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Abstract: Erosion can have a negative impact on the agricultural sustainability and grazing lands in
the Mediterranean area, especially in northern Algeria. It is useful to map the spatial occurrence of
erosion and identify susceptible erodible areas on large scale. The main objective of this research was
to compare the performance of four machine learning techniques: Categorical boosting, Adaptive
boosting, Convolutional Neural Network, and stacking ensemble models to predict the occurrence of
erosion in the Macta basin, northwestern Algeria. Several climatologic, morphologic, hydrological,
and geological factors based on multi-sources data were elaborated in GIS environment to determine
the erosion factors in the studied area. The conditioning factors encompassing rainfall erosivity, slope,
aspect, elevation, LULC, topographic wetness index, distance from river, distance from roads, clay
mineral ratio, lithology, and geology were derived via the integration of topographic attributes and
remote sensing data including Landsat 8 and Sentinel 2 within a GIS framework. The inventory map
of soil erosion was created by integrating data from the global positioning system to locate erosion
sites, conducting extensive field surveys, and analyzing satellite images obtained from Google Earth
through visual interpretation. The dataset was divided randomly into two sets with 60% for training
and calibrating and 40% for testing the models. Statistical metrics including sensitivity, specificity,
accuracy, and the area under the receiver operating characteristic curve (ROC) were used to assess
the validity of the proposed models. The results revealed that machine learning and deep learning,
as well stacking ensemble techniques, showed outstanding performance with accuracy over 98%
with sensitivity 0.98 and specificity 0.98. Policy makers and local authorities can utilize the predicted
erosion susceptibility maps to promote sustainable use of water and soil conservation and safeguard
agricultural activities against potential damage.

Keywords: erosion susceptibility; GIS-machine learning; land use-land cover; land degradation;
Macta basin (Algeria); satellite images

1. Introduction

Water erosion is defined as the process in which surface runoff forms channels, es-
tablishing a dominant flow zone, and removes the soil from these restricted areas to great
depths over short periods of time [1–3]. Aggressive soil erosion can lead to formation of
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deep gullies [4,5]; gully erosion contributes to soil loss rates ranging from 10 to 94 percent
of the total sediment output resulting from water-induced erosion. Soil erosion causes
important land degradation and significant damage to agricultural lands on a large scale as
well as to construction sites such as bridges, roads, and villages [6–10]. Gully erosion is gen-
erated by several factors, mainly rainfall caused by extreme climatic events like heavy rains
in short times or thunderstorms [6,11]. Besides the runoff, other factors contribute to soil
erosion, such as vegetation, soil properties, subsurface flow [11] overland water flow [12],
and wind [13,14]. Anthropic activities such as unsustainable agriculture practices [15–17],
deforestation [18,19], and road construction [20,21] can also contribute to increased soil
erosion rates.

Recently, gully erosion has attracted growing interest because of its negative impact
on the environment. To study this phenomenon, various factors should be considered,
including topographical factors (e.g., elevation, slope, and aspect), hydrological factors
(e.g., rainfall, distance to river, and stream density), soil characteristics (e.g., soil type and
structure), geological factors (e.g., lithology), and environmental factors (e.g., distance to
road) [4,22].

According to the scholarly literature cited in [23], the development of gully erosion
inventory maps has been investigated using a range of mathematical models, including
both bivariate and multivariate approaches. In addition, the utilization of GIS and remote
sensing has been found to be effective in this context. Among the used statistical techniques,
there are empirical models such as USLE, RUSLE, and MUSLE that were designed to
estimate long-term average annual soil loss caused by water erosion from specific field
slopes in range of land-use applications and management systems (i.e., crops, rangeland,
recreational areas, etc.) [24–27].

Despite the established efficacy of the methods, estimating soil loss and sediment
discharge is a time-consuming process, which is complicated by the influence of multiple
factors [28,29]. Thus, in the last decade some researchers have adopted a variety of mathe-
matical, machine learning, and data-mining approaches that have since been built to map
and analyze gullying and associated processes [4,29–33].

Many scientists describe a number of GIS-based models that have been utilized for
erosion susceptibility mapping, including the frequency ratio model [34,35], weights of
evidence [29,34], linear and logistic regression [31,36,37], and the analytical hierarchy
process [38,39].

Avand et al. compared a random forest and a K-nearest neighbor classifier for gully
erosion susceptibility mapping in the Hobaturck watershed in Iran [40]. The study was
carried out on 242 gully erosion locations and 12 conditioning factors. The ROC-AUC
results indicated that the random forest algorithm performed better than the K-nearest
neighbor. Rainfall, altitude, and distance from the river were identified as the most in-
fluential parameters in mapping gully erosion susceptibility in the study. These findings
highlight the significant role of these factors in shaping the spatial distribution and intensity
of gully erosion. Saha et al. studied the vulnerability of fully erosion using MLP, MLF
bagging, and ML bagging methods in the Hinzolo river basin in India [41]. The study
indicated that the use of a hybrid method improved the accuracy of MLP models.

These findings indicate that elevation has the strongest influence on gully erosion
susceptibility, followed by rainfall and NDVI. On the other hand, geology, soil type, and
sediment transportation index (STI) were found to have relatively less influence on gully
erosion susceptibility. Arabameri et al. [42] evaluated the accuracy of using a hybrid
artificial intelligence model in mapping gully erosion susceptibility based on the use of 18
conditioning factors in the Kohpayeh-Sagazi river basin in Iran. The results indicated that
the hybrid GE-XG boost model has better performance than the other benchmark solution.
According to their results, and using gain ratio information, the highest information
gain ratios are the soil depth, soil type, TWI, lithology, and NDVI. Additionally, the
moderate values of information gain ratio were elevation, plan curvature, slope, TPI, and
drainage density.
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Another work was carried out by Yang et al. [43] to investigate gully erosion mapping
in complex terrain in the Mizhigou watershed, China, by using the random forest (RF),
gradient boosted decision tree (GBDT), and extreme gradient boosting (XGBoost) algo-
rithms separately or combined with the statistical weight of evidence model (WoE). During
this work, 14 conditioning factors were considered for mapping erosion susceptible area,
and the results showed that slope gradient, land use, and altitude were the main factors.
The results indicated that the area under curve (AUC) values of different models used
were higher than 0.925 indicating high prediction of the models; it was also shown that
the AUC values for marching learning regression methods were higher without the WoE
model. The XGBoost algorithm performed better than the RF and GBDT, and the main
factors for gully mapping were slope gradient, land use, and altitude. Goetz et al. [44]
compared statistical and machine learning models for regional-scale landslide suscepti-
bility modeling in Lower Austria. They used spatial K-fold cross-validation and variable
importance assessment to evaluate the models. Random forest and bundling classification
techniques exhibited the best predictive performances, with overall median estimated AU-
ROC differences ranging from 2.9 to 8.9 percentage points. Slope angle, surface roughness,
and plan curvature consistently emerged as highly influential variables. This evaluation
framework offers valuable guidance for selecting appropriate modeling techniques for
landslide susceptibility mapping.

