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Abstract: Nanomaterials have gained significant attention as a remarkable class of materials due to
their unique properties and the fact that they encompass a wide range of samples with at least one di-
mension ranging from 1 to 100 nm. The deliberate design of nanoparticles enables the achievement of
extremely large surface areas. In the field of cost-effective electrochemical devices for energy storage
and conversion applications, nanomaterials have emerged as a key area of research. Their excep-
tional physical and chemical properties have led to extensive investigations aimed at improving the
performance and cost-effectiveness of electrochemical devices, including batteries, supercapacitors,
and fuel cells. The continuous development and enhancement of these high-performance materials
are driven by the demand for enhanced productivity, connectivity, and sustainability at a reduced
cost. This review focuses on the electrochemical performance of electrodes, energy storage, and
electrochemical sensors (ES) based on nanotechnology. It discusses the application of nanotechnology
in electrochemistry for water purification and the fate of substances in water, while also introducing
green nanotechnology and cost-effective, high-fidelity product creation through electrochemical meth-
ods. The study emphasizes the synthesis of novel nanomaterials, such as metal–organic frameworks
(MOFs), covalent organic frameworks (COFs), and MXenes, with applications in electrochemical
devices. Furthermore, it explores the integration of nanostructures with electrochemical systems in
economically significant and future applications, along with the challenges faced by nanotechnology-
based industries. The paper also explores the interplay between nanomaterials and biosensors, which
play a vital role in electrochemical devices. Overall, this review provides a comprehensive overview
of the significance of nanomaterials in the development of cost-effective electrochemical devices for
energy storage and conversion. It highlights the need for further research in this rapidly evolving field
and serves as a valuable resource for researchers and engineers interested in the latest advancements
in nanomaterials for electrochemical devices.

Keywords: nanomaterials; green nanotechnology; electrochemical devices; cost-effective; biosensors;
energy storage

1. Introduction

The development of cost-effective electrochemical devices is crucial for efficient energy
storage and conversion, which is essential for sustainable development. Nanomaterials
have demonstrated great potential in enhancing the performance of electrochemical devices,
but the synthesis of these materials for large-scale applications remains a challenge [1]. Sev-
eral synthesis methods have been developed to address this challenge, including solution-
based, template-based, and microwave-assisted synthesis. These methods have shown
promise in producing high-quality nanomaterials in large quantities, and they have the
potential to reduce production costs. Integrating nanomaterials into electrochemical devices
is also a significant challenge, as the properties of nanomaterials differ significantly from
those of their bulk counterparts [2]. The interface between the nanomaterials and other
components of the electrochemical device is critical, and it can significantly influence device

Sustainability 2023, 15, 10891. https://doi.org/10.3390/su151410891 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su151410891
https://doi.org/10.3390/su151410891
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-5889-3548
https://doi.org/10.3390/su151410891
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su151410891?type=check_update&version=2


Sustainability 2023, 15, 10891 2 of 52

performance and efficiency. Therefore, optimizing the integration of nanomaterials into
electrochemical devices is crucial for realizing their full potential.

The synthesis of nanomaterials on a large scale for practical applications remains a chal-
lenge. However, significant progress has been made in developing various synthesis meth-
ods, such as solution-based methods, template-based methods, and microwave-assisted
synthesis [3,4]. These approaches show promise in producing high-quality nanomaterials
in large quantities while also potentially reducing production costs.

Integrating nanomaterials into electrochemical devices presents another significant
challenge. The properties of nanomaterials differ significantly from their bulk counterparts,
necessitating careful consideration of their integration with other components of the de-
vice. The interface between nanomaterials and the device’s other constituents critically
influences device performance and efficiency [5]. Therefore, optimizing the integration of
nanomaterials is crucial to fully exploit their potential in electrochemical devices [5].

