Spatiotemporal Variation in the Coupling Relationship between Human Activities and Soil Erosion—A Case Study in the Weihe River Basin
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Area
2.2. Data Sources
2.3. Research Methodology
2.3.1. RUSLE Model
2.3.2. Entropy Method
2.3.3. Geographical Detector
2.3.4. Four-Quadrant Model
3. Result
3.1. Changes to the Dynamics of LUCC
3.2. Spatial–Temporal Variation Characteristics of Soil Erosion
3.2.1. Rationality and Validation of the Model
3.2.2. Time Variation in Soil Erosion Intensity
3.2.3. Spatial Variation in Soil Erosion Intensity
3.3. Spatial–Temporal Variation Characteristics of HAI
3.4. Analysis of Anthropogenic Driving Factors of Soil Erosion Based on Geographic Detector Model
3.5. Spatiotemporal Coupling Evolution between HAI and Soil Erosion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tan, S.; Liu, Q.; Han, S. Spatial-temporal evolution of coupling relationship between land development intensity and resources environment carrying capacity in China. J. Environ. Manag. 2022, 301, 113778. [Google Scholar] [CrossRef]
- Barhagh, S.E.; Zarghami, M.; Ghale, Y.A.G.; Shahbazbegian, M.R. System dynamics to assess the effectiveness of restoration scenarios for the Urmia Lake: A prey-predator approach for the human-environment uncertain interactions. J. Hydrol. 2021, 593, 125891. [Google Scholar] [CrossRef]
- Zhang, S.; Fan, W.; Li, Y.; Yi, Y. The influence of changes in land use and landscape patterns on soil erosion in a watershed. Sci. Total Environ. 2017, 574, 34–45. [Google Scholar] [CrossRef]
- Singh, R.; Tiwari, K.N.; Mal, B.C. Hydrological studies for small watershed in India using the ANSWERS model. J. Hydrol. 2006, 318, 184–199. [Google Scholar] [CrossRef]
- Cunha, J.E.F.; Bravo, J.V.M. Effects of environmental protection policies on fragile areas of a watershed occupied by agriculture in the Brazilian Cerrado. J. Environ. Manag. 2022, 319, 115695. [Google Scholar] [CrossRef] [PubMed]
- Huo, A.; Yang, L.; Luo, P.; Cheng, Y.; Peng, J.; Nover, D. Influence of landfill and land use scenario on runoff, evapotranspiration, and sediment yield over the Chinese Loess Plateau. Ecol. Indic. 2021, 121, 107208. [Google Scholar] [CrossRef]
- Huo, A.; Yang, L.; Peng, J.; Cheng, Y.; Jiang, C. Spatial characteristics of the rainfall induced landslides in the Chinese Loess Plateau. Hum. Ecol. Risk Assess. 2020, 26, 2462–2477. [Google Scholar] [CrossRef]
- Luo, P.; Luo, M.; Li, F.; Qi, X.; Huo, A.; Wang, Z.; He, B.; Takara, K.; Nover, D.; Wang, Y. Urban flood numerical simulation: Research, methods and future perspectives. Environ. Model. Softw. 2022, 156, 105478. [Google Scholar] [CrossRef]
- Schiettecatte, W.; D´hondt, L.; Cornelis, W.; Acosta, M.; Leal, Z.; Lauwers, N.; Almoza, Y.; Alonso, G.; Díaz, J.; Ruíz, M.; et al. Influence of landuse on soil erosion risk in the Cuyaguateje watershed (Cuba). CATENA 2008, 74, 1–12. [Google Scholar] [CrossRef]
- Foucher, A.; Evrard, O.; Cerdan, O.; Chabert, C.; Lefèvre, I.; Vandromme, R.; Salvador-Blanes, S. Deciphering human and climatic controls on soil erosion in intensively cultivated landscapes after 1950 (Loire Valley, France). Anthropocene 2021, 34, 100287. [Google Scholar] [CrossRef]
- Mhaske, S.N.; Pathak, K.; Dash, S.S.; Nayak, D.B. Assessment and management of soil erosion in the hilltop mining dominated catchment using GIS integrated RUSLE model. J. Environ. Manag. 2021, 294, 112987. [Google Scholar] [CrossRef] [PubMed]
