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Abstract: Canopy height is a crucial indicator for assessing the structure and function of the forest
ecosystems. It plays a significant role in carbon sequestration, sink enhancement, and promoting
green development. This study aimed to evaluate the accuracy of GEDI L2A version 2 data in
estimating ground elevation and canopy height by comparing it with airborne laser scanning (ALS)
data. Among the six algorithms provided by the GEDI L2A data, algorithm a2 demonstrated higher
accuracy than the others in detecting ground elevation and canopy height. Additionally, a relatively
strong correlation (R-squared = 0.35) was observed between rh95 for GEDI L2A and RH90 for ALS.
To enhance the accuracy of canopy height estimation, this study proposed three backpropagation (BP)
neural network inversion models based on GEDI, Landsat 8 OLI, and Landsat 9 OLI-2 data. Multiple
sets of relative heights and vegetation indices were extracted from the GEDI and Landsat datasets. The
random forest (RF) algorithm was employed to select feature variables with a cumulative importance
score of 90% for training the BP neural network inversion models. Validation against RH90 of ALS
revealed that the GEDI model outperformed the OLI or OLI-2 data models in terms of accuracy.
Moreover, the quality improvement of OLI-2 data relative to OLI data contributed to enhanced
inversion accuracy. Overall, the models based on a single dataset exhibited relatively low accuracy.
Hence, this study proposed the GEDI and OLI and GEDI and OLI-2 models, which combine the two
types of data. The results demonstrated that the combined model integrating GEDI and OLI-2 data
exhibited the highest performance. Compared to the weakest OLI data model, the inversion accuracy
R-squared improved from 0.38 to 0.74, and the MAE, RMSE, and rRMSE decreased by 1.21 m, 1.81 m,
and 8.09%, respectively. These findings offer valuable insights for the remote sensing monitoring of
forest sustainability.

Keywords: canopy height; GEDI; ALS; OLI-2; BP neural network; importance score

1. Introduction

Forest canopy height, which can reflect the productivity level of forest ecosystems
in vertical structures, is an important attribute for forest biomass estimation, forest man-
agement, and assessment of habitat quality [1–3]. Forest biomass research plays a crucial
role in the global carbon cycle, and is of great significance for understanding the response
of forest ecosystems to global climate change, as well as for formulating carbon emission
policies and mitigating global warming [4,5].

Remote-sensing technology can accurately and rapidly obtain continuous forest
information [6]. Data commonly used for estimating forest canopy height can be classified
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into optical, microwave, and lidar data [7–9]. Common optical sensors include remote
sensing instruments on satellites (such as OLI and MODIS) and cameras mounted on
unmanned aerial vehicles (UAVs) [10,11]. Optical sensors measure the radiation energy in
the visible and near-infrared bands to gather surface information. By analyzing the spec-
tral characteristics and spatial patterns of vegetation, previous studies have successfully
estimated forest height using optical remote sensing [12–15]. However, it is important to
note that optical sensors are limited by factors such as cloud cover and daylight conditions,
which make them unsuitable for cloud-dense or nighttime observations [16]. Microwave
sensors, on the other hand, can penetrate through cloud cover and forest canopies, al-
lowing them to retrieve information from the underlying surface [17]. Radar satellites
like RADARSAT and Sentinel-1, as well as synthetic aperture radar (SAR), are examples
of microwave sensors commonly used for forest canopy height inversion [18,19]. These
sensors estimate canopy height by measuring the backscattering intensity and phase of
microwave signals. Microwave signals exhibit strong penetration capabilities for vegetation
biomass estimation, but they generally have lower spatial resolution, making it challenging
to provide detailed information about the structure of vegetation [20]. Lidar sensors employ
laser beams to emit pulses of light and measure the time it takes for the signals to return
after interacting with objects on the Earth’s surface [21]. This technology enables accurate
height measurements of surface objects, including the forest canopy [22]. Lidar systems,
such as ALS and ground-based laser scanning, possess high vertical resolution, making
them particularly suitable for mapping canopy height [23,24]. However, it is worth noting
that lidar systems typically have lower horizontal resolution compared to optical and
microwave sensors [25]. Moreover, lidar measurements can be influenced by factors such
as ground cover and the density of the forest canopy [26].

A variety of data has led to diverse methods for mapping forest canopy height,
which can be grouped into parametric algorithms, physical models, and machine-learning
algorithms [19,27–30]. Parametric algorithms utilize mathematical models to establish
relationships between optical, microwave, or lidar data and ground measurements in
order to estimate canopy height [27,31]. These algorithms often rely on manually selected
features and indices, such as vegetation indices and backscatter intensity. While parametric
algorithms are user-friendly and straightforward, they may lack accuracy when dealing
with complex terrains and vegetation structures. In contrast, physical models leverage
the principles of optical, microwave, or lidar radiation transfer processes [32]. By sim-
ulating the interactions of light or beams within vegetation, these models infer canopy
height. Physical models provide a deeper understanding of the physical processes between
sensors and targets [33]; however, they require precise input parameters and assump-
tions. Machine-learning algorithms take a distinct approach by learning and establishing
mapping relationships between input data and canopy height through extensive dataset
training [34]. Common machine-learning algorithms include support vector machines,
random forests, and neural networks [35,36]. Machine-learning algorithms possess the
capability to effectively manage intricate non-linear relationships, showcasing exceptional
performance across diverse tasks [37]. The BP neural network possesses a relatively simple
structure, allowing for automatic parameter adjustment. Leveraging parallel computing
and optimization algorithms, the training process is accelerated, enabling efficient han-
dling of large-scale datasets [38]. The advancements in the BP neural network offer novel
perspectives for canopy height retrieval.

In the preceding section, we extensively discussed the data and methods employed for
canopy height retrieval, providing a thorough examination of their specific advantages and
limitations. Landsat 9 improvements include higher radiometric resolution for OLI-2 (14-bit
quantization increased from 12-bits for Landsat 8) allowing sensors to detect more subtle
differences, especially over darker areas such as water or dense forests [39]. However,
it is worth noting that research on canopy height using Landsat 9 data is still limited.
While Landsat imagery is valuable for various land cover analyses, specialized sensors
like LiDAR or radar systems are typically used for precise canopy height measurements.
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Therefore, further exploration and development are necessary to fully utilize the potential
of Landsat 9 in the assessment of canopy height. The combination of GEDI and Landsat 9
data to retrieve canopy heights demonstrates great potential for remote sensing monitoring
of forests.

