Effects of SeNPs Fertilizer on Se and Microelement Contents, Eating and Cooking Qualities, and Volatile Organic Compounds in Rice Grains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment Design
2.2. Determination of Se and Microelement Contents
2.3. Analysis of Inorganic Se Content
2.4. Determination of Fatty Acids
2.5. Evaluation of the Chemical Properties of Rice Grains
2.6. HS-GC-IMS Assay
2.7. Statistical Analysis
3. Results and Discussion
3.1. Contents of Se and Microelements
3.2. Fatty acid Profiling and Eating and Cooking Quality Evaluation under Different Se Treatments
3.3. Impacts of SeNPs on Volatile Organic Compounds in Brown Rice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rayman, M.P. The argument for increasing selenium intake. Proc. Nutr. Soc. 2002, 61, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Blazina, T.; Sun, Y.; Voegelin, A.; Lenz, M.; Berg, M.; Winkel, L.H.E. Terrestrial selenium distribution in China is potentially linked to monsoonal climate. Nat. Commun. 2014, 5, 4717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xiao, T.; Zheng, B. Medical geology of arsenic, selenium and thallium in China. Sci. Total Environ. 2012, 421–422, 31–40. [Google Scholar] [CrossRef]
- Lucca, P.; Poletti, S.; Sautter, C. Genetic engineering approaches to enrich rice with iron and vitamin A. Physiol. Plant. 2006, 126, 291–303. [Google Scholar] [CrossRef]
- Williams, P.N.; Lombi, E.; Sun, G.; Scheckel, K.; Zhu, Y.; Feng, X.; Zhu, J.; Carey, A.; Adomako, E.; Lawgali, Y.; et al. Selenium Characterization in the Global Rice Supply Chain. Environ. Sci. Technol. 2009, 43, 6024–6030. [Google Scholar] [CrossRef]
- Kikkert, J.; Hale, B.; Berkelaar, E. Selenium accumulation in durum wheat and spring canola as a function of amending soils with selenite, selenate and or sulphate. Plant Soil 2013, 372, 629–641. [Google Scholar] [CrossRef]
- Longchamp, M.; Angeli, N.; Castrec-Rouelle, M. Selenium uptake in Zea mays supplied with selenate or selenite under hydroponic conditions. Plant Soil 2013, 362, 107–117. [Google Scholar] [CrossRef]
- Stroud, J.L.; Broadley, M.R.; Foot, I.; Fairweather-Tait, S.J.; Hart, D.J.; Hurst, R.; Knott, P.; Mowat, H.; Norman, K.; Scott, P.; et al. Soil factors affecting selenium concentration in wheat grain and the fate and speciation of Se fertilisers applied to soil. Plant Soil 2010, 332, 19–30. [Google Scholar] [CrossRef]
- Ros, G.H.; van Rotterdam, A.M.D.; Bussink, D.W.; Bindraban, P.S. Selenium fertilization strategies for bio-fortification of food: An agro-ecosystem approach. Plant Soil 2016, 404, 99–112. [Google Scholar] [CrossRef]
- Danso, O.P.; Asante-Badu, B.; Zhang, Z.; Song, J.; Wang, Z.; Yin, X.; Zhu, R. Selenium Biofortification: Strategies, Pro-gress and Challenges. Agriculture 2023, 13, 416. [Google Scholar] [CrossRef]
- Hartikainen, H. Biogeochemistry of selenium and its impact on food chain quality and human health. J. Trace Elem. Med. Biol. 2005, 18, 309–318. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, Y.; Li, J.; Wan, Y.; Huang, Q.; Guo, Y.; Li, H. Effects of Different Forms of Selenium Fertilizers on Se Accumulation, Distribution, and Residual Effect in Winter Wheat–Summer Maize Rotation System. J. Agric. Food Chem. 2017, 65, 1116–1123. [Google Scholar] [CrossRef]
- Kumar, A.; Prasa, K.S. Role of Nano-Selenium in health and environment. J. Biotechnol. 2021, 325, 152–163. [Google Scholar]