- Sreedevi, S.; Eldho, T.I.; Jayasankar, T. Physically-based distributed modelling of the hydrology and soil erosion under changes in landuse and climate of a humid tropical river basin. CATENA 2022, 217, 106427. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, W.; Li, L.; Huang, J.; Deng, L.; Wang, Q. Effects of temporal conservation measures on water erosion processes of disturbed soil accumulation in construction projects. J. Clean. Prod. 2021, 319, 128612. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, W.; Zhao, K.; Zhou, X.; Du, P.; Guo, C.; Ju, Y.; Pu, C. Effects of land-use management on soil erosion: A case study in a typical watershed of the hilly and gully region on the Loess Plateau of China. CATENA 2021, 206, 105551. [Google Scholar] [CrossRef]
- Li, W.; Geng, J.; Bao, J.; Lin, W.; Wu, Z.; Fan, S. Analysis of Spatial and Temporal Variations in Ecosystem Service Functions and Drivers in Anxi County Based on the InVEST Model. Sustainability 2023, 15, 10153. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Shi, F.; An, Y.; Li, M.; Liu, Y. Spatio-temporal variations and coupling of human activity intensity and ecosystem services based on the four-quadrant model on the Qinghai-Tibet Plateau. Sci. Total Environ. 2020, 743, 140721. [Google Scholar] [CrossRef]
- Jia, L.; Yao, S.; Deng, Y.; Li, Y.; Hou, G.; Gong, Z. Temporal and Spatial Characteristics of Soil Erosion Risk in Weihe River Basin and Its Geographical Exploration. J. Ecol. Rural Environ. 2021, 37, 305–314. [Google Scholar] [CrossRef]
- Li, N.; Zhang, Y.; Wang, T.; Li, J.; Yang, J.; Luo, M. Have anthropogenic factors mitigated or intensified soil erosion over the past three decades in South China? J. Environ. Manag. 2022, 302, 114093. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Li, K.; Li, C.; Wen, F.; Shi, Z. Factors affecting phase change in coupling coordination between population, crop yield, and soil erosion in China’s 281 cities. Land Use Policy 2023, 132, 106761. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Xu, G. Correlation between ecosystem services value and human activity intensity based on the four-quadrant model: A case study in the International Tourism and Culture Demonstration Area, the South Anhui Province. Acta Ecol. Sin. 2022, 42, 5200–5210. [Google Scholar]
- Xu, X.; Zhao, X.; Song, X. Impacts of the returning farmland to forest (grassland) project on ecosystem services in the Weihe River Basin, China. Chin. J. Appl. Ecol. 2021, 32, 3893–3904. [Google Scholar] [CrossRef]
- Hou, K.; Tao, W.; Wang, L.; Li, X. Study on hierarchical transformation mechanisms of regional ecological vulnerability and its applicability. Ecol. Indic. 2020, 114, 106343. [Google Scholar] [CrossRef]
- Xu, C.; Jiang, Y.; Su, Z.; Liu, Y.; Lyu, J. Assessing the impacts of Grain-for-Green Programme on ecosystem services in Jinghe River basin, China. Ecol. Indic. 2022, 137, 108757. [Google Scholar] [CrossRef]
- Sun, C.; Liu, Y.; Song, H.; Li, Q.; Cai, Q.; Wang, L.; Fang, C.; Liu, R. Tree-ring evidence of the impacts of climate change and agricultural cultivation on vegetation coverage in the upper reaches of the Weihe River, northwest China. Sci. Total Environ. 2020, 707, 136160. [Google Scholar] [CrossRef]
- Park, S.; Oh, C.; Jeon, S.; Jung, H.; Choi, C. Soil erosion risk in Korean watersheds, assessed using the revised universal soil loss equation. J. Hydrol. 2011, 399, 263–273. [Google Scholar] [CrossRef]
- Zhang, W.; Fu, J. Rainfall Erosivity Estimation Under Different Rainfall Amount. Resour. Sci. 2003, 25, 35–41. [Google Scholar]
- Williams, J.R.; Arnold, J.G. A system of erosion—Sediment yield models. Soil Technol. 1997, 11, 43–55. [Google Scholar] [CrossRef]
- Cao, S.; Ouyang, M.; Zhou, W. Quantitative evaluation of soil erosion in Ningxiang City based on GIS and USLE. J. China Agric. Univ. 2018, 23, 149–157. [Google Scholar]