2. Materials and Methods
2.1. Research Area

This study selected the Harvard Forest (HARV) as the research area, which is
a terrestrial National Ecological Observatory Network (NEON) field observation site,
as shown in Figure 1. NEON is a large-scale ecological system research project funded by
the US National Science Foundation, aiming to establish an ecological observation network
that covers the entire United States. It consist of 47 terrestrial sites, 34 freshwater sites, and
4 marine sites [40].
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Figure 1. Geographical location of the research area: (a) research area location; (b) the location of
HARV on Landsat 8/9 imagery; and (c) HARV topographic map.

HARV is located approximately 65 miles west of Boston, Massachusetts in the county
of Worcester, with an average elevation of 348 m, an annual average temperature of
7.4 ◦C, and an annual average precipitation of 1080 mm. The dominant vegetation consists
of regenerating eastern deciduous forest, composed of red oak (Quercus rubra), red maple
(Acer rubrum), and white pine (Pinus strobus), with sublayers of shrubs, trees, ferns, and
flowering herbaceous plants that are more common in humid areas.

2.2. Data Acquisition and Processing
2.2.1. ALS Data Processing

The ALS data used in the study were obtained from NEON field observation stations
in August 2022. The digital terrain model (DTM) and digital surface model (DSM) extracted
from ALS data were verified with field measurements [41], with a spatial resolution of
1 m and horizontal and vertical accuracies of 5–15 cm and 5–35 cm, respectively. The DTM
incorporates height information of the ground and other surface objects, facilitating a more
precise depiction of the overall terrain. The canopy height model (CHM) is derived by
subtracting the DTM from the DSM [42], enabling the isolation of vegetation height while
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mitigating the impact of terrain and other surface characteristics. Considering the GEDI
footprint size of approximately 25 m, the initial DTM and CHM were resampled to 25 m,
with the former representing the mean value (DTMmean) and the latter representing the
90th percentile value (RH90) [43], to evaluate the accuracy of GEDI L2A data in retrieving
ground elevation and forest canopy height. Moreover, RH90 was employed to assess
the performance of the BP neural network models developed in this study for accurately
estimating forest canopy height. Figure 2 shows the resampled DTM and CHM imagery.
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Figure 2. The DTM and CHM imagery of the HARV area: (a) the DTM imagery before resampling;
(b) the DTM imagery after resampling; (c) the CHM imagery before resampling; and (d) the CHM
imagery after resampling.

2.2.2. GEDI L2A Data Processing

The GEDI satellite was launched on 5 December 2018, consisting of three high-
precision laser instruments operating at a frequency of 242 Hz, with two operating in
full-power mode and one in cover mode. The cover and full-power beams can penetrate
95% and 98% of forest canopies to reach the ground, respectively, producing four ground
tracks each, for a total of eight ground observation tracks [44]. Table 1 records the relevant
parameters and description information of GEDI.

Table 1. GEDI parameters [44].

Parameter Name Parameter Size

Track height 400 km
Coverage 51.6◦ N–51.6◦ S

Repetition rate 242 Hz
Pulse width 15 ns
Wavelength 1064 nm

Footprint 25 m
Geolocation error 8 m

Along-track distances 60 m
Across-track distances 600 m
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On the basis of research objectives and the time range of data distribution, this study
used GEDI L2A version 2 data for ground elevation and forest canopy height retrieval [43].
The data acquisition information is shown in Table 2 and provided in HDF5 format, avail-
able at https://search.earthdata.nasa.gov/search?q=GEDI (accessed on 10 May 2023).

Table 2. GEDI L2A data acquisition information.

Study Area Acquisition Date File Size (GB)

HARV

4 July 2022 2.05
8 July 2022 2.35

14 July 2022 2.49
3 August 2022 2.37
9 August 2022 2.22
26 August 2022 2.20

2 September 2022 2.70
6 September 2022 1.92

23 September 2022 2.37
27 September 2022 2.28

To reduce the impact of adverse conditions such as low-energy ground reflections or
high background noise, the produced GEDI L2A elevation data may contain errors. This
issue is addressed by setting six sets of noise thresholds, signal thresholds, signal start
thresholds, and signal end thresholds for the GEDI L1B datasets (Table 3). Gaussian filters
are utilized to enhance the measurement accuracy of GEDI L2A data under various weather
conditions and geographical environments by smoothing the waveforms [45].

Table 3. GEDI L2A algorithm setting groups. σ represents the standard deviation of the background
noise level [45].

Algorithm
Setting Group

Smoothing
Width (Noise)

Smoothing
Width (Signal)

Waveform
Signal

Start Threshold

Waveform
Signal

End Threshold

a1 6.5σ 6.5σ 3σ 6σ
a2 6.5σ 3.5σ 3σ 3σ
a3 6.5σ 3.5σ 3σ 6σ
a4 6.5σ 6.5σ 6σ 6σ
a5 6.5σ 3.5σ 3σ 2σ
a6 6.5σ 3.5σ 3σ 4σ

In this study, four tracks of GEDI full-power waveform data were chosen, and specific
criteria were applied for footprint screening: ‘quality_flag’ = 1, ‘degrade_flag’ = 0, and
‘sensitivity’ ≥ 0.9 [41,46]. A total of 1861 high-quality footprints were selected for HARV
site (Figure 3). The ‘elev_lowestmode’ and ‘rh’ parameters of the GEDI L2A data were
extracted from these GEDI footprints, and all footprints, represented by red dots and green
dots, were utilized to verify the ground elevation and forest canopy height. Additionally,
these footprints were randomly assigned, with 80% of the footprints used for training the
BP neural network forest canopy height retrieval model (red points) and 20% for testing
the retrieval performance of the model (green points).

https://search.earthdata.nasa.gov/search?q=GEDI
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Figure 3. Distribution of GEDI footprints in the HARV study area.

2.2.3. Landsat 8 and 9 Data Processing

Landsat 9 is the ninth satellite in the US Landsat program. It was launched on
27 September 2021, and orbits jointly with Landsat 8, providing observations every 8 days.
It carries the OLI-2, a second-generation land imager with nine spectral bands, which
captures observations of the Earth’s surface in visible, near-infrared, and shortwave infrared
bands. The radiometric measurement accuracy has been improved from Landsat 8 OLI’s
12-bit to 14-bit quantization, and the overall signal-to-noise ratio has been slightly increased,
enabling the detection of more biological information in dense forests [47]. The satellite
parameters are shown in Table 4.

Table 4. Parameters of Operational Land Imager 2 sensor.