- Pilon-Smits, E.A.; Quinn, C.F.; Tapken, W.; Malagoli, M.; Schiavon, M. Physiological functions of beneficial elements. Curr. Opin. Plant Biol. 2009, 12, 267–274. [Google Scholar] [CrossRef]
- El-Badri, A.M.; Hashem, A.M.; Batool, M.; Sherif, A.; Nishawy, E.; Ayaad, M.; Hassan, H.M.; Elrewainy, I.M.; Wang, J.; Kuai, J.; et al. Comparative efficacy of bio—Selenium nanoparticles and sodium selenite on morpho—Physiochemical attributes under normal and salt stress conditions, besides selenium detoxification pathways in Brassica napus L. J. Nanobiotechnol. 2022, 20, 163. [Google Scholar] [CrossRef]
- Silva, M.A.; de Sousa, G.F.; Corguinha, A.P.B.; de Lima Lessa, J.H.; Dinali, G.S.; Oliveira, C.; Lopes, G.; Amaral, D.; Brown, P.; Guilherme, L.R.G. Selenium biofortification of soybean genotypes in a tropical soil via Se-enriched phosphate fertilizers. Front. Plant Sci. 2022, 13, 988140. [Google Scholar] [CrossRef]
- Hossain, A.; Skalicky, M.; Brestic, M.; Maitra, S.; Sarkar, S.; Ahmad, Z.; Vemuri, H.; Garai, S.; Mondal, M.; Bhatt, R.; et al. Selenium Biofortification: Roles, Mechanisms, Responses and Prospects. Molecules 2021, 26, 881. [Google Scholar] [CrossRef]
- Lidon, F.C.; Oliveira, K.; Ribeiro, M.M.; Pelica, J.; Pataco, I.; Ramalho, J.C.; Leitão, A.E.; Almeida, A.S.; Campos, P.S.; Ribeiro-Barros, A.I.; et al. Selenium biofortification of rice grains and implications on macronutrients quality. J. Cereal Sci. 2018, 81, 22–29. [Google Scholar] [CrossRef]
- Pokhrel, G.R.; Wang, K.T.; Zhuang, H.; Wu, Y.; Chen, W.; Lan, Y.; Zhu, X.; Li, Z.; Fu, F.; Yang, G. Effect of selenium in soil on the toxicity and uptake of arsenic in rice plant. Chemosphere 2020, 239, 124712. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, S.; Shi, H.; Zhao, P.; Liu, X.; Li, F.; Deng, T.; Du, R.; Wang, X.; Wang, F. Comparison of foliar silicon and selenium on cadmium absorption, compartmentation, translocation and the antioxidant system in Chinese flowering cabbage. Ecotox. Environ. Saf. 2018, 166, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Lu, L.; Guo, Z.; Zhu, Z. Volatile compounds, affecting factors and evaluation methods for rice aroma: A review. Trends Food Sci. Technol. 2020, 97, 136–146. [Google Scholar] [CrossRef]
- Luo, H.; He, L.; Du, B.; Pan, S.; Mo, Z.; Duan, M.; Tian, H.; Tang, X. Biofortification with chelating selenium in fragrant rice: Effects on photosynthetic rates, aroma, grain quality and yield formation. Field Crop. Res. 2020, 255, 107909. [Google Scholar] [CrossRef]
- Vanavichit, A.; Yoshihashi, T. Molecular Aspects of Fragrance and Aroma in Rice. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2010; pp. 49–73. [Google Scholar]
- NY/T 2639-2014; Determination of Amylose Content in Rice–Spectrophotometry Method. China Standard Press: Beijing, China, 2014.
- NY/T 83-2017; Determination of Rice Quality. China Standard Press: Beijing, China, 2017.
- Zhang, L.; Song, H.; Guo, Y.; Fan, B.; Huang, Y.; Mao, X.; Liang, K.; Hu, Z.; Sun, X.; Fang, Y.; et al. Benefit–risk assessment of dietary selenium and its associated metals intake in China (2017–2019): Is current selenium-rich agro-food safe enough? J. Hazard. Mater. 2020, 398, 123224. [Google Scholar] [CrossRef] [PubMed]
- GB/T 22499-2008; Rich Selenium Paddy. China Standard Press: Beijing, China, 2008.
- GB 2762-2017; Food Safety National Standard Food Pollutant Limits. China Standard Press: Beijing, China, 2017.