These results provide valuable insights into the key factors driving gully erosion and
can guide future research and management strategies. However, it is important to note that
different machine learning models can yield varying results in terms of feature importance.
To address this gap and improve the accuracy of mapping areas susceptible to soil erosion,
the application of a stacking method can be explored. By integrating multiple machine
learning models and considering their respective feature importance, the stacking method
has the potential to enhance the accuracy of mapping and prediction for susceptible areas
prone to soil erosion. Further research in this direction can contribute to the development
of more robust and reliable erosion susceptibility models.

Different studies worldwide showed the high erosion rate in semi-arid regions, which
shows the importance of this phenomenon and its impact on water resources and land
development (Table 1).

Table 1. Statistics of erosion rate in semi-arid regions around the world.

Area Method Erosion Rate Reference

Tunisian Dorsal, Tunisia Reservoir siltation measurement Average rate 14.5 t ha−1 year−1

Maximum rate 36.4 t ha−1 year−1 [45]

AndipattiTaluk, India RUSLE Average rate 5.26 t ha−1 year−1

Maximum rate 95.54 t ha−1 year−1 [46]

Madhya Pradesh, India RUSLE Average rate 6.42 t ha−1 year−1

Maximum rate 179.9 t ha−1 year−1 [47]

Machados County, Brazil USLE Average rate 8.11 t ha−1 year−1

Maximum rate above 20 t ha−1 year−1 [48]

Seybouse basin, Algeria RUSLE Average rate (20 y): 13 t ha−1 year−1

Maximum rate:over 50 t ha−1 year−1 [49]

In Algeria, water erosion poses a significant threat to the country’s agricultural produc-
tivity, leading to soil loss, depletion of fertilizers, and nutrient degradation. Moreover, the
decline in water reserves in Algerian dams is a major concern due to sedimentation caused
by erosion in watersheds and accumulation in reservoirs. Bathymetric surveys conducted
by the National Agency for Dams and Transfers (ANBT 2005) on 31 dams revealed an
average loss of 980 million cubic meters in storage capacity, equivalent to approximately
13% of the initial capacity. This research holds implications for land management, environ-
mental planning, and decision-making processes in Mediterranean regions, while offering
the potential to identify high-risk erosion areas and implement targeted control measures.
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It can also support policymakers in formulating sustainable land-use policies to mitigate
soil erosion and promote effective land management practices.

The objectives of this study were: (i) To map erosion prone areas in the Macta basin
Northwestern Algeria (ii) Investigate and compare the feature importance of several ma-
chine learning and deep learning techniques, while highlighting the significance of using
stacking ensemble techniques to improve soil erosion mapping. (iii) To evaluate maximum
conditioning factors that significantly control the erosion phenomenon and elaborate on the
minimum factors needed to avoid over-fitting problems that could occur in the modeling
of soil erosion.

2. Materials and Methods
2.1. Studied Area

The study area comprises the basin of Macta, which includes the wilayas of Mascara,
SidiBel Abbes, Mostaganem, Tlemcen, Oran, and Saida. It is located between latitudes
34◦34′ and 35◦79′ N and between longitude 1◦06′ W and 0◦56′ E. The Macta basin is
bounded by the Mediterranean Sea to the north, by the Tighenif plain and the Saida
mountains to the east, by the highlands of Ras El Ma and the lowlands of Maalif to the
south, by the plain of Telagh, the mountains of Tessala, and the mountains of Tlemcen
to the west (Figure 1). The area covers 14,458 km2, and the perimeter is 717 km. It has
a semi-arid climate [50]. It is composed of two tributaries of Mediterranean rivers, the
Mekerra wadi to the west and the El Hammam wadi to the east. The topography and
altitude vary in such a way that soil erosion occurs in most of the area. For this study, a
total of 400 points (200 points of erosion location and 200 points of non-erosion locations)
were randomly selected in the studied area.

The analysis of annual average precipitation recorded at rainfall stations in the Macta
watershed, from 1980 to 2015, reveals variations in precipitation distribution across the
entire basin. The precipitation values range from 289 mm to 486 mm, with an average of
approximately 378 mm. The central area of the basin, characterized by higher altitudes,
receives higher rainfall compared to the lower areas in the south and north, as altitude
increases relative to sea level.

The spatial distribution of land use in the Macta basin exhibits several categories of
land occupation. Grasslands dominate the basin, covering 8749 km2, which represents
60.51% of the total surface area. Croplands also occupy a significant portion, covering
4376 km2, accounting for 30.27% of the basin. Forest formations cover approximately 4%
of the total area and are primarily found in regions with moderately rugged terrain. The
remaining portion of the basin comprises unproductive lands such as rocky areas, bare
lands, water bodies, and urbanized zones (Table 2).

Table 2. Distribution of land use/land cover area in the Macta basin.

LULC Class Area (km2) Area (%)

Grasslands 8749 60.51
Croplands 4376 30.27

Forest 607 4.20
Urbanization 432 2.99

Bare lands 280 1.94
Water Bodies 13 0.09

Total 14,458 100

The main soil types in the Macta basin are Calcisols, Luvisols, Vertisols, and Leptosols
according to the latest version of the World Reference Base for soil resource (WRB). These
soil types occupy a substantial area, accounting for 42.31%, 27.99%, 14.26%, and 11.23%
of the total surface area, respectively. Cambisols and Kastanozems, on the other hand,
constitute only 3.28% of the basin’s area. Therefore, it can be concluded that the majority of
the soil in this watershed exhibits moderate resistance to water erosion (Table 3).
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Table 3. Distribution of soil types in the Macta basin.