Band Name Band Range (µm) Spatial Resolution (m)

Band 1 Coastal 0.43–0.45 30
Band 2 Blue 0.45–0.51 30

Band 3 Green 0.53–0.59 30
Band 4 Red 0.64–0.67 30
Band 5 NIR 0.85–0.88 30

Band 6 SWIR 1 1.57–1.65 30
Band 7 SWIR 2 2.11–2.29 30

Band 8 PAN 0.50–0.68 15
Band 9 Cirrus 1.36–1.38 30
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According to the acquisition time and weather conditions of the ALS data, Landsat
8 and 9 satellite imagery were selected for this study, as shown in Table 5. The HARV
study area was meticulously selected to ensure a cloud-free environment, guaranteeing
unobstructed visibility for the analysis (refer to Figure 4). The selected Landsat 8 and
9 satellite imagery used in this study are Level-1T products, meticulously corrected for
terrain distortions. To obtain accurate surface reflectance, the remote-sensing images
underwent radiometric calibration, converting the grayscale values to radiance values
using Equation (1). Furthermore, the FLAASH module in ENVI was employed to perform
atmospheric correction, converting the radiance values to actual surface reflectance [48].

L =
DN

a
+ L0 (1)

Table 5. Landsat data acquisition information.

Sensor Path/Row Study Area Acquisition Date

OLI 013/030
HARV

6 August 2022
OLI-2 013/030 14 August 2022
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HARV study area in Landsat satellite imagery).

In the Equation (1), L represents radiance, DN represents the grayscale value of
the sensor, and a and L0 are from the satellite data file, representing the gain and offset
values, respectively.

2.3. Forest Canopy Height Inversion Model Construction
2.3.1. BP Neural Network

BP neural networks are extensively employed in supervised learning tasks, effectively
adjusting weights through backpropagation to minimize loss [49]. The process encompasses
network initialization, forward propagation, loss calculation, backpropagation, and weight
updating [50,51]. Notably proficient in classification and regression, they necessitate
meticulous attention to network structure, hyperparameters, and adversities like vanishing
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gradients [52]. Diverging from traditional networks, they leverage backpropagation, non-
linear activation functions, multiple layers, augmented expressiveness, and improved
training efficiency [53]. These facets bolster their eminence in neural network applications.

2.3.2. Activation Function

Activation functions serve to overcome the limitations of linear models by introducing
non-linear components that enhance the expressiveness of the models [54,55]. Three types
of activation functions are commonly used in BP neural networks: logistic Equation (2),
ReLU Equation (3), and tanh Equation (4).

log istic =
1

1 + e−x (2)

The logistic takes values between 0 and 1, is monotonic and continuous, and is
everywhere differentiable, with near-saturation zones on the left and right, which can easily
cause the gradient to disappear [56–58]. Special care should be taken when initializing the
weight matrix to prevent saturation from causing the network to barely learn.

ReLU(x) =
{

0
x

x < 0
x >= 0

(3)

The output of ReLU is still non-zero symmetric, has no exponential operations
compared with logistic, is computationally simple and efficient, converges faster, does
not saturate in the positive interval direction, and can solve the problem of vanishing
gradients [59,60].

tanh(x) =
ex − e−x

ex + e−x (4)

The tanh takes values between −1 and 1, is monotonically continuous, is everywhere
differentiable, has an approximate saturation zone, and has a larger range and faster
convergence than logistic because the slope is greater in the region around 0, which
speeds up the convergence [57,61]. ReLU effectively addresses the vanishing gradient
problem, speeds up computation, and promotes sparse representation. These qualities
enhance training efficiency and improve the expressive power of the neural network. ReLU
activation function is selected for the BP neural network model due to its advantageous
properties in this study.

2.3.3. Determination of the Number of Neurons in the Hidden Layer

Choosing the appropriate number of neurons in the hidden layer is crucial in achieving
optimal performance in a neural network. Insufficient neurons can result in underfitting,
where the model fails to capture complex patterns and exhibits poor performance [62,63].
A larger number of neurons can increase the model’s capacity to learn intricate relationships
in the data, but it may also increase the risk of overfitting [64]. The determination of the
number of neurons in the hidden layer is derived from the empirical Equation (5) [65]:

Q =
√

m + n + α (5)

where the Q is the number of hidden layer neurons, m is the number of input layer features,
n is the number of output layers, and α takes values between 0 and 10.

2.3.4. Independent Variables Extraction

Multi-spectral data, with their diverse spectral characteristics and vegetation indices,
along with LiDAR data, are both pivotal for accurately estimating forest canopy height [66].
Multi-spectral data capture a wide range of spectral information, offering valuable insights
into vegetation health and structure. They enable the calculation of various vegetation
indices that aid in canopy height estimation. LiDAR data employ laser pulses to directly
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measure canopy height, ensuring precise and reliable measurements. Integrating these
data types yields a comprehensive and accurate estimation of forest canopy height [66,67].
The construction of remote-sensing indicators is a prerequisite and key step for canopy
height retrieval [68]. Different types and sources of feature variables reflect the differences
in retrieval targets from different dimensions. Based on the relevant literature [69–71], this
study focuses on extracting multiple relative heights from GEDI L2A data and multiple
vegetation indices from Landsat 8 and 9 data (Table 6). The extracted variables are then
filtered using importance scores and input into a BP neural network model to achieve
forest canopy height inversion. Considering the disparate resolutions of Landsat imagery,
GEDI L2A, and ALS data, this study employs the center coordinates of GEDI footprints
as a reference for variable extraction [72]. This methodology guarantees the alignment
and comparability of extracted variables, effectively addressing the challenge posed by
resolution differences in the data sources.

Table 6. Summary of metrics computed from GEDI L2A data and Landsat data.

Independent Variable Variable Information References

rh25, rh50, rh60, rh75, rh85, rh90, rh95, rh100 Relative height metrics at
(25, 50, 60, 75, 85, 90, 95, 100)% –

EVI EVI = 2.5 ∗
(

B5 − B4
B5 + 6 ∗ B4 − 7 ∗ B2 + 1

)
[73]

NDVI NDVI = (B5− B4)/(B5 + B4) [74]
SAVI SAVI = (1 + L)(B5 − B4)

B5 + B4 + L (L = 0.5) [75]
SLAVI SLAVI = B5

B4 + B7 [76]
RVI RVI = B5/B4 [77]
VI3 VI3 = B3

B4 + B5 [78]
PVI PVI = (B5 − a ∗ B4 − b)

(
√

1 + a2)
(

a − slope o f the soil line
b − gradient o f the soil line) [79]

SARVI (1 + L) B5 − 2 ∗ B4 + B2
(B5 + 2 ∗ B4 − B2 + L) (L = 0.5) [80]

DVI DVI = B5− B4 [81]
ARVI ARVI = B5 − 2 ∗ B4 + B2

B5 + 2 ∗ B4 − B2 [80]
TCG Greenness of TCT [82]
TCB Brightness of TCT [82]
TCW Wetness of TCT [82]

2.3.5. Importance Analysis of Independent Variables

Feature dimensionality reduction through variable selection is a critical aspect of
machine learning that significantly improves computational efficiency. In this study, the
random forest algorithm was employed to determine the importance scores of each feature,
quantifying their contributions to individual trees within the random forest ensemble.
These scores were then averaged and ranked to identify the most influential features. The
analysis focused on the HARV study area, utilizing a dataset of 1861 samples for random
forest model training.