One key aspect that distinguishes nanomaterials in electrochemical applications is
their electrical properties. Nanomaterials can be broadly classified as conductive, semi-
conductive, or insulating based on their ability to conduct electricity. Conductive nanoma-
terials, such as carbon nanotubes and graphene, exhibit high electrical conductivity and
find extensive use as current collectors, electrodes, and catalysts [6]. Semi-conductive nano-
materials, such as metal oxides and sulfides, possess moderate electrical conductivity and
can serve as active materials for energy storage and conversion. Insulating nanomaterials,
including metal–organic frameworks (MOFs) and covalent organic frameworks (COFs),
offer low electrical conductivity but provide high surface area and large pore volumes,
making them suitable support materials for electrochemical devices [7].

Moreover, the composition of nanomaterials also affects their electrical properties. In-
novative nanomaterials like MOFs, COFs, and MXenes have gained considerable attention
due to their tunable electrical properties and high surface areas, making them promising
candidates for electrochemical device applications [7].

Overall, the unique properties of nanomaterials make them attractive for use in electro-
chemical devices, and their potential for cost-effectiveness makes them even more appeal-
ing. By understanding the different types of nanomaterials and their properties, researchers
can continue to develop new and improved electrochemical devices with enhanced per-
formance and cost-effectiveness. Therefore, this review will highlight electrochemical
techniques, energy storage, as well as electrochemical sensors based on nanotechnology. As
well as the integration of nanostructures with the electrochemical system in applications of
economic interest. It will shed light on the future of these applications and the challenges of
environmental sustainability. Moreover, innovative sustainable materials have been used in
nuclear applications such as cellulosic waste in treatment [8,9] or cement mixed with plant
waste [10,11], natural clay [12,13], bitumen [14,15] or with asphaltene and polymer [16],
cement waste [17], and glass [18–20] for waste stabilization and radiation shielding.

2. Classification of Nanomaterials

Nanomaterials can be classified based on their dimensions, such as 0D, 1D, and 2D
structures. Zero-dimensional (0D) nanomaterials are spherical nanoparticles and are the simplest
type of nanomaterials. Examples of 0D nanomaterials include metal nanoparticles like gold and
silver, semiconductor nanoparticles like quantum dots, and oxide nanoparticles like titanium
dioxide [21]. These nanomaterials have unique physical and chemical properties compared to
their bulk counterparts, such as a high surface-to-volume ratio and quantum confinement effects.

Moving on to one-dimensional (1D) nanomaterials, they have one dimension in
the nanoscale range. Examples of 1D nanomaterials include nanowires, nanotubes, and
nanorods. Carbon nanotubes, silicon nanowires, and zinc oxide nanorods are some com-
mon examples of 1D nanomaterials. These nanomaterials are appealing for use in a wide
range of electrical, photonic, and energy storage applications because of their excellent
mechanical, electronic, and optical capabilities that result from their one-dimensional struc-
ture. Finally, two-dimensional (2D) nanomaterials have two dimensions in the nanoscale
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range. Examples of 2D nanomaterials include graphene, transition metal dichalcogenides
(TMDs) like MoS2 and WS2, and black phosphorus [22]. These nanomaterials have unique
electronic, mechanical, and optical properties that make them promising candidates for
various applications, including sensors, energy storage, and electronic devices.

Nanomaterials can also be classified based on their electric properties, such as insulating,
semiconducting, and metal-like properties. Insulating nanomaterials do not conduct electricity
and have a wide band gap. Examples of insulating nanomaterials include metal oxides like
titanium dioxide, zinc oxide, and aluminum oxide. These nanomaterials are widely used in
various applications, including catalysis, energy storage, and environmental remediation.

Scheme 1 and Table 1 summarize the use of nanomaterials in various types of electro-
chemical devices.
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Table 1. Nanomaterials Used in Various Electrochemical Devices.

Electrochemical Device Nanomaterials Used Applications References

Batteries
Nanostructured metals, metal
oxides, and carbon-based
materials, MOFs, COFs, MXenes.

Electrode materials to improve performance,
increase surface area, improve conductivity,
and provide higher energy and
power densities

[20,21]

Supercapacitors
Carbon nanotubes, graphene, and
other carbon-based materials,
MOFs, COFs, and MXenes.

Electrode materials to increase surface area,
improve conductivity, and provide high power
and energy densities

[22–26]

Fuel Cells
Platinum, gold, and other metal
nanoparticles, MOFs,
COFs, MXenes.

