc | 26 ± 1.63 bc | 22.71 ± 0.57 cd | 6.21 ± 0.05 efg |
NRA | 68.02 ± 1.32 a | 8.04 ± 0.14 a | 25.66 ± 0.60 a | 85.39 ± 0.97 a | 34.74 ± 0.34 a | 32 ± 1.24 a | 26.23 ± 0.83 a | 5.88 ± 0.22 gh |
NDCK | 56.79 ± 1.10 de | 7.14 ± 0.28 cde | 13.15 ± 0.43 i | 56.95 ± 1.02 h | 22.19 ± 1.55 hi | 22 ± 1.41 cd | 18.34 ± 0.26 ij | 6.89 ± 0.07 bcd |
NDR | 59.35 ± 2.39 cde | 7.58 ± 0.22 abcd | 18.12 ± 0.59 defg | 69.97 ± 0.65 d | 28.39 ± 0.77 cd | 24 ± 1.41 bcd | 21.14 ± 0.27 ef | 6.26 ± 0.19 bcde |
NDA | 59.82 ± 1.95 cde | 7.46 ± 0.25 abcde | 17.77 ± 0.67 dfg | 67.25 ± 1.48 ef | 26.83 ± 0.95 de | 25 ± 2.16 bc | 20.08 ± 0.29 fgh | 6.57 ± 0.30 cdef |
NDRA | 63.72 ± 0.98 abc | 7.87 ± 0.18 ab | 22.87 ± 0.62 b | 77.75 ± 0.69 b | 31.21 ± 1.04 b | 28 ± 2.16 ab | 22.99 ± 0.15 bcd | 6.26 ± 0.19 defg |
MCK | 57.26 ± 3.23 de | 7.01 ± 0.35 de | 12.94 ± 0.33 i | 56.60 ± 1.07 h | 20.88 ± 1.15 ij | 22 ± 1.41 cd | 17.02 ± 0.85 j | 7.21 ± 0.32 bc |
MR | 60.36 ± 3.35 cd | 7.65 ± 0.20 abcd | 18.33 ± 0.57 def | 67.46 ± 0.91 de | 25.21 ± 0.82 efg | 25 ± 2.16 bc | 20.63 ± 0.79 efg | 6.63 ± 0.34 cdef |
MA | 58.46 ± 3.13 cde | 7.53 ± 0.23 abcde | 17.64 ± 0.69 fg | 64.71 ± 1.48 fg | 23.94 ± 1.43 fgh | 23 ± 1.63 cd | 19.27 ± 0.75 ghi | 7.33 ± 0.27 b |
MRA | 66.79 ± 1.77 ab | 7.65 ± 0.20 abcd | 19.87 ± 0.83 c | 72.61 ± 1.73 c | 29.73 ± 0.98 bc | 26 ± 1.63 bc | 23.54 ± 0.94 bc | 5.41 ± 0.09 h |
MDCK | 53.90 ± 1.45 e | 6.90 ± 0.28 e | 12.69 ± 0.45 i | 49.13 ± 0.44 i | 18.67 ± 1.11 j | 20 ± 1.41 d | 15.52 ± 0.26 k | 7.98 ± 0.58 a |
MDR | 56.19 ± 3.23 de | 7.22 ± 0.28 bcde | 17.11 ± 0.45 fg | 58.28 ± 0.86 h | 23.09 ± 0.53 ghi | 23 ± 0.81 cd | 19.01 ± 0.60 hi | 6.64 ± 0.12 cdef |
MDA | 57.92 ± 3.53 cde | 7.08 ± 0.22 de | 16.27 ± 0.44 g | 56.04 ± 0.71 h | 21.70 ± 1.45 hi | 24 ± 2.16 bcd | 17.85 ± 0.53 ij | 6.55 ± 0.27 def |
MDRA | 64.08 ± 1.62 abc | 7.36 ± 0.38 bcde | 19.21 ± 0.49 cd | 63.94 ± 0.91 g | 26.31 ± 0.84 def | 25 ± 1.41 bc | 21.77 ± 0.43 de | 6.55 ± 0.17 def |
Treatments | Total Number of Bacterial Colonies (CFU/g) | Total Number of Soluble Organic Phosphorus Bacteria Colonies (CFU/g) | Percentage of Soluble Organic Phosphorus Bacteria (%) | Total Number of Soluble Inorganic Phosphorus Bacteria Colonies (CFU/g) | Percentage of Soluble Inorganic Phosphorus Bacteria (%) |
---|---|---|---|---|---|
NCK | (1.14 ± 0.16) × 106 d | (5.46 ± 0.16) × 104 ef | 5% | (3.33 ± 0.16) × 104 f | 3% |