The importance scores revealed that the GEDI relative height feature exhibited high
sensitivity to forest canopy height, consistently outperforming the Landsat vegetation index
feature (refer to Figure 5). For model construction, the top variables with a cumulative
contribution of 90% were selected to reduce the dimensionality of the feature set (red bars in
Figure 5). This approach effectively retained the essential information required for accurate
forest canopy height predictions while reducing computational complexity.

After filtering the features based on their importance scores, a control experiment was
conducted to invert the forest canopy height. In this experiment, the same vegetation index
feature variables were selected for both the OLI and OLI-2 models. Similarly, the GEDI and
OLI, as well as the GEDI and OLI-2 models, used the same set of feature variables as input
(refer to Table 7). This approach ensures consistency and comparability among the different
models, enabling a rigorous evaluation of the inversion results. This control experiment
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helps validate the effectiveness and reliability of the chosen feature variables in the forest
canopy height inversion process.
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Figure 5. Variable importance scores in HARV study area: (a) is the result of independent variables
selection from GEDI L2A data; (b) is the result of independent variables selection from Landsat
8 data; (c) is the result of independent variables selection from Landsat 9 data; (d) is the result
of independent variables selection from GEDI L2A and Landsat 8 data; and (e) is the result of
independent variables selection from GEDI L2A and Landsat 9 data (red bars indicate variables with
a cumulative importance score of 90% and the green bars indicate additional variables).

Table 7. Summary of independent variables for the inverse model.

Model Independent Variables Number of Independent
Variables

GEDI rh75, rh60, rh85, rh95, rh100,
rh25, rh90 7

OLI/OLI-2 SLAVI, TCB, VI3, EVI, ARVI,
TCG, TCW, DVI, PVI 9

GEDI and OLI/OLI-2
rh75, rh60, rh85, rh95, VI3,

SLAVI, rh90, rh100, EVI, rh25,
rh50, DVI, TCW

13

2.3.6. Model Construction

The models utilized in this study incorporate a single hidden layer, striking a delicate
balance between complexity and training efficiency, while maintaining exceptional expres-
sive capabilities [83]. The number of neurons Q in the hidden layer of model is calculated
by Equation (5). Table 8 presents the computed number of hidden layer neurons for each
model, which were determined through a combination of 10-fold cross-validation and
Python’s grid search. The MLPRegressor function of Python’s sklearn package was used
to train the BP neural network forest canopy height inversion model, with a maximum
number of 2000 iterations, a learning rate of 0.001, the Adam optimizer, and default values
were used for other parameters [84–86]. The activation function of the hidden layer was
the ReLU, and the output layer function used was the linear function.



Sustainability 2023, 15, 10434 11 of 20

Table 8. BP neural network model node layer settings.

Data Group
Number of Neurons

Input Layer Hidden Layer Output Layer

GEDI 7 9 1
OLI 9 8 1

OLI-2 9 8 1
GEDI and OLI 13 11 1

GEDI and OLI-2 13 11 1

2.4. Accuracy Verification Method

The inverse accuracy of ground elevation and forest canopy height was tested using
the coefficient of determination (R-squared), absolute mean error (MAE), root mean square
error (RMSE), and relative root mean square error (rRMSE). A closer value of R-squared to
1 corresponds to a high model accuracy, and smaller MAE, RMSE and rRMSE correspond
to the predicted value of the regression model being closer to the actual measured value.
The calculation equations are as follows:

R2 = 1−

m
∑

i=1
(yi − xi)

2

m
∑

i=1
(yi − y)2

(6)

MAE =
1
m

m

∑
i=1
|yi − xi| (7)

RMSE =

√√√√√ m
∑

i=1
(yi − xi)

2

m
(8)

rRMSE =
100%

y

√√√√√ m
∑

i=1
(yi − xi)

2

m
(9)

where m is the total number of samples, yi is the validation value, xi is the predicted value
and y is the mean of the validation values.

3. Results
3.1. Ground Elevation Inversion Using GEDI L2A Data

The GEDI L2A version 1 data utilize the default algorithm a1 for terrain elevation
estimation. However, in version 2 data, the algorithm for terrain elevation estimation varies
depending on the type of vegetation function, as specified in Table 3. For densely wooded
areas, an algorithm with a lower signal threshold may be preferred to accurately estimate
terrain elevation [87].

In the HARV study area, a total of 1861 valid footprints were utilized for accuracy
verification to assess the capability of GEDI L2A data in accurately estimating ground
elevation and forest canopy height. According to the GEDI L2A algorithms, six sets
of footprint point ground elevations were extracted and utilized for conducting control
experiments alongside the ALS data. The scatter plot (Figure 6) reveals that algorithm
a2 achieved the highest accuracy, with an RMSE of less than 4 m and a rRMSE of approx-
imately 1.5%. Algorithms a1 and a4 demonstrated comparable accuracy because they
shared the same signal smoothing width and signal end threshold. However, algorithm
a5 exhibited the poorest accuracy, with an RMSE as high as 9.76 m, making it the least
accurate among the tested algorithms.
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3.2. Forest Canopy Height Inversion Using GEDI L2A Data

The relative height parameter ‘rh’ from the default algorithm of GEDI L2A data
was initially extracted. It consisted of 11 height metrics (rh90 to rh100), which indicate
the relative height of vegetation at 90% to 100% of the total accumulated energy of the
waveform at each footprint. These parameters were then analyzed in comparison to the
resampled RH90 derived from the ALS data. The results of this analysis are presented
in Table 9.

Table 9. Comparison of relative height parameters from GEDI L2A default algorithm with ALS-RH90.