- Almagro, A.; Thomé, T.; Colman, C.; Pereira, R.; Junior, J.; Rodrigues, D.; Oliveira, P. Improving cover and management factor (C-factor) estimation using remote sensing approaches for tropical regions. Int. Soil Water Conserv. Res. 2019, 7, 325–334. [Google Scholar] [CrossRef]
- Zhong, D. Study on Soil Erosion in Loess Hill and Gully Area on USLE Model: A Case Study of Wuqi County; Northwest A&F University: Xianyang, China, 2012. [Google Scholar]
- Wang, Q.; Wu, C.; Sun, Y. Evaluating corporate social responsibility of airlines using entropy weight and grey relation analysis. J. Air Transp. Manag. 2015, 42, 55–62. [Google Scholar] [CrossRef]
- Ma, S.; Xie, F.; Ding, C.; Zhang, H. Spatio-temporal change of landscape ecological quality and influencing factors based on four-quadrant model in overlapped area of cropland and coal production. Trans. Chin. Soc. Agric. Eng. 2020, 36, 259–268. [Google Scholar]
- Cheng, Y.; Huo, A.; Zhao, Z.; Peng, J. Analysis of loess fracture on slope stability based on centrifugal model tests. Bull. Eng. Geol. Environ. 2021, 80, 3647–3657. [Google Scholar] [CrossRef]
- Dotterweich, M. The history of human-induced soil erosion: Geomorphic legacies, early descriptions and research, and the development of soil conservation—A global synopsis. Geomorphology 2013, 201, 1–34. [Google Scholar] [CrossRef]
- Sun, W.; Shao, Q.; Liu, J. Soil erosion and its response to the changes of precipitation and vegetation cover on the Loess Plateau. J. Geogr. Sci. 2013, 23, 1091–1106. [Google Scholar] [CrossRef]
- Zhu, Y.; Luo, P.; Zhang, S.; Sun, B. Spatiotemporal Analysis of Hydrological Variations and Their Impacts on Vegetation in Semiarid Areas from Multiple Satellite Data. Remote Sens. 2020, 12, 4177. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Y.; Ma, X.; Wang, Y.; Yang, G.; Zhu, L. Evaluation of resources and environmental carrying capacity of 36 large cities in China based on a support-pressure coupling mechanism. Sci. Total Environ. 2019, 688, 838–854. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yang, D.; Qin, M.; Jing, W. Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use. Land Use Policy 2020, 99, 104958. [Google Scholar] [CrossRef]
- Du, J.; Shi, C. Effects of climatic factors and human activities on runoff of the Weihe River in recent decades. Quat. Int. 2012, 282, 58–65. [Google Scholar] [CrossRef]
- Zhang, T.; Su, X.; Zhang, G.; Wu, H.; Wang, G.; Chu, J. Evaluation of the impacts of human activities on propagation from meteorological drought to hydrological drought in the Weihe River Basin, China. Sci. Total Environ. 2022, 819, 153030. [Google Scholar] [CrossRef]
- Xu, X.; Xu, Y. Analysis of spatial-temporal variation of human activity intensity in Loess Plateau region. Geogr. Res. 2017, 36, 661–672. [Google Scholar]
- Sun, D.; Li, H.; Dawson, R.; Tang, C.; Li, X. Characteristics of Steep Cultivated Land and the Impact of the Grain-for-Green Policy in China. Pedosphere 2006, 16, 215–223. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Fu, J.; Wei, W. Effects of the Grain for Green Program on the water ecosystem services in an arid area of China—Using the Shiyang River Basin as an example. Ecol. Indic. 2019, 104, 659–668. [Google Scholar] [CrossRef]
- Zhao, A.; Zhu, X.; Liu, X.; Pan, Y.; Zuo, D. Impacts of land use change and climate variability on green and blue water resources in the Weihe River Basin of northwest China. CATENA 2016, 137, 318–327. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Xiao, J.; He, M.; Zhang, F.; Pan, Y.; Zhang, Y.; Jin, Z. Soil erosion fluxes on the central Chinese Loess Plateau during CE 1811 to 1996 and the roles of monsoon storms and human activities. CATENA 2021, 200, 105148. [Google Scholar] [CrossRef]