- Hu, Y.; Norton, G.J.; Duan, G.; Huang, Y.; Liu, Y. Effect of selenium fertilization on the accumulation of cadmium and lead in rice plants. Plant Soil 2014, 384, 131–140. [Google Scholar] [CrossRef]
- Liao, G.; Xu, Y.; Chen, C.; Wu, Q.; Feng, R.; Guo, J.; Wang, R.; Ding, Y.; Sun, Y.; Xu, Y.; et al. Root application of selenite can simultaneously reduce arsenic and cadmium accumulation and maintain grain yields, but show negative effects on the grain quality of paddy rice. J. Environ. Manag. 2016, 183, 733–741. [Google Scholar] [CrossRef] [Green Version]
- Rayman, M.P. Food-chain selenium and human health: Emphasis on intake. Br. J. Nutr. 2008, 100, 254–268. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.U.; Tang, Z.; Zeng, R.; Liang, Y.; Zhang, Y.; Zheng, T.; Ei, H.H.; Ye, X.; Jia, X.; Zhu, J. Accumulation, mobilization and transformation of selenium in rice grain provided with foliar sodium selenite. J. Sci. Food Agric. 2019, 99, 2892–2900. [Google Scholar] [CrossRef]
- Yoon, M.; Lee, S.; Kang, M. The lipid composition of rice cultivars with different eating qualities. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 291–295. [Google Scholar] [CrossRef]
- Bryant, R.J.; Mcclung, A.M. Volatile profiles of aromatic and non-aromatic rice cultivars using SPME/GC–MS. Food Chem. 2011, 124, 501–513. [Google Scholar] [CrossRef]
- Jia, M.; Wang, X.; Liu, J.; Wang, R.; Wang, A.; Strappe, P.; Shang, W.; Zhou, Z. Physicochemical and volatile characteristics present in different grain layers of various rice cultivars. Food Chem. 2022, 371, 131119. [Google Scholar] [CrossRef]
- Xia, Q.; Mei, J.; Yu, W.; Li, Y. High hydrostatic pressure treatments enhance volatile components of pre-germinated brown rice revealed by aromatic fingerprinting based on HS-SPME/GC–MS and chemometric methods. Food Res. Int. 2017, 91, 103–114. [Google Scholar] [CrossRef]
- Sahin, B.; Schieberle, P. Effect of texture modification by ascorbic acid and monoglycerides on the release of aroma compounds from fresh and aged wheat dumplings. Eur. Food Res. Technol. 2020, 246, 1–11. [Google Scholar] [CrossRef]
- Xi, L.; Zhang, J.; Wu, R.; Wang, T.; Ding, W. Characterization of the Volatile Compounds of Zhenba Bacon at Different Process Stages Using GC-MS and GC-IMS. Foods 2021, 10, 2869. [Google Scholar] [CrossRef]
Count | Compound | CAS | Formula | MW | RI | RT | DT | Comment |
---|---|---|---|---|---|---|---|---|
1 | Isoamyl butyrate | 106-27-4 | C9H18O2 | 158.2 | 1064 | 853.874 | 1.9382 | |
2 | Methyl heptanoate | 106-73-0 | C8H16O2 | 144.2 | 1018.3 | 680.396 | 1.8108 | |
3 | Hexanal | 66-25-1 | C6H12O | 100.2 | 786.8 | 228.427 | 1.5821 | dimer |
36 | Hexanal | 66-25-1 | C6H12O | 100.2 | 808.9 | 259.408 | 1.2509 | monomer |
4 | trans-Ethyl crotonate | 623-70-1 | C6H10O2 | 114.1 | 827.9 | 286.887 | 1.5509 | |
5 | 1-Pentanol | 71-41-0 | C5H12O | 88.1 | 775.8 | 213.414 | 1.5338 | dimer |
48 | 1-Pentanol | 71-41-0 | C5H12O | 88.1 | 748.2 | 177.271 | 1.2013 | monomer |
6 | Pentanal | 110-62-3 | C5H10O | 86.1 | 722.9 | 147.298 | 1.3868 | |
7 | 1-Penten-3-one | 1629-58-9 | C5H8O | 84.1 | 677.7 | 106.094 | 1.3288 | |