Relative Height
Evaluation Indicator

R-Squared MAE (m) RMSE (m) rRMSE

rh90 0.30 3.66 5.50 24.04%
rh91 0.32 3.58 5.43 23.72%
rh92 0.33 3.51 5.36 23.42%
rh93 0.34 3.45 5.29 23.12%
rh94 0.35 3.41 5.24 22.89%
rh95 0.35 3.41 5.22 22.81%
rh96 0.34 3.44 5.24 22.88%
rh97 0.32 3.54 5.29 23.10%
rh98 0.28 3.71 5.42 23.68%
rh99 0.22 4.07 5.69 24.85%
rh100 0.04 4.95 6.38 27.87%

Based on the results presented in Table 9, it is evident that the accuracy of canopy
height inversion gradually increases from rh90 to rh95, followed by a decrease from rh95
to rh100. As a result, the rh95 parameter of GEDI L2A data is tentatively considered to
be more effective for achieving canopy height inversion. Building on these findings, the
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study extracted the rh95 values for six different algorithms applied to GEDI L2A data. The
subsequent comparison experiment, as shown in Figure 7, demonstrates that algorithm
a5 exhibits poor accuracy in canopy height inversion, whereas algorithm a2 consistently
achieves the highest level of accuracy.
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3.3. BP Neural Network Model Inversion Results

In Figure 3, we divided the sample points into two sets, using 80% for model training
and reserving 20% (373 points) for model validation. To enhance model training efficiency
and achieve higher accuracy, refer to Tables 7 and 8 for the chosen model input features and
parameter settings. In the HARV study area, we developed three models based on single
data sources and two models using combined data sources (refer to Figure 8). Among
the single-data models, the GEDI model demonstrated superior accuracy compared to
the OLI and OLI-2 models, benefiting from the direct retrieval of forest canopy structural
parameters provided by GEDI data, which exhibited higher overall importance scores than
subsequent data sources. The OLI-2 data, in comparison to OLI, enabled the detection of
denser forests, resulting in increased inversion accuracy with an elevated R-squared of
0.42 and a reduced RMSE of 0.18 m. The joint models showed comparable accuracy but
consistently outperformed any single-data model. The optimal GEDI and OLI-2 model
(R-squared of 0.75, MAE of 2.20 m, RMSE of 3.11 m, and rRMSE of 13.97%) showcased
an enhanced R-squared by 0.37 and a decreased RMSE by 1.81 m compared to the least
performing OLI model (R-squared of 0.38, MAE of 3.41 m, RMSE of 4.92 m, and rRMSE of
22.06%). The overestimation of forest canopy height in areas below 10 m may be attributed
to limitations in sensor resolution, data noise, inadequate training samples, and flawed
model assumptions.
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4. Discussion

The GEDI L2A data provide six algorithms (Table 3) to control the waveform length
and improve the measurement accuracy of GEDI L2A under different meteorological
conditions and geographic environments by changing the waveform signal smoothing
width, signal start and signal end thresholds. The signal smoothing width is used to
eliminate noise, but a value that is too small cannot effectively remove noise, while a value
that is too large can cause signal distortion. The signal start threshold is used to detect the
starting position of the signal and affects the highest value of the forest canopy. The signal
end threshold is used to obtain the ending position of the signal and affects the lowest
value of the ground.

The analysis of various algorithms for GEDI L2A ground elevation reveals that algo-
rithm a2 exhibits the highest accuracy, while algorithm a5 demonstrates the lowest accuracy
(refer to Figure 6). Algorithms a1, a3, and a4 have higher signal end thresholds compared to
algorithm a2, leading to the detection of higher levels of noise relative to the actual ground,
thus resulting in underestimated values for ground elevation. Conversely, algorithm a5
has a lower signal end threshold than algorithm a6, resulting in a wider range of ground
elevation detection but lower overall accuracy.

The default algorithm, rh95, for forest canopy height inversion in GEDI L2A data,
demonstrates the highest accuracy, consistent with findings from relevant scholarly
studies [43,88–90]. However, in comparison to their study, there are some factors in our
study that could have contributed to less accuracy. Firstly, the sample size in our study
was relatively small, which could have limited the representativeness of the data. Addi-
tionally, we did not conduct a separate analysis of the GEDI L2A data collected during
the day and night, which could have resulted in variations in the accuracy of canopy
height estimates. To address these limitations and improve the accuracy of our results,
we collected additional samples to ensure temporal consistency between ALS data and
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GEDI L2A data. This allowed for more precise and reliable estimates of canopy height in
the study area. Among the six algorithms extracted from GEDI L2A data and analyzed
against airborne data, algorithm a2 exhibits the highest accuracy, while algorithm a5 shows
the lowest accuracy. These results align with the outcomes of ground elevation inversion.
Algorithm a5, characterized by longer waveform lengths and lower end thresholds, tends
to overestimate canopy height. Among the analyzed algorithms, algorithm a2 exhibits
waveform lengths comparable to algorithm a5, while delivering more accurate estimations
of forest canopy height.

In this paper, five forest canopy height inversion models were developed to estimate
forest canopy height in the study area using BP neural network. Compared to the GEDI
model, the OLI and OLI-2 models exhibit relatively lower accuracy in the inversion of forest
canopy height, which can be attributed to the characteristics of the data used. The analysis
of Figure 5 reveals that the importance scores of vegetation indices extracted from OLI-2
data have larger deviations, while those from OLI data are relatively more concentrated.
Although the OLI-2 model demonstrates slightly higher accuracy than the OLI model, it is
evident that the improvement in data quality offered by OLI-2 can contribute to enhancing
the precision of forest canopy height inversion to a certain degree.

Although the combined model of GEDI and Landsat data has yielded successful
results, it is crucial to address potential sources of error and uncertainty. Firstly, the BP
neural network model used for forest canopy height mapping exhibits inherent uncertainty.
The accuracy and representativeness of the training data significantly impact the model’s
performance [91–93]. Insufficient and incomplete training data can result in inaccurate
predictions in unknown scenarios. Overfitting, a common issue in BP neural network
models, can lead to excellent performance on training data but poor performance on new
data [94,95]. To mitigate overfitting, suitable regularization methods and optimization
strategies must be employed. Additionally, the selection of hyperparameters can affect the
model’s uncertainty [96].

Furthermore, in our comparative experiments, we chose the same independent vari-
ables to facilitate model comparisons. However, this approach may inadvertently exclude
variables with high importance scores, leading to reduced prediction accuracy. The cal-
culation of independent variable importance scores was performed using all samples,
while only 20% of the samples were used for model validation, potentially introducing
inappropriate input features. Moreover, the determination of the number of hidden layers
and neurons in the hidden layers based on empirical methods raises the question of their
suitability in the current research context.

Future studies should focus on refined independent-variable selection and meticulous
exploration of model hyperparameters. These efforts will enhance the understanding and
management of uncertainty in the BP neural network model, providing more reliable forest
canopy height mapping results and serving as a robust foundation for decision-making
and practical applications.