Soil Types Area (km2) Area (%)

Calcisols 6116.75 42.307
Luvisols 4047.23 27.993
Vertisols 2062.43 14.265
Leptosols 1623.92 11.232
Cambisols 325.16 2.249

Kastanozems 149.21 1.032
Phaeozems 51.76 0.358

Regosols 50.89 0.352
Fluvisols 15.61 0.108
Acrisols 14.46 0.100

Solonchaks 0.58 0.004

Total 14,458 100
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2.2. Machine Learning Methods

The methods used in this study are based on artificial intelligence (AI). The techniques
used for modeling gully erosion include Adaptive boosting (AdaBoost), Categorical boost-
ing (CatBoost), Convolutional Neural Network (CNN), the stacking method, and geospatial
data processing.

• AdaBoost is machine learning technique initiated by Freund and Schapire [51]; many
algorithms are derived from AdaBoost either for classification or applied to regres-
sion [52,53]. The AdaBoost algorithm is an iterative approach that seeks to construct a
robust classifier through the combination of weak learners generated in prior iterations.
The algorithm modifies the learning pattern in accordance with the error returned by
the weak learners, with the ultimate goal of achieving a final hypothesis that exhibits
low error relative to a given distribution [51,54].

• CatBoost is new gradient boosting based on decision tree [55], and its characteristic
is that it requires small data training comparing to other models and deals with
different data formats [56]. The CatBoost model employs the generation of random
permutations of the dataset and gradients to inform the selection of an optimal tree
structure, thereby enhancing the robustness of the algorithm and mitigating over-
fitting [57].

• CNN is a type of deep learning architecture that imitates the natural visual perception
of living beings [58]. CNN comprises several layers, including the convolutional layer,
non-linearity layer, pooling layer, and fullyconnected layer. While the convolutional
and fullyconnected layers are parameterized, the pooling and non-linearity layers
are not.Among the various forms of artificial neural networks, CNN is particularly
remarkable [59]. As reported in the literature, the name “Convolutional Neural
Network” (CNN) is derived from the mathematical operation of convolution, which
involves the multiplication of matrices [60].

• The stacking method was implemented in this study to improve the performance of
developed predictive model. By leveraging ensemble learning methods, such as the
stacking method, a meta-model is used to combine predictions generated by several
base models [61]. Stacking, which is also referred to as stacked generalization, is
a widely used ensemble learning technique that combines multiple base models to
improve prediction accuracy. Here, three different algorithms were used as base
models: CNN as a powerful deep learning architecture that has the ability to capture
spatial features from input data and CatBoost and AdaBoostto combine weak learners
to create a strong learner. Categorical boosting is specifically designed for categorical
data, while Adaptive boosting is a general-purpose method that can be used for both
categorical and numerical data.

2.3. GIS and Geospatial Data Processing

In this section, we provide a detailed description of the GIS environment and geospa-
tial data preprocessing methods employed in our research (Figure 2). The utilization of
GIS allowed us to effectively elaborate and process the collected data, which encompassed
various climatological, morphological, hydrological, and geological factors. The integration
of these factors within the GIS framework facilitated the generation of thematic maps that
visually represented their spatial distribution across the study area.
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Figure 2. Flowchart methodology for erosion susceptibility mapping.

Slope and aspect were calculated in the GIS Environment using a Digital Elevation
Model (DEM). The DEM was imported into GIS to initiate the process. The “Slope” and
“Aspect” were utilized to derive information about the steepness and orientation of the
terrain.The topographic wetness index was calculated using rasters of flow accumula-
tion and slope. TWI provided information on landscape wetness based on topographic
characteristics and supported hydrological assessments.

The modified Fournier index values were calculated using the equation of (71) as
explained in the Section titled ‘selection of variables’.

The distance from a river and the distance from roads were calculated by uploading
the rivers and roads in the studied area and then calculating the distance of each pixel point
to these targets using Euclidean distance measurement. The results can be visualized and
used for various geospatial analyses, providing valuable information about proximity to
rivers and roads separately.

The calculation of the clay mineral ratio was carried out on the selected spectral
bands of Landsat 8 (Table 4). The Clay Index formula, defined as (Band 7 − Band 5)/
(Band 7 + Band 5), is applied to quantify clay mineral abundance in the selected area.

The Raster Calculator in GIS software was a powerful tool used for performing
mathematical operations on raster layers. It provided the capability to create new raster
layers by applying various mathematical expressions or formulas to existing raster layers.
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Table 4. Geospatial data sources.

Parameter Source Link Spatial Resolution Temporal Periods

MFI
National Agency for
Hydraulic Resources

(ANRH)
- - 1980–2015

Soil Class Soil Grids https://soilgrids.org/
(accessed on 4 May 2022) 190 m 2016

LULC Esri Sentinel-2
https://livingatlas.arcgis.

com/landcover/ (accessed on
4 May 2022)

10 m 2022

DEM USGS Earth Explorer
https:

//earthexplorer.usgs.gov/
(accessed on 4 May 2022)

1 Arc-Second 2014

Satellite Imagery Landsat 8 OLI/TIRS
https:

//earthexplorer.usgs.gov/
(accessed on 4 May 2022)

30 m 05/2022

Topographic and
Geologic Maps

National Institute of
Cartography - 1/50,000 -

To ensure the reliability and accuracy of our analysis, we adopted a comprehensive
approach to geospatial data preprocessing. The initial step involved the extraction of
relevant factors using an inventory map that classified sites as either land degradation
or non-degradation. This inventory map provided the foundation for gathering essential
information for subsequent analysis.

Following factor extraction, we conducted a pre-treatment analysis of the statistical
data. This involved applying appropriate statistical techniques to evaluate and preprocess
the extracted values. The goal was to ensure data quality, consistency, and suitability for
further modeling.