8 | 4-Methylthiazole | 693-95-8 | C4H5NS | 99.2 | 826.5 | 284.721 | 1.3405 | monomer |
9 | 4-Methylthiazole | 693-95-8 | C4H5NS | 99.2 | 830.1 | 290.033 | 1.3652 | dimer |
10 | (2Z)-2-Penten-1-ol | 1576-95-0 | C5H10O | 86.1 | 787.1 | 228.949 | 1.4685 | |
11 | 2-Methyltetrahydrofuran-3-one | 3188-00-9 | C5H8O2 | 100.1 | 797.5 | 243.378 | 1.4306 | |
12 | (E)-2-Hexenal | 6728-26-3 | C6H10O | 98.1 | 818.2 | 272.718 | 1.5168 | |
13 | Heptaldehyde | 111-71-7 | C7H14O | 114.2 | 910.1 | 416.53 | 1.3216 | |
14 | Isobutyl butyrate | 539-90-2 | C8H16O2 | 144.2 | 929.5 | 451.76 | 1.3428 | |
15 | 2-Octanone | 111-13-7 | C8H16O | 128.2 | 989.5 | 589.916 | 1.3249 | |
16 | Isopentyl propanoate | 105-68-0 | C8H16O2 | 144.2 | 976.5 | 554.708 | 1.3449 | |
17 | Propyl butyrate | 105-66-8 | C7H14O2 | 130.2 | 926 | 445.035 | 1.2609 | |
18 | 3-Hepten-2-one | 1119-44-4 | C7H12O | 112.2 | 934.7 | 461.535 | 1.2217 | |
19 | Undefined | 901.1 | 401.09998 | 1.233 | ||||
20 | 2,2-Dimethyl-3-methylene-bicyc | 79-92-5 | C10H16 | 136.2 | 926 | 444.967 | 1.1926 | |
21 | 1-Octen-3-ol | 3391-86-4 | C8H16O | 128.2 | 989.6 | 590.446 | 1.1544 | |
22 | 2-Ethyl-5-methyl pyrazine | 13360-64-0 | C7H10N2 | 122.2 | 1010.2 | 653.265 | 1.1705 | dimer |
23 | 2-Ethyl-5-methyl pyrazine | 13360-64-0 | C7H10N2 | 122.2 | 1008.2 | 646.701 | 1.159 | monomer |
24 | Undefined | 1013.9 | 665.69995 | 1.251 | ||||
25 | (E)-2-heptenal | 18829-55-5 | C7H12O | 112.2 | 986.1 | 580.219 | 1.2515 | |
26 | butyl 2-methylbutanoate | 15706-73-7 | C9H18O2 | 158.2 | 1039.6 | 757.959 | 1.3794 | |
27 | n-butylcyclohexane | 1678-93-9 | C10H20 | 140.3 | 1030.1 | 722.635 | 1.2553 | |
28 | (E,E)-2,4-hexadienal | 142-83-6 | C6H8O | 96.1 | 934 | 460.23 | 1.4368 | |
29 | Ethyl 2-methylbutanoate | 7452-79-1 | C7H14O2 | 130.2 | 822.2 | 278.465 | 1.6455 | |
30 | 3-methyl-2-butenal | 107-86-8 | C5H8O | 84.1 | 724 | 148.552 | 1.3534 | dimer |
66 | 3-methyl-2-butenal | 107-86-8 | C5H8O | 84.1 | 761.7 | 194.501 | 1.0746 | monomer |
31 | 3-Methylbutan-1-ol | 123-51-3 | C5H12O | 88.1 | 719.2 | 143.282 | 1.2566 | dimer |
62 | 3-Methylbutan-1-ol | 123-51-3 | C5H12O | 88.1 | 718 | 142.017 | 1.2366 | monomer |
32 | cyclohexanone | 108-94-1 | C6H10O | 98.1 | 879.2 | 365.133 | 1.1492 | |
33 | ethyl acetoacetate | 141-97-9 | C6H10O3 | 130.1 | 928 | 448.884 | 1.1533 | |
34 | 5-methylfurfural | 620-02-0 | C6H6O2 | 110.1 | 962.3 | 520.224 | 1.1213 | |
35 | 4-Methyl-3-penten-2-one | 141-79-7 | C6H10O | 98.1 | 812.2 | 264.137 | 1.1225 | |
37 | 2-nonanone | 821-55-6 | C9H18O | 142.2 | 1087.4 | 950.152 | 1.4029 | |
38 | Acetophenone | 98-86-2 | C8H8O | 120.2 | 1064.4 | 855.413 | 1.5693 | |
39 | Benzyl alcohol | 100-51-6 | C7H8O | 108.1 | 1018.4 | 680.952 | 1.5018 | |
40 | N-Methylpyrrolidone | 872-50-4 | C5H9NO | 99.1 | 1037.6 | 750.05 | 1.45 | |
41 | Octanal | 124-13-0 | C8H16O | 128.2 | 1018 | 679.57 | 1.413 | |
42 | 2,3-pentanedione | 600-14-6 | C5H8O2 | 100.1 | 673.6 | 103.262 | 1.22 | |
43 | 2-ethyl-1-hexanol | 104-76-7 | C8H18O | 130.2 | 1038.6 | 754.135 | 1.8008 | |
44 | octan-1-ol | 111-87-5 | C8H18O | 130.2 | 1064.5 | 855.843 | 1.8772 | |
45 | nonanal | 124-19-6 | C9H18O | 142.2 | 1121 | 1090.663 | 1.5465 | |