- Holden, P.B.; Ziervogel, G.; Hoffman, M.T.; New, M.G. Transition from subsistence grazing to nature-based recreation: A nuanced view of land abandonment in a mountain social-ecological system, southwestern Cape, South Africa. Land Use Policy 2021, 105, 105429. [Google Scholar] [CrossRef]
- Wang, X.; Birch, G.F.; Liu, E. Traffic emission dominates the spatial variations of metal contamination and ecological-health risks in urban park soil. Chemosphere 2022, 297, 134155. [Google Scholar] [CrossRef]
- Burkhard, B.; Müller, A.; Müller, F.; Grescho, V.; Anh, Q.; Arida, G.; Bustamante, J.; Chien, H.; Heong, K.; Escalada, M.; et al. Land cover-based ecosystem service assessment of irrigated rice cropping systems in southeast Asia—An explorative study. Ecosyst. Serv. 2015, 14, 76–87. [Google Scholar] [CrossRef]
Data | Resolution | Time Period | Source |
---|---|---|---|
DEM | 90 m | 2005, 2010, 2015, 2020 | http://www.gscloud.cn/search |
NDVI | 250 m | 2005, 2010, 2015, 2020 | https://ladsweb.modaps.eosdis.nasa.gov |
Monthly rainfall data | 1 km | 2005, 2010, 2015, 2020 | http://www.geodata.cn/ |
Land use | 500 m | 2005, 2010, 2015, 2020 | http://www.ncdc.ac.cn |
Soil | 1:1 million | 2009 | http://www.ncdc.ac.cn |
Population | 1 km | 2005, 2010, 2015, 2020 | https://www.worldpop.org/ |
GDP | 1 km | 2005, 2010, 2015 | http://www.resdc.cn/ |
Cropland | 3 km | 2007, 2011, 2015, 2020 | https://glad.umd.edu/dataset/croplands |
PANDA | 1 km | 2005, 2010, 2015, 2020 | http://data.tpdc.ac.cn |
Indicator | Direction | Weight |
---|---|---|
Population | Positive | 0.29 |
GDP | Positive | 0.26 |
Cropland | Positive | 0.12 |
PANDA | Positive | 0.33 |
Quadrant | First Quadrant | Second Quadrant | Third Quadrant | Fourth Quadrant |
---|---|---|---|---|
HAI | 0.106–0.875 | 0–0.106 | 0–0.106 | 0.106–0.875 |
Soil erosion | 19,044.43–231,253.78 | 19,044.43–231,253.78 | 0–19,044.43 | 0–19,044.43 |
Human–environment interaction | Good | Poor | General | Excellent |
Slight | Weak | Moderate | High | Strong | Severe | Average Erosion Modulus | |
---|---|---|---|---|---|---|---|
2005 | 51.56% | 8.56% | 9.38% | 7.64% | 9.25% | 13.61% | 6363.49 |
2010 | 56.13% | 9.38% | 8.77% | 6.54% | 7.92% | 11.25% | 5451.36 |
2015 | 68.91% | 9.63% | 7.33% | 4.51% | 4.89% | 4.72% | 2571.37 |
2020 | 66.72% | 10.78% | 8.45% | 4.90% | 5.07% | 4.08% | 2539.06 |
Poor | General | Good | Excellent | |
---|---|---|---|---|
2005–2010 | −0.228 | 0.024 | −0.075 | 0.536 |
2010–2015 | −0.696 | 0.495 | −0.578 | 0.040 |
2015–2020 | −0.189 | 0.023 | 0.517 | 0.236 |
2005–2020 | −0.746 | 0.396 | −0.139 | 0.592 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Huo, A.; Liu, Q.; Peng, J.; Elbeltagi, A.; Abuarab, M.E.-S.; Abu-Hashim, M.S.D. Spatiotemporal Variation in the Coupling Relationship between Human Activities and Soil Erosion—A Case Study in the Weihe River Basin. Sustainability 2023, 15, 10785. https://doi.org/10.3390/su151410785
Zhao Z, Huo A, Liu Q, Peng J, Elbeltagi A, Abuarab ME-S, Abu-Hashim MSD. Spatiotemporal Variation in the Coupling Relationship between Human Activities and Soil Erosion—A Case Study in the Weihe River Basin. Sustainability. 2023; 15(14):10785. https://doi.org/10.3390/su151410785
Chicago/Turabian StyleZhao, Zhixin, Aidi Huo, Qi Liu, Jianbing Peng, Ahmed Elbeltagi, Mohamed EL-Sayed Abuarab, and Mohamed Said Desouky Abu-Hashim. 2023. "Spatiotemporal Variation in the Coupling Relationship between Human Activities and Soil Erosion—A Case Study in the Weihe River Basin" Sustainability 15, no. 14: 10785. https://doi.org/10.3390/su151410785
APA StyleZhao, Z., Huo, A., Liu, Q., Peng, J., Elbeltagi, A., Abuarab, M. E. -S., & Abu-Hashim, M. S. D. (2023). Spatiotemporal Variation in the Coupling Relationship between Human Activities and Soil Erosion—A Case Study in the Weihe River Basin. Sustainability, 15(14), 10785. https://doi.org/10.3390/su151410785