Subsequently, we employed classification modeling techniques to develop models
capable of predicting erosion occurrence based on the identified factors. Machine learn-
ing algorithms were integrated within the GIS environment to facilitate this modeling
process. By leveraging the power of machine learning, we aimed to capture the complex
relationships and patterns between the factors and erosion susceptibility (Figure 2).

To assess the performance of the developed models, we utilized performance criteria
as outlined in our methodology. These criteria allowed us to evaluate the accuracy and
reliability of the models in predicting erosion susceptibility within the study area. The
performance evaluation provided valuable insights into the strengths and limitations of the
models and their applicability for practical use.

Furthermore, we employed feature importance analysis to determine the relative
significance of each factor in contributing to the erosion susceptibility models. This analysis
allowed us to prioritize and weigh the importance of different factors in the final suscepti-
bility maps generated by the models. By identifying the most influential factors, we aimed
to enhance the accuracy and effectiveness of the models’ predictions.

The integration of GIS and machine learning techniques in our research enabled us to
leverage the spatial data and develop models that accurately predicted erosion susceptibility.
This combination facilitated a comprehensive analysis of the study area, providing valuable
insights into the factors influencing erosion occurrence. The incorporation of GIS and
machine learning techniques showcased the potential for their synergy in addressing
complex environmental issues and supporting informed decision-making processes.

2.4. Model Evaluation

The assessment of model accuracy in this study involved the evaluation of both
goodness-of-fit, which reflects how well the model fits the calibration subset, and predictive
performance, which measures the model’s ability to accurately predict the validation
subset. To quantify model performance, we employed the area under the curve and

https://soilgrids.org/
https://livingatlas.arcgis.com/landcover/
https://livingatlas.arcgis.com/landcover/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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receiver operating characteristic (AUC-ROC) metrics. As reported by Williams [62], a
confusion matrix was generated to compare the final model’s predictions with the actual
outcomes of the observations (Table 4). The actual observations were represented in the
rows of the matrix, while the columns corresponded to the model’s predictions, and the
cell counts indicated the numbers of observations for each variable.

As stated in the literature [63], a confusion matrix is typically a square matrix of size
n × n that is used to evaluate the performance of a classifier by comparing its predicted
and actual classifications. Here, n represents the number of different classes. For instance, a
confusion matrix for binary classification with n = 2 typically has four entries, each with a
specific meaning as shown in Table 5:

Table 5. Example of a confusion matrix for n = 2.

Predicted Negative Predicted Positive

Actual negative a b

Actual positive c d
where a = number of correct negative predictions, b = number of incorrect positive predictions, c = number of
incorrect negative predictions, d = number of correct positive predictions.

Accuracy is a metric that measures the overall performance of a classifier and indicates
the fraction of total samples that are correctly classified [56]. The formula to calculate
accuracy (τ) and the error (ε) are as follows:

τ = (a + d)/(a + b + c + d), (1)

ε = (b + c)/(a + b + c + d), (2)

This study used ROC curve analysis as another statistical technique to evaluate the
goodness-of-fit and prediction performance of each model [64]. The ROC curve shape
provides an indication of the accuracy of a model, where a curve closer to the upper left
corner (AUC = 1) represents higher accuracy, while a curve closer to 0.5 indicates model
inaccuracy [65]. According to AUC values, the predictive performance was classified as
acceptable for AUC ≥ 0.7, excellent for AUC ≥ 0.8, and outstanding for AUC ≥ 0.9 [66]. To
assess the robustness of the models, the positive and negative calibration and validation
datasets with optimal pixel size were changed three times [33].

2.5. Selection of Variables

In order to select the most relevant variables for the classification model, a feature
selection process was carried out considering 19 variables (elevation, aspect, slope, cur-
vature, hill-shade, stream density, distance from rivers, distance from roads, modified
Fournier index, NDVI, topographic wetness index, topographic roughness index, sediment
transport index, stream power index, LULC, soil type, geology, lithology, and clay mineral
ratio). To avoid the double effect of the same factors on the modeling, the NDVI and
sediment transport index (STI) variables were eliminated based on their high correlation
with clay mineral ratio and stream power index (Table 6). Then, the top 11 variables were
selected using feature importance scores obtained from a CNN (see Table 6). The CNN
was trained on the input data and was able to learn the relevant features through a series
of convolutional and pooling layers. The feature importance scores were then calculated
by evaluating the impact of each feature on the model’s accuracy. The 11 variables with
the highest feature importance scores were retained for the final classification model. This
approach ensures that only the most informative variables are included in the model for
predicting soil erosion in the Macta basin.
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Table 6. Feature selection using Convolutional Neural Network (CNN).

Ranking Features Correlation Importance (%)

1 Slope 59.65
2 LULC 5.31
3 Lithology 4.36
4 TWI 3.68
5 MFI 3.55
6 Geology 3.00
7 D_F_Roads 2.49
8 CMR 2.25
9 D_F_Rivers 1.94
10 Elevation 1.89
11 Aspect 1.87
12 Stream_Den 1.64
13 HillShade 1.63
14 Soil_Type 1.59
15 NDVI CMR = 76% 1.44
16 TRI 1.40
17 Curvature 1.07
18 SPI STI = 82% 0.81
19 STI 0.43

To assess the susceptibility of the given area to erosion, a series of parameters and
their relationship to the studied phenomena must be considered. It is worth noting that
there is no conventional method for the selection of erosion conditioning factors. These
vary from place to place depending on the study area and data availability.

In this work, a total of eleven conditioning factors are selected and mapped by using
the Geographic Information System (GIS). The selected parameters are defined as follows:

Slope is a parameter that represents the degree of topographic change. The slope and
water flow velocity are strongly related, where a higher slope increases the surface runoff
velocity. Therefore, the risk of land erosion becomes more important. The slope map was
determined using GIS, it was found that mild slopes (<7◦) are located in the extreme south,
north, and east of the region, meanwhile the steepest slopes (>12◦) occur in the center of the
basin. The south-west region is characterized by moderated slope values (7–12◦) (Figure 3).