5. Conclusions

Forest canopy height serves as a vital parameter for quantifying forest biomass and
carbon storage. GEDI has acquired a substantial amount of global laser point data since
its launch. However, data accuracy and reliability are influenced by terrain variations and
vegetation cover. Landsat data offers advantages such as high spatial resolution, long time
series, and multiple spectral bands, providing detailed surface information. Due to GEDI’s
direct retrieval of forest structural parameters, it achieves higher precision in canopy height
inversion compared to Landsat data. GEDI and Landsat provide distinct surface feature
information, and this study combines both data types to construct a forest canopy height
inversion model. The combined model exhibits significantly superior accuracy compared
to single-data models, effectively enhancing forest canopy height inversion accuracy. We
observed that the practicality of the combined inversion model diminishes when studying
smaller regions with limited GEDI footprint coverage. Compared to GEDI, ICESat-2’s
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laser altimeter enables a higher vertical resolution of approximately 10 cm and offers more
ground sampling points. The capability of ICESat-2 in canopy height inversion for forests
warrants exploration. In future research, we can extract ground sample points using GEDI
and ICESat-2 data, integrate them with optical remote sensing imagery, and construct
multiple machine-learning models to achieve large-scale forest canopy height estimation
at regional scales. Enhancing the precision of forest canopy height estimation facilitates
more accurate assessment of carbon storage and biomass. This advancement enables us
to effectively manage and protect valuable forest resources, drive the development of a
sustainable green economy, and make significant contributions to addressing the challenges
of climate change and achieving sustainable development goals.

Author Contributions: Conceptualization, W.Z. and F.Y.; methodology, Z.Q.; software, F.Y. and
X.Z.; validation, N.H., X.Z. and Z.L.; formal analysis, Y.L. and Y.X.; resources, F.Y.; data curation,
Y.L.; writing—original draft preparation, F.Y. and W.Z.; writing—review and editing, F.Y. and Z.L.;
visualization, F.Y.; supervision, Z.L.; project administration, W.Z.; funding acquisition, W.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key R&D Program of China (2016YFC1400904)
and the scientific innovation program project by the Shanghai Committee of Science and Technology
(Grant No. 20dz1206501).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in
the study.

Data Availability Statement: All remote-sensing data used in this study are openly and freely
available. ALS data from the National Ecological Observatory Network (NEON) in the United
States are available from https://data.neonscience.org/data-products/explore (accessed on 10 May
2023). GEDI data are available at https://www.earthdata.nasa.gov (accessed on 10 May 2023). The
Landsat 8/9 data are available via the USGS Earth Resources Observation and Science (EROS) Center
(https://earthexplorer.usgs.gov, accessed on 10 May 2023).

Acknowledgments: The authors acknowledge the support of the NEON project, the GEDI Mission
Team, and the USGS Earth Resources Observation and Science Center for providing ALS datasets,
GEDI L2A, and Landsat data, respectively.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alexander, C.; Korstjens, A.H.; Hill, R.A. Influence of micro-topography and crown characteristics on tree height estimations in

tropical forests based on lidar canopy height models. Int. J. Appl. Earth Obs. Geoinf. 2018, 65, 105–113. [CrossRef]
2. Asner, G.P.; Mascaro, J. Mapping tropical forest carbon: Calibrating plot estimates to a simple lidar metric. Remote Sens. Environ.

2014, 140, 614–624. [CrossRef]
3. Lucas, R.; Van De Kerchove, R.; Otero, V.; Lagomasino, D.; Fatoyinbo, L.; Omar, H.; Satyanarayana, B.; Dahdouh-Guebas, F.

Structural characterisation of mangrove forests achieved through combining multiple sources of remote sensing data. Remote
Sens. Environ. 2020, 237, 111543. [CrossRef]

4. Tuominen, S.; Eerikäinen, K.; Schibalski, A.; Haakana, M.; Lehtonen, A. Mapping biomass variables with a multi-source forest
inventory technique. Silva Fenn. 2010, 44, 109–119. [CrossRef]

5. Hu, T.; Su, Y.; Xue, B.; Liu, J.; Zhao, X.; Fang, J.; Guo, Q. Mapping global forest aboveground biomass with spaceborne lidar,
optical imagery, and forest inventory data. Remote Sens. 2016, 8, 565. [CrossRef]

6. Lefsky, M.A.; Cohen, W.B.; Parker, G.G.; Harding, D.J. Lidar remote sensing for ecosystem studies: Lidar, an emerging remote
sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation
structural attributes and should be of particular interest to forest, landscape, and global ecologists. BioScience 2002, 52, 19–30.
[CrossRef]

7. Ghosh, A.; Fassnacht, F.E.; Joshi, P.K.; Koch, B. A framework for mapping tree species combining hyperspectral and lidar data:
Role of selected classifiers and sensor across three spatial scales. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 49–63. [CrossRef]

8. Jin, S.; Su, Y.; Gao, S.; Hu, T.; Liu, J.; Guo, Q. The transferability of random forest in canopy height estimation from multi-source
remote sensing data. Remote Sens. 2018, 10, 1183. [CrossRef]

9. Shao, Z.; Zhang, L.; Wang, L. Stacked sparse autoencoder modeling using the synergy of airborne lidar and satellite optical and
sar data to map forest above-ground biomass. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5569–5582. [CrossRef]

https://data.neonscience.org/data-products/explore
https://www.earthdata.nasa.gov
https://earthexplorer.usgs.gov
https://doi.org/10.1016/j.jag.2017.10.009
https://doi.org/10.1016/j.rse.2013.09.023
https://doi.org/10.1016/j.rse.2019.111543
https://doi.org/10.14214/sf.458
https://doi.org/10.3390/rs8070565
https://doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
https://doi.org/10.1016/j.jag.2013.05.017
https://doi.org/10.3390/rs10081183
https://doi.org/10.1109/JSTARS.2017.2748341


Sustainability 2023, 15, 10434 17 of 20

10. Klosterman, S.; Melaas, E.; Wang, J.A.; Martinez, A.; Frederick, S.; O’Keefe, J.; Orwig, D.A.; Wang, Z.; Sun, Q.; Schaaf, C.; et al.
Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (uav) photography. Agric. For. Meteorol. 2018,
248, 397–407. [CrossRef]

11. Lu, B.; He, Y. Species classification using unmanned aerial vehicle (uav)-acquired high spatial resolution imagery in a heteroge-
neous grassland. ISPRS J. Photogramm. Remote Sens. 2017, 128, 73–85. [CrossRef]