NR | (1.56 ± 0.22) × 106 b | (7.50 ± 0.13) × 104 de | 5% | (4.40 ± 0.13) × 104 e | 3% |
NA | (1.36 ± 0.16) × 106 c | (2.34 ± 0.18) × 105 b | 17% | (7.26 ± 0.21) × 104 b | 5% |
NRA | (1.90 ± 0.16) × 106 a | (5.34 ± 0.18) × 105 a | 28% | (8.83 ± 0.13) × 104 a | 5% |
NDCK | (3.51 ± 0.12) × 105 h | (3.42 ± 0.14) × 104 h | 10% | (1.85 ± 0.11) × 104 h | 5% |
NDR | (5.97 ± 0.16) × 105 f | (5.19 ± 0.20) × 104 gh | 9% | (2.87 ± 0.15) × 104 g | 5% |
NDA | (5.20 ± 0.14) × 105 g | (8.77 ± 0.15) × 104 e | 17% | (5.32 ± 0.18) × 104 d | 10% |
NDRA | (7.15 ± 0.16) × 105 e | (2.03 ± 0.18) × 105 c | 28% | (6.34 ± 0.17) × 104 c | 9% |
Treatments | Carbendazim Residue in Soybean Grains (μg/mL) | Carbendazim Residue in Rhizosphere Soil (μg/mL) |
---|---|---|
NCK | 0.00 ± 0.00 i | 0.00 ± 0.00 i |
NR | 0.00 ± 0.00 i | 0.00 ± 0.00 i |
NA | 0.00 ± 0.00 i | 0.00 ± 0.00 i |
NRA | 0.00 ± 0.00 i | 0.00 ± 0.00 i |
NDCK | 11.39 ± 0.32 b | 6.77 ± 0.01 b |
NDR | 3.27 ± 0.08 g | 1.38 ± 0.01 g |
NDA | 6.40 ± 0.02 e | 2.85 ± 0.01 e |
NDRA | 1.63 ± 0.01 h | 0.88 ± 0.01 h |
MCK | 0.00 ± 0.00 i | 0.00 ± 0.00 i |
MR | 0.00 ± 0.00 i | 0.00 ± 0.00 i |
MA | 0.00 ± 0.00 i | 0.00 ± 0.00 i |
MRA | 0.00 ± 0.00 i | 0.00 ± 0.00 i |
MDCK | 14.05 ± 0.01 a | 9.36 ± 0.03 a |
MDR | 8.91 ± 0.03 d | 3.99 ± 0.01 d |
MDA | 9.48 ± 0.01 c | 5.61 ± 0.01 c |
MDRA | 5.48 ± 0.01 f | 2.14 ± 0.01 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jie, W.-G.; Tan, Y.-W.; Yang, D.-Y.; Kan, L.-B. Effects of Rhizophagus intraradices and Acinetobacter calcoaceticus on Soybean Growth and Carbendazim Residue. Sustainability 2023, 15, 10322. https://doi.org/10.3390/su151310322
Jie W-G, Tan Y-W, Yang D-Y, Kan L-B. Effects of Rhizophagus intraradices and Acinetobacter calcoaceticus on Soybean Growth and Carbendazim Residue. Sustainability. 2023; 15(13):10322. https://doi.org/10.3390/su151310322
Chicago/Turabian StyleJie, Wei-Guang, Yi-Wen Tan, Dong-Ying Yang, and Lian-Bao Kan. 2023. "Effects of Rhizophagus intraradices and Acinetobacter calcoaceticus on Soybean Growth and Carbendazim Residue" Sustainability 15, no. 13: 10322. https://doi.org/10.3390/su151310322
APA StyleJie, W. -G., Tan, Y. -W., Yang, D. -Y., & Kan, L. -B. (2023). Effects of Rhizophagus intraradices and Acinetobacter calcoaceticus on Soybean Growth and Carbendazim Residue. Sustainability, 15(13), 10322. https://doi.org/10.3390/su151310322