Aspect is defined as the slope orientation. In our case the slope directions occur
irregularly in the basin, which means that there is no privileged direction in any part of the
basin.The Telagh high lands, Tessala Mountains, and Tlemcen mountains in the west of the
basinall have slopes that are directed towards the north-east and towards the south-east.
The Ghriss plain region and the central massif of the basin are characterized mainly by
slopes oriented towards the north-west.

The elevation map shows that the studied region topography is divided into three
sections. The first one (elevation < 260 m) is located in low coastal plains in the north. The
second section (260 m < elevation < 700 m) is in the center (Figure 3). The last section
(elevation > 700 m) is located in the south, where we find the Tlemcen mountains (1412 m
in Djebel Ouargla) and Dhaya Mountains (1455 m in Djebel Mezioud).

Land use/land cover (LULC) have been identified as factors that can impact runoff
and soil loss [67,68]. Changes in land use and land cover can have a significant impact
on erosion-prone areas, as they affect various hydrological processes such as infiltration,
evaporation, evapotranspiration, and runoff. This can either accelerate or decelerate the
erosion process in watersheds. In this study, the LULC map consists of several thematic
maps, including water bodies, trees, flooded vegetation, crops, built-up areas, bare ground,
snow/ice, and rangeland (Figure 3).
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Topographic wetness index (TWI) is used to evaluate the impact of the topography on
the hydrological process. The TWI map shows that low TWI values (3.018–8.4) are present
in the central and south-east regions of the basin; therefore, a weak humidity is present in
the two regions. Moderate TWI values ranging from 8.4 to 10.84 are present in north, south,
and south-west of the basin, indicating the presence of an average humidity (Figure 4). A
high humidity is detected in the outlet of and along the course of waterways due to the
presence of runoff. The TWI values at this region varied from 10.84 to 25.20.

Modified Fournier index (MFI) has been demonstrated as a crucial factor in accurately
estimating the R factor in areas that experience high-intensity rainfall events, which is
essential for assessing the risk of soil erosion in the context of future changes in land
use and climate, particularly under the Revised Universal Soil Loss Equation (RUSLE)
framework [69]. The erosivity index in the current study was determined by utilizing
average precipitation data collected from the national agency for hydraulic resources for
one hundred and six (106) meteorological stations located in the Macta basin (Table A1).
Analytical equations were employed to evaluate R factors based on the amount of rainfall.
R values were calculated using the equations described by [70]. The calculated modified
Fournier index ranges from 28 to 61, with the highest values located in the middle part
of the basin from east to west (Figure 4). The lowest values of the index are found in the
southern part of the Macta basin, where a semi-arid climate prevails.
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Distance from roads, the proximity of a location to roads plays a crucial role in
determining its susceptibility to erosion. This is because roads can hinder the absorption
of water into the ground, leading to an increase in surface runoff and erosion-prone areas.
As a result, areas situated closer to roads are more vulnerable to erosion due to reduced
infiltration rates and faster runoff.

Distance from river can significantly impact the severity and extent of water-induced
soil erosion. The distance from the river is considered by many researchers as a key factor
in assessing erosion risk. When a location is situated close to a river, it becomes more
vulnerable to soil erosion due to the increased water flow volume and velocity, which
accelerate the process of erosion by flash floods. As a result, areas located in close proximity
to a river are at a higher risk of experiencing soil erosion.

Lithology represents the geological composition of the region, characterized by a
variety of quaternary formations with different lithological properties (Figure 5). The
degrees of rock compaction and alteration, as well as the occurrence of fractures and joints
in the subsurface or exposed rock, have a significant influence on the recharge of fractured
aquifers [71–73]. The Wadi El Hammam basin is characterized by a diverse geology, with
quaternary formations dominating the region. These formations have varying lithological
characteristics, with the compactness and alteration state of the rock, as well as the presence
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of diaclase and joint, playing a crucial role in recharging fractured aquifers. The Ghriss–
Mascara plain, which is drained by Wadi Ain Fekane, is mainly composed of detrital
formations such as marl-clay and sandy-clay with gravel passages. The region’s massifs
are made up of carbonate rocks, including Cretaceous limestone in the Tessala and Beni-
Chougrane mountains and limestone and/or Jurassic dolomites in the Tlemcen and Dhaya
mountains. In the western zone of the region, horsts and grabens oriented ENE-WSW are
present, extending from the Tlemcen Mountains to the Traras massif, with large normal
faults bounding the compartments [74].
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Geology of the basin of Macta occupies the western part of the Tellian Atlas, en-
compassing a multitude of geological formations ranging from the primary age to the
Quaternary, with marl and limestone facies predominating (Figure 5). Quaternary and
Plio-Quaternary formations occupy depressions in the north and northeast as well as the
hollows of valleys. The majority of Pliocene formations crop out to the west, while Upper
Jurassic and Lower Cretaceous geological formations are found in the center, south, and
southeast. The geological formations of the primary age appear in the south-eastern part,
consisting mainly of schists and quartzites.

Clay Mineral Ratio (CMR) in soil has a significant impact on soil erosion. The presence
of clay minerals in the soil increases its ability to retain water and reduce soil erosion
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(Figure 5). A higher clay mineral ratio in soil can enhance its ability to resist erosion by
slowing down the rate of water infiltration, thus minimizing the velocity of surface runoff.
On the other hand, soils with a lower clay mineral ratio are more prone to erosion as they
tend to have a higher rate of water infiltration and faster surface runoff velocity [75,76].

3. Results

The CatBoost, AdaBoost, CNN, and stacking ensemble methods were trained on 60%
of the data in the training sample and evaluated on 40% of the data in the validation sample.
The ROC-AUC curves for each method are presented in (Figure 6). Following this, the
susceptibility values were classified into four levels of risk (i.e., very low, low, medium, and
high) using the quantile classification method, as previously described in the literature [44].
The resulting risk map is shown in (Figure 7).

Observations indicate that the hybrid method based on the stacking ensemble tech-
nique, using the combination of CNN, AdaBoost, and CatBoost, exhibits the highest
performance in terms of area under the curve (AUC), achieving a score of 98% (Figure 6).
The individual models, CNN, AdaBoost, and CatBoost, exhibit AUC values of 97%, 96%,
and 94%, respectively (Table 7). These results demonstrate that machine learning and deep
learning techniques can be effectively used for predicting erosion-prone areas, yielding
robust and high-performing results.