12. Kayitakire, F.; Hamel, C.; Defourny, P. Retrieving forest structure variables based on image texture analysis and ikonos-2 imagery.
Remote Sens. Environ. 2006, 102, 390–401. [CrossRef]

13. Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next landsat satellite: The landsat data continuity mission. Remote Sens. Environ. 2012,
122, 11–21. [CrossRef]

14. Zhu, X.; Wang, C.; Nie, S.; Pan, F.; Xi, X.; Hu, Z. Mapping forest height using photon-counting lidar data and landsat 8 oli data:
A case study in virginia and north carolina, USA. Ecol. Indic. 2020, 114, 106287. [CrossRef]

15. Wang, Z.; Schaaf, C.B.; Lewis, P.; Knyazikhin, Y.; Schull, M.A.; Strahler, A.H.; Yao, T.; Myneni, R.B.; Chopping, M.J.; Blair, B.J.
Retrieval of canopy height using moderate-resolution imaging spectroradiometer (modis) data. Remote Sens. Environ. 2011,
115, 1595–1601. [CrossRef]

16. Gupta, P.; Christopher, S.A.; Wang, J.; Gehrig, R.; Lee, Y.; Kumar, N. Satellite remote sensing of particulate matter and air quality
assessment over global cities. Atmos. Environ. 2006, 40, 5880–5892. [CrossRef]

17. Smith, L.C. Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrol. Process. 1997, 11, 1427–1439.
[CrossRef]

18. Kumar, P.; Krishna, A.P. Insar-based tree height estimation of hilly forest using multitemporal radarsat-1 and sentinel-1 sar data.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 5147–5152. [CrossRef]

19. Pourshamsi, M.; Xia, J.; Yokoya, N.; Garcia, M.; Lavalle, M.; Pottier, E.; Balzter, H. Tropical forest canopy height estimation from
combined polarimetric sar and lidar using machine-learning. ISPRS J. Photogramm. Remote Sens. 2021, 172, 79–94. [CrossRef]

20. Niculescu, S.; Lardeux, C.; Grigoras, I.; Hanganu, J.; David, L. Synergy between lidar, radarsat-2, and spot-5 images for the
detection and mapping of wetland vegetation in the danube delta. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016,
9, 3651–3666. [CrossRef]

21. Mallet, C.; Bretar, F. Full-waveform topographic lidar: State-of-the-art. ISPRS J. Photogramm. Remote Sens. 2009, 64, 1–16.
[CrossRef]

22. White, J.C.; Wulder, M.A.; Vastaranta, M.; Coops, N.C.; Pitt, D.; Woods, M. The utility of image-based point clouds for forest
inventory: A comparison with airborne laser scanning. Forests 2013, 4, 518–536. [CrossRef]

23. Wilkes, P.; Jones, S.D.; Suarez, L.; Mellor, A.; Woodgate, W.; Soto-Berelov, M.; Haywood, A.; Skidmore, A.K. Mapping forest
canopy height across large areas by upscaling als estimates with freely available satellite data. Remote Sens. 2015, 7, 12563–12587.
[CrossRef]

24. Ben-Arie, J.R.; Hay, G.J.; Powers, R.P.; Castilla, G.; St-Onge, B. Development of a pit filling algorithm for lidar canopy height
models. Comput. Geosci. 2009, 35, 1940–1949. [CrossRef]

25. Disney, M.I.; Kalogirou, V.; Lewis, P.; Prieto-Blanco, A.; Hancock, S.; Pfeifer, M. Simulating the impact of discrete-return lidar
system and survey characteristics over young conifer and broadleaf forests. Remote Sens. Environ. 2010, 114, 1546–1560. [CrossRef]

26. Ma, Q.; Su, Y.; Guo, Q. Comparison of canopy cover estimations from airborne lidar, aerial imagery, and satellite imagery. IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4225–4236. [CrossRef]

27. Verrelst, J.; Rivera, J.P.; Veroustraete, F.; Muñoz-Marí, J.; Clevers, J.G.P.W.; Camps-Valls, G.; Moreno, J. Experimental sentinel-2 lai
estimation using parametric, non-parametric and physical retrieval methods—A comparison. ISPRS J. Photogramm. Remote Sens.
2015, 108, 260–272. [CrossRef]

28. Li, G.; Xie, Z.; Jiang, X.; Lu, D.; Chen, E. Integration of ziyuan-3 multispectral and stereo data for modeling aboveground biomass
of larch plantations in north China. Remote Sens. 2019, 11, 2328. [CrossRef]

29. Strahler, A.H. Vegetation canopy reflectance modeling—Recent developments and remote sensing perspectives. Remote Sens. Rev.
1997, 15, 179–194. [CrossRef]

30. Stojanova, D.; Panov, P.; Gjorgjioski, V.; Kobler, A.; Džeroski, S. Estimating vegetation height and canopy cover from remotely
sensed data with machine learning. Ecol. Inform. 2010, 5, 256–266. [CrossRef]

31. Massman, W. A comparative study of some mathematical models of the mean wind structure and aerodynamic drag of plant
canopies. Bound. Layer Meteorol. 1987, 40, 179–197. [CrossRef]

32. Pittman, J.J.; Arnall, D.B.; Interrante, S.M.; Moffet, C.A.; Butler, T.J. Estimation of biomass and canopy height in bermudagrass,
alfalfa, and wheat using ultrasonic, laser, and spectral sensors. Sensors 2015, 15, 2920–2943. [CrossRef]

33. Verstraete, M.M.; Pinty, B.; Myneni, R.B. Potential and limitations of information extraction on the terrestrial biosphere from
satellite remote sensing. Remote Sens. Environ. 1996, 58, 201–214. [CrossRef]

34. Pourshamsi, M.; Garcia, M.; Lavalle, M.; Balzter, H. A machine-learning approach to polinsar and lidar data fusion for improved
tropical forest canopy height estimation using nasa afrisar campaign data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018,
11, 3453–3463. [CrossRef]