46 | 3,5-Dimethyl-1,2-cyclopentanedione | 13494-07-0 | C7H10O2 | 126.2 | 1047 | 786.228 | 1.1852 | |
47 | 5-Methyl-2(3H)-furanone | 591-12-8 | C5H6O2 | 98.1 | 862.9 | 339.454 | 1.3641 | |
49 | 1,4-cineole | 470-67-7 | C10H18O | 154.3 | 1013.8 | 665.449 | 1.3233 | |
50 | 2-Methylpyrazine | 109-08-0 | C5H6N2 | 94.1 | 831.3 | 291.782 | 1.3955 | |
51 | 2-Methyl-6-methyleneoct-7-en-2 | 53219-21-9 | C10H20O | 156.3 | 1055.9 | 821.08 | 1.2213 | |
52 | 2,2,4,6,6-Pentamethylheptane | 13475-82-6 | C12H26 | 170.3 | 986.9 | 582.67 | 1.3742 | |
53 | n-Hexanol | 111-27-3 | C6H14O | 102.2 | 866.4 | 344.923 | 1.2998 | |
54 | Undefined | 847.7 | 316.25998 | 1.821 | ||||
55 | isobutyl propanoate | 540-42-1 | C7H14O2 | 130.2 | 845.9 | 313.61 | 1.6972 | |
56 | Isoamyl acetate | 123-92-2 | C7H14O2 | 130.2 | 848.4 | 317.311 | 1.755 | |
57 | 2-pinene | 80-56-8 | C10H16 | 136.2 | 928.2 | 449.146 | 1.6811 | |
58 | ethyl 3-hydroxybutanoate | 5405-41-4 | C6H12O3 | 132.2 | 910.8 | 417.691 | 1.6381 | |
59 | 2-cyclohexen-1-one | 930-68-7 | C6H8O | 96.1 | 910.8 | 417.693 | 1.3949 | |
60 | Dipentene | 138-86-3 | C10H16 | 136.2 | 1041.7 | 765.665 | 1.2225 | |
61 | 1,8-Cineole | 470-82-6 | C10H18O | 154.3 | 1038.9 | 755.168 | 1.2943 | |
63 | (E)-2-pentenal | 1576-87-0 | C5H8O | 84.1 | 744.5 | 172.601 | 1.1206 | |
68 | 3-Methyl-3-buten-1-ol | 763-32-6 | C5H10O | 86.1 | 739.6 | 166.567 | 1.1768 | dimer |
64 | 3-Methyl-3-buten-1-ol | 763-32-6 | C5H10O | 86.1 | 750.6 | 180.295 | 1.1522 | monomer |
65 | 2-Acetyl-1-pyrroline | 85213-22-5 | C6H9NO | 111.1 | 918.4 | 431.257 | 1.1311 | |
67 | ethyl trans-2-hexenoate | 27829-72-7 | C8H14O2 | 142.2 | 1047.6 | 788.327 | 1.332 | |
69 | diacetyl | 431-03-8 | C4H6O2 | 86.1 | 621.1 | 74.7 | 1.1768 | |
70 | Undefined | 914.7 | 424.62 | 1.373 | ||||
71 | 1,4-Dioxan | 123-91-1 | C4H8O2 | 88.1 | 726.1 | 150.8 | 1.3232 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Y.; Tian, X.; Qiu, T.; Cong, X.; Zheng, X.; Chen, S.; You, A.; Cheng, S.; Wu, M.; Xu, D. Effects of SeNPs Fertilizer on Se and Microelement Contents, Eating and Cooking Qualities, and Volatile Organic Compounds in Rice Grains. Sustainability 2023, 15, 10553. https://doi.org/10.3390/su151310553
Xiong Y, Tian X, Qiu T, Cong X, Zheng X, Chen S, You A, Cheng S, Wu M, Xu D. Effects of SeNPs Fertilizer on Se and Microelement Contents, Eating and Cooking Qualities, and Volatile Organic Compounds in Rice Grains. Sustainability. 2023; 15(13):10553. https://doi.org/10.3390/su151310553
Chicago/Turabian StyleXiong, Yin, Xuhong Tian, Tianci Qiu, Xin Cong, Xingfei Zheng, Shaoyu Chen, Aiqing You, Shuiyuan Cheng, Muci Wu, and Deze Xu. 2023. "Effects of SeNPs Fertilizer on Se and Microelement Contents, Eating and Cooking Qualities, and Volatile Organic Compounds in Rice Grains" Sustainability 15, no. 13: 10553. https://doi.org/10.3390/su151310553
APA StyleXiong, Y., Tian, X., Qiu, T., Cong, X., Zheng, X., Chen, S., You, A., Cheng, S., Wu, M., & Xu, D. (2023). Effects of SeNPs Fertilizer on Se and Microelement Contents, Eating and Cooking Qualities, and Volatile Organic Compounds in Rice Grains. Sustainability, 15(13), 10553. https://doi.org/10.3390/su151310553