The AdaBoost model was employed to model erosion occurrence in selected pixels
based on the influencing factors. The obtained results (Table 6) demonstrate that the
topographic wetness index (TWI) has the highest impact on the erosion modeling in the
Macta basin, with an influence percentage of 16%. This is followed by aspect, distance from
river, clay mineral ratio, and modified Fournier index, with percentage influences of 14%,
13%, 12%, and 11%, respectively. In contrast, elevation, geology, distance from roads, slope,
lithology, and land use/land cover had a lesser influence on the erosion modeling process
in the studied region.
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Table 7. Evaluation metrics of the machine learning models.

Statistics CatBoost AdaBoost CNN Stacking

TP 82 79 69 78

TN 64 62 72 78

FP 4 9 4 2

FN 10 10 15 2

Sensitivity 0.89 0.89 0.82 0.98

Specificity 0.94 0.87 0.95 0.98

F1 score 0.92 0.89 0.88 0.98

Recall 0.89 0.89 0.82 0.98

Precision 0.95 0.90 0.95 0.98

The CatBoost model exhibited the lowest performance. The results were still consid-
ered outstanding in comparison to the other models. The obtained results (Table 6) indicate
that the slope is the most influential parameter associated with erosion phenomena in this
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model, with an importance value of 60%. This is followed by land use/land cover, modified
Fournier index, distance from roads, and distance from river, with importance values of
9.17%, 5.36%, 4.39%, and 4.18%, respectively.

CNN exhibited the best model performance compared to other individual ensemble
methods due to its complexity and deep understanding of the phenomenon. The obtained
results demonstrate that slope is the most influential parameter associated with erosion,
with an importance value of 49.6%. This is followed by land use/land cover (LULC),
lithology, and topographic wetness index (TWI), with importance values of 13.82%, 12.91%,
and 11.17%, respectively. The remaining factors demonstrated insignificant importance,
with percentages varying between 0% and 3.5%.

Stacking ensemble method is of great interest in combining multiple algorithms
to model complex phenomena. The obtained results indicate that the use of stacking
improves performance and demonstrates superiority over other models. The importance
of the stacking ensemble method was calculated based on the aggregation of feature
importance scores across all models. One approach to achieve this is to calculate the
average importance score for each feature while considering the performance of each
base model. The importance of each factor was ranked as follows: slope, topographic
wetness index (TWI), LULC, lithology, aspect, distance from river, modified Fournier index,
elevation, clay mineral ratio, distance from road, and geology.

4. Discussion

The Macta basin located in north-western Algeria has been experiencing a significant
issue with erosion, resulting in substantial soil loss and impeding the implementation of
sustainable land management practices. As a result, it is crucial to identify areas of high
vulnerability using the most effective modeling techniques to enable the implementation of
appropriate soil and water conservation measures.

To achieve our objective of accurately estimating erosion in this area and identify the
most appropriate model, we applied four artificial intelligence models (CNN, CatBoost,
AdaBoost, and stacking). Our research aimed to determine the primary factors contributing
to gully erosion, as this phenomenon is influenced by various factors. Our analysis is
based on the hybridization of the used models, combining the ensemble methods and deep
learning techniques. This identified that slope is a crucial factor—as expected—additionally,
TWI, LULC, and lithology are the most dominant factors in mapping area susceptible to
erosion. Although variations between the importance of variables were observed between
models, the accuracy of the performance results is still outstanding in the elaborated models.
These results are consistent with the results of previous studies [22,39,40].

According to the results obtained from the stacking ensemble model shown in Figure 7,
it can be inferred that the very high susceptibility level covers 19.97% of the total area of the
basin, while 20.04% of the area is categorized as having a high susceptibility, which is mainly
located in grasslands. Moreover, 20.74% of the total area faces moderate susceptibility,
19.86% faces low susceptibility, and 19.38% faces very low susceptibility.

Regarding the results obtained by the CNN and CatBoost models (Figure 7), they
showed that 19.60% and 19.55% of the area are classified as very high susceptibility, 20.23%
and 20.44% high susceptibility, 20.42% and 19.71% moderate susceptibility, 20.09% and
20.99% low susceptibility, and 19.66% and 19.31% having very low susceptibility, respec-
tively. The CNN and CatBoost exhibited a highly similar distribution of erosion prone area
across different LULC classes (Table 8).

In contrast, the results obtained by the AdaBoost model (Figure 7) showed that 19.23%
of the area is classified as having very high susceptibility, 20.01% high susceptibility, 20.41%
moderate susceptibility, 20.66% low susceptibility, and 19.69% having very low susceptibility.
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Table 8. Statistics of Erosion prone area in different Land Use/Land Cover classes.

Model LULC Class Grasslands Croplands Forest Urbanization Bare
Lands

Water
Bodies Total

A
da

Bo
os

t Very Low Risk 5.93 11.48 0.39 1.24 0.60 0.05 19.69
Low Risk 10.65 7.90 0.74 0.90 0.47 0.01 20.66

Moderate Risk 13.33 5.26 0.95 0.48 0.37 0.01 20.41
High Risk 14.83 3.60 1.05 0.23 0.30 0.00 20.01

Very High Risk 15.87 2.00 1.05 0.12 0.19 0.00 19.23

C
at

Bo
os

t Very Low Risk 2.86 14.57 0.33 1.24 0.29 0.03 19.31
Low Risk 9.45 9.14 0.78 1.01 0.60 0.02 20.99

Moderate Risk 14.42 3.53 0.91 0.38 0.46 0.01 19.71
High Risk 16.73 2.13 1.10 0.21 0.27 0.01 20.44

Very High Risk 17.15 0.88 1.07 0.12 0.33 0.00 19.55

C
N

N

Very Low Risk 2.62 15.19 0.28 1.29 0.24 0.03 19.66
Low Risk 8.94 8.57 0.99 0.95 0.61 0.02 20.09

Moderate Risk 14.53 3.89 1.08 0.42 0.48 0.01 20.42
High Risk 17.00 1.80 0.93 0.20 0.29 0.01 20.23