35. Han, T.; Jiang, D.; Zhao, Q.; Wang, L.; Yin, K. Comparison of random forest, artificial neural networks and support vector machine
for intelligent diagnosis of rotating machinery. Trans. Inst. Meas. Control 2018, 40, 2681–2693. [CrossRef]

https://doi.org/10.1016/j.agrformet.2017.10.015
https://doi.org/10.1016/j.isprsjprs.2017.03.011
https://doi.org/10.1016/j.rse.2006.02.022
https://doi.org/10.1016/j.rse.2011.08.026
https://doi.org/10.1016/j.ecolind.2020.106287
https://doi.org/10.1016/j.rse.2011.02.010
https://doi.org/10.1016/j.atmosenv.2006.03.016
https://doi.org/10.1002/(SICI)1099-1085(199708)11:10&lt;1427::AID-HYP473&gt;3.0.CO;2-S
https://doi.org/10.1109/JSTARS.2019.2963443
https://doi.org/10.1016/j.isprsjprs.2020.11.008
https://doi.org/10.1109/JSTARS.2016.2545242
https://doi.org/10.1016/j.isprsjprs.2008.09.007
https://doi.org/10.3390/f4030518
https://doi.org/10.3390/rs70912563
https://doi.org/10.1016/j.cageo.2009.02.003
https://doi.org/10.1016/j.rse.2010.02.009
https://doi.org/10.1109/JSTARS.2017.2711482
https://doi.org/10.1016/j.isprsjprs.2015.04.013
https://doi.org/10.3390/rs11192328
https://doi.org/10.1080/02757259709532337
https://doi.org/10.1016/j.ecoinf.2010.03.004
https://doi.org/10.1007/BF00140075
https://doi.org/10.3390/s150202920
https://doi.org/10.1016/S0034-4257(96)00069-7
https://doi.org/10.1109/JSTARS.2018.2868119
https://doi.org/10.1177/0142331217708242


Sustainability 2023, 15, 10434 18 of 20

36. Rodriguez-Galiano, V.; Sanchez-Castillo, M.; Chica-Olmo, M.; Chica-Rivas, M. Machine learning predictive models for mineral
prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev.
2015, 71, 804–818. [CrossRef]

37. Otchere, D.A.; Arbi Ganat, T.O.; Gholami, R.; Ridha, S. Application of supervised machine learning paradigms in the prediction
of petroleum reservoir properties: Comparative analysis of ann and svm models. J. Pet. Sci. Eng. 2021, 200, 108182. [CrossRef]

38. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of deep learning: Concepts, cnn architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53.
[CrossRef] [PubMed]

39. Cao, H.; Han, L.; Li, L. Harmonizing surface reflectance between landsat-7 etm+, landsat-8 oli, and sentinel-2 msi over China.
Environ. Sci. Pollut. Res. 2022, 29, 70882–70898. [CrossRef] [PubMed]

40. Scholl, V.M.; Cattau, M.E.; Joseph, M.B.; Balch, J.K. Integrating national ecological observatory network (neon) airborne remote
sensing and in-situ data for optimal tree species classification. Remote Sens. 2020, 12, 1414. [CrossRef]

41. Liu, A.; Cheng, X.; Chen, Z. Performance evaluation of gedi and icesat-2 laser altimeter data for terrain and canopy height
retrievals. Remote Sens. Environ. 2021, 264, 112571. [CrossRef]

42. White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote sensing technologies for enhancing forest
inventories: A review. Can. J. Remote Sens. 2016, 42, 619–641. [CrossRef]

43. Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.;
Silva, C.E.; et al. Mapping global forest canopy height through integration of gedi and landsat data. Remote Sens. Environ. 2021,
253, 112165. [CrossRef]

44. Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The
global ecosystem dynamics investigation: High-resolution laser ranging of the earth’s forests and topography. Sci. Remote Sens.
2020, 1, 100002. [CrossRef]

45. Adam, M.; Urbazaev, M.; Dubois, C.; Schmullius, C. Accuracy assessment of gedi terrain elevation and canopy height estimates
in european temperate forests: Influence of environmental and acquisition parameters. Remote Sens. 2020, 12, 3948. [CrossRef]

46. Urbazaev, M.; Hess, L.L.; Hancock, S.; Sato, L.Y.; Ometto, J.P.; Thiel, C.; Dubois, C.; Heckel, K.; Urban, M.; Adam, M.; et al.
Assessment of terrain elevation estimates from icesat-2 and gedi spaceborne lidar missions across different land cover and forest
types. Sci. Remote Sens. 2022, 6, 100067. [CrossRef]

47. Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open
science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [CrossRef]

48. Watanabe, F.S.Y.; Alcântara, E.; Rodrigues, T.W.P.; Imai, N.N.; Barbosa, C.C.F.; Rotta, L.H.d.S. Estimation of chlorophyll-a
concentration and the trophic state of the barra bonita hydroelectric reservoir using oli/landsat-8 images. Int. J. Environ. Res.
Public Health 2015, 12, 10391–10417. [CrossRef]

49. Goh, A.T.C. Back-propagation neural networks for modeling complex systems. Artif. Intell. Eng. 1995, 9, 143–151. [CrossRef]
50. Zhang, G.; Xia, B.; Wang, J. Intelligent state of charge estimation of lithium-ion batteries based on l-m optimized back-propagation

neural network. J. Energy Storage 2021, 44, 103442. [CrossRef]
51. Poorani, S.; Balasubramanie, P. Seizure detection based on eeg signals using asymmetrical back propagation neural network

method. Circuits Syst. Signal Process. 2021, 40, 4614–4632. [CrossRef]
52. Hochreiter, S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertain.

Fuzziness Knowl. Based Syst. 1998, 6, 107–116. [CrossRef]
53. Lee, D.-H.; Kim, Y.-T.; Lee, S.-R. Shallow landslide susceptibility models based on artificial neural networks considering the factor

selection method and various non-linear activation functions. Remote Sens. 2020, 12, 1194. [CrossRef]
54. Varshney, M.; Singh, P. Optimizing nonlinear activation function for convolutional neural networks. Signal Image Video Process.

2021, 15, 1323–1330. [CrossRef]
55. Chen, J.-C.; Wang, Y.-M. Comparing activation functions in modeling shoreline variation using multilayer perceptron neural

network. Water 2020, 12, 1281. [CrossRef]
56. Lederer, J. Activation functions in artificial neural networks: A systematic overview. arXiv 2021, arXiv:2101.09957. [CrossRef]
57. Dubey, S.R.; Singh, S.K.; Chaudhuri, B.B. Activation functions in deep learning: A comprehensive survey and benchmark.

Neurocomputing 2022, 503, 92–108. [CrossRef]
58. Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical

outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [CrossRef]
59. Mastromichalakis, S. Alrelu: A different approach on leaky relu activation function to improve neural networks performance.

arXiv 2020, arXiv:2012.07564. [CrossRef]
60. Alhassan, A.M.; Zainon, W.M.N.W. Brain tumor classification in magnetic resonance image using hard swish-based relu activation

function-convolutional neural network. Neural Comput. Appl. 2021, 33, 9075–9087. [CrossRef]
61. Misra, D. Mish: A self regularized non-monotonic activation function. arXiv 2019, arXiv:1908.08681. [CrossRef]
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