Very High Risk 17.50 0.79 0.89 0.10 0.32 0.01 19.60

St
ak

in
g

Very Low Risk 3.17 14.17 0.28 1.32 0.40 0.04 19.38
Low Risk 8.96 8.67 0.77 0.95 0.50 0.02 19.86

Moderate Risk 14.37 4.41 1.10 0.41 0.45 0.01 20.74
High Risk 16.40 2.11 1.05 0.19 0.29 0.01 20.04

Very High Risk 17.70 0.90 0.98 0.10 0.29 0.00 19.97

Based on these results, it can be concluded that more than 60% of the basin is classified
as having low to moderate erosion according to the stacking ensemble method, CNN,
AdaBoost and CatBoost models, whereas around 40% of the area corresponds to the classes
of high to very high erosion. The results of this study are consistent with the findings of
Taye et al. [77], who reported significantly higher seasonal runoff coefficient values for
grasslands compared to croplands. This aligns with our observation of high to very high
susceptibility areas exhibiting similar patterns, indicating the potential influence of land
cover on soil erosion dynamics (Table 8).

The understanding of the influential factors by each model differs, which implies that
less precise factors can lead to high accuracy models. For a better understanding of this
phenomenon, it is better to use complex algorithms for feature selection, which search for
the associations between the studied phenomena and the influencing factors.

Creating an erosion susceptibility map is a valuable tool for mitigating the risks of
water-induced soil erosion. Areas identified as having high or very high susceptibility, yet
to experience erosion, indicate conditions favorable for erosion development. Therefore,
these areas are particularly vulnerable to soil erosion, underscoring the significance of
including them in the erosion susceptibility map and promoting sustainable practices, both
in agriculture and forestry, to preserve soil quality.

Moreover, it is important to consider that the mapping of erosion-susceptible areas
using AI techniques reveals variations in the machine’s understanding of the phenomena.
The results indicate that the Adaptive boosting model exhibits different influencing factors
compared to the CNN and CatBoost models, yet still achieves an overall accuracy higher
than 94%.

To further improve the accuracy, a stacking method was employed, which combines
the previous machine learning techniques in a hybrid model. This stacking approach
yielded exceptionally high results, with an accuracy reaching 99% (Table 7). By leveraging
the strengths of multiple models, the stacking method enhances the predictive power and
reliability of the erosion susceptibility mapping process.
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Overall, the integration of AI techniques and the application of the stacking method
have proven to be effective in accurately identifying erosion-prone areas and providing
valuable insights for soil conservation and management strategies.

5. Conclusions

This research showcases the significant potential of machine learning and deep learn-
ing tools, as well as meta-models, in improving the identification, visualization, and
interpretation of areas susceptible to erosion. By focusing on the Macta basin in Algeria,
this study successfully developed soil erosion susceptibility maps using four distinct ma-
chine learning algorithms: CNN, Adaptive boosting, Categorical boosting (CatBoost), and
stacking ensemble methods.

The findings shed light on the factors influencing erosion-prone areas in the Macta
basin. AdaBoost identified TWI, aspect, distance from river, and clay mineral ratio as key
parameters in mapping erosion-prone areas. CatBoost highlighted slope, LULC, modified
Fournier index, distance from road, and distance from river as the most influential factors.
The CNN model emphasized slope, LULC, lithology, and TWI as critical factors in mapping
erosion-susceptible areas.

Moreover, the utilization of stacking ensemble methods demonstrated exceptional
accuracy and significantly improved the prediction and mapping of erosion-susceptible
areas. By combining predictions from multiple base models, the stacking ensemble ap-
proach provided a more robust and reliable estimation of erosion susceptibility. This hybrid
model leveraged the strengths of individual machine learning algorithms while effectively
mitigating their weaknesses, resulting in a highly accurate and comprehensive assessment
of erosion risks.

The reliable erosion susceptibility maps generated in this study serve as invaluable
tools for decision-makers and government officials involved in erosion risk management.
The integration of machine learning and deep learning techniques, along with the stacking
ensemble method, offers a promising approach to better delineate, visualize, and interpret
erosion-prone areas.

Moving forward, future research should focus on refining machine learning algo-
rithms and ensemble methods in erosion modeling to mitigate water-induced soil erosion
and enhance sustainable land use planning. An important direction for future studies
is the analysis of erosion susceptibility over longer time periods using climatic models.
This approach will provide valuable insights into the long-term impact of climate change
and enable proactive measures to ensure the sustainability of soil resources. By integrat-
ing climate projections, erosion modeling can support decision-making and protect soil
resources in watershed management and conservation, promoting sustainable practices.
The combination of machine learning, ensemble methods, and climate projections has the
potential to enhance our understanding of erosion dynamics and guide effective prevention
and mitigation strategies, thereby ensuring the long-term sustainability of land use and
ecosystem preservation.
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Appendix A

Table A1. Modified Fournier index results for the 106 meteorological stations located in the
Macta basin.

Station Lambert Coordinate MFI

No. Code Name X (m) Y (m) (mm)

1 110102 RAS EL MA 177,450 139,500 29.68
2 110201 SIDI ALI BEN YOUB 186,550 192,200 44.18
3 110202 MOULAY SLISSENE MF 181,200 171,550 41.79
4 110203 EL HACAIBA 183,500 161,650 35.78
5 110208 SLISSENE CENTRE 183,650 174,650 42.56
6 110209 TAMFOUSSET 192,900 183,350 35.93
7 110305 SIDI BEL ABBES 194,250 214,150 46.33
8 110306 SIDI BRAHIM 203,230 222,480 46.87
9 110307 BEN BADIS 170,850 190,800 46.72
10 110308 SIDI ALI BOUSSIDI 178,250 206,150 46.49
11 110309 HASSI DAHO 204,800 204,100 44.76
12 110310 LAMTAR 181,400 203,000 45.96
13 110311 SIDI KHALED 188,500 207,500 45.24
14 110312 MOSTEFA BEN BRAHIM 221,700 214,740 49.03
15 110313 TESSALA 184,500 222,050 46.25
16 110314 AIN TRID 193,000 226,000 46.28
17 110315 AIN EL BERD 208,400 234,300 48.62
18 110317 HASSI ZEHANA 172,700 198,200 46.66
19 110318 SIDI LAHCENE 191,200 212,900 45.19
20 110319 CAID BELARBI 212,900 210,700 46.07
21 110322 TABIA 186,800 196,700 44.52
22 110328 SULLY 201,500 206,400 44.61
23 110329 LES TREMBLES 204,800 227,260 47.28
24 110334 CHETOUANE 175,300 191,250 45.96
25 110401 BOUDJEBAA (Dar Esba) 226,200 233,000 49.16
26 110402 CHEURFAS Bge 232,100 238,300 49.47
27 110501 MERINE 216,300 170,500 28.31
28 110502 TELAGH 200,650 170,150 32.76
29 110503 TEGHALINET 203,450 181,600 39.19
30 110504 TENIRA 205,500 196,250 42.29
31 110505 EL HADJIRA 199,400 195,600 41.72
32 110507 FERME CHABRIER 194,800 190,450 41.13
33 110509 SIDI AHMED 204,050 190,050 42.08
34 110510 DOMAINE ZERROUKI 204,650 185,000 40.34
35 110514 AIN CHAFIA 210,700 185,250 38.36
36 110602 OUED SEFFIOUN 221,150 201,100 46.84
37 110603 AIN FRASS 237,750 215,000 51.73
38 110605 HASSI EL ABD 226,750 189,200 43.40
39 110701 TOUAZIZINE M.F. (Dhaya) 191,150 155,200 32.55
40 110702 DOUAHILA 228,700 155,350 29.51
41 110703 TOUAZIZINE (Dhaya) 196,300 157,450 30.36
42 110802 DAOUD YOUB 234,500 185,000 43.25
43 110902 HASSI AYOUN MF 241,750 161,250 29.18
44 110903 DOUI THABET 252,100 181,700 34.21
45 110904 BOU EL FERID 245,730 169,150 31.44
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Table A1. Cont.

Station Lambert Coordinate MFI

No. Code Name X (m) Y (m) (mm)

46 111002 FERME EL HARIG 245,590 192,450 44.10
47 111102 MEFTAH SIDI BOUBEKEUR 259,500 195,750 42.94
48 111103 AIN EL HADJAR 266,500 165,200 31.70
49 111105 SID AMAR 263,850 195,100 41.28
50 111106 KILOMETRE 50 268,450 192,000 38.31
51 111112 HAMMAM RABI 270,400 184,500 36.44
52 111113 DJEBEL KAROUS 264,700 181,200 33.87
53 111114 REBAHIA FERME 917 272,600 180,500 34.55
54 111120 FERME DU SYNDICAT 263,700 165,500 31.14
55 111128 AIN ZERGA FERME 273,900 176,400 33.58
56 111130 SAIDA ANRH 266,750 174,400 33.80
57 111201 OUED TARIA 262,350 204,850 45.95
58 111202 OUM EL DJIRANE 283,000 173,400 34.24
59 111203 AIN BALLOUL 296,850 190,550 38.90
60 111204 AIN TIFRIT 290,050 182,450 36.80
61 111205 AIN SOLTANE 281,400 188,400 37.44
62 111208 SIDI MIMOUN 289,100 196,100 39.76
63 111209 BLED EL BEIDA 283,300 183,100 35.98
64 111210 TAMESNA 295,600 174,500 35.58
65 111211 SIDI BEN KADOUR MF 291,500 164,100 33.64
66 111213 EL HAZEM 272,200 168,600 32.20
67 111215 BOUCHERID MOHAMED 276,750 172,600 32.81
68 111217 BENIANE 275,000 203,150 44.52
69 111219 HASNA Dne BOUCHIKHI 277,350 194,550 39.84
70 111401 MAOUSSA 277,300 233,920 58.17
71 111402 FROHA 266,100 226,000 54.25
72 111404 AOUF M.F. 287,150 211,800 45.55
73 111405 MATEMORE 273,970 228,350 53.66
74 111407 TIGHENNIF 285,100 237,900 55.75
75 111408 KHAOUILA 282,150 243,100 60.20
76 111409 AIN FARES 277,500 245,100 60.20
77 111413 TIZI 261,500 227,800 54.71
78 111414 SIDI KADA 285,900 228,300 51.87
79 111415 AIN FEKAN MN 255,600 217,200 52.53
80 111416 SIDI ALI KERROUCHA 290,100 214,600 45.66
81 111418 NESMOTH M.F. 289,250 219,700 49.02
82 111422 MASCARA Pedo. 271,400 232,600 55.37
83 111424 GHRISS 269,200 219,800 51.34
84 111502 SAHOUET OUIZERT 247,620 215,800 50.51
85 111503 BOU HANIFIA Bge 249,000 223,600 50.38
86 111508 SFISSEF 233,750 218,800 53.65
87 111509 HACINE 255,550 243,500 50.20
88 111512 FERGOUG 259,100 250,150 49.13
89 111513 BOUHNIFIA MN 250,200 227,700 50.34
90 111517 MOHAMMADIA SAEF 261,750 257,370 41.49
91 111601 MACTA 245,450 279,700 41.09
92 111603 SIG 237,720 252,000 45.20
93 111604 OGGAZ 232,200 255,800 43.18
94 111605 BOU HENNI 247,500 255,400 42.44
95 111606 FORNAKA 250,850 278,500 41.85
96 111607 SAMOURIA 265,950 261,200 43.27
97 111608 EL GHOMRI 274,000 268,000 40.85
98 111609 BOUGHIRAT 278,000 275,000 41.30
99 111610 MOCTA DOUZ 251,250 260,200 41.41

100 111611 FERME BLANCHE 256,800 265,350 40.73
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Table A1. Cont.

Station Lambert Coordinate MFI

No. Code Name X (m) Y (m) (mm)

101 111612 BLED TAOURIA 277,000 284,600 44.64
102 111614 AIN MOUISSY 260,300 281,500 42.87
103 111615 FORNAKA 254,950 275,500 40.59
104 111616 MARAIS DE SIRAT 269,300 275,600 39.50
105 111617 FERME ASSORAIN 281,250 291,850 48.03
106 111618 SOUAFFLIOS 285,200 285,650 50.88
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