Catalysts to improve the efficiency of
electrochemical reactions that
generate electricity

[27]
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Table 1. Cont.

Electrochemical Device Nanomaterials Used Applications References

Sensors
Metal nanoparticles, metal oxides,
and carbon-based materials, MOFs,
COFs, MXenes

Sensing elements to improve sensitivity and
selectivity due to their high surface area, high
catalytic activity, and unique optical and
electrical properties

[28]

Semiconducting nanomaterials have intermediate electrical conductivity, and their con-
ductivity can be tuned by doping or changing their size. Examples of semiconducting nano-
materials include quantum dots, carbon nanotubes, and TMDs [29]. Various electrochemical
devices can benefit from the use of certain nanomaterials because of their distinctive electrical
and optical capabilities in the fields of electronics, photonics, and energy conversion. For
example, metal nanoparticles like gold and silver have been used in electrochemical sensing
and catalysis. Carbon nanotubes have shown potential as electrodes in batteries and fuel
cells, while graphene has shown promise as a material for supercapacitors. Some studies
focused on the use of graphene as a means of stabilizing the interface between silicon-based
electrodes and electrolytes to achieve a stable cycle life. While coating graphene on the surface
of nanostructured silicon electrodes is an effective approach, most of the graphene-supported
anode reports involve silicon nanoparticle structures. The study by Yang et al. [30] suggested
that coating graphene layers on silicon nanowires could be a viable option for stabilizing the
interface between silicon-based electrodes and electrolytes. After 500 charge–discharge cycles,
the resultant silicon nanowires showed excellent Coulombic efficiencies of over 99% and a
huge reversible capacity of 1650 mA h g1. The nanowires were composed of silicon carbide
nanocrystals and surrounded by a homogenous graphene shell. Furthermore, Si nanowires
were formed in situ by a gold-catalyzed procedure (Figure 1). These nanowires, when backed
by graphene, showed an initial reversible lithium extraction capacity of 2009 mA h g1, and
after 30 cycles at 420 mA g1, a reversible capacity of 1400 mA h g1 was achieved. These
findings demonstrate the potential of graphene-supported silicon nanowires and suggest a
promising avenue for further research in this area. Furthermore, insulating nanomaterials like
titanium dioxide have been used as anodes in lithium-ion batteries, while semiconducting
nanomaterials like quantum dots have been used in solar cells [2].

To better understand and categorize the different types of nanomaterials that can be
used in electrochemical applications, a classification based on different classes of materials
has been proposed. These classes include carbon-based nanomaterials, metal oxides, and
hydroxides, conducting polymers, and hybrid materials. Carbon-based nanomaterials such
as graphene, carbon nanotubes, and fullerenes have been extensively studied and show
great potential for improving the performance of electrochemical devices, particularly in
energy storage applications such as batteries and supercapacitors [31].
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3. Applications of Nanomaterials in Electrochemical Devices

Metal oxides and hydroxides, including titanium dioxide, zinc oxide, and iron oxide,
have also shown promise in electrochemical devices due to their high surface area and
redox properties [33]. Conducting polymers such as polyaniline and polypyrrole offer
unique properties such as high conductivity and tunable redox potential, making them
suitable for a range of electrochemical applications. Hybrid materials, which combine two
or more classes of nanomaterials, have also been investigated and offer the potential for
improved performance and functionality. When electroactive materials are nanostructured,
significant alterations are made to the devices’ electro-chemical characteristics. Assembled
from quasi-zero-dimensional structures or building blocks (nanoparticles), two- and three-
dimensional nanometer-sized structures like dye-sensitized solar cells (DSSC) are one
example. Moreover, 0D nanoparticles and nanodots have attracted significant attention for
their potential use in batteries due to their small size and high surface area. In particular,
0D nanoparticles and nanodots exhibit unique physical and chemical properties that
make them promising candidates for electrode materials in batteries. These materials can
significantly improve the performance of batteries by providing high capacity, fast charging
and discharging rates, and a long cycle life [34].

One advantage of 0D nanoparticles and nanodots is their high surface area, which
provides numerous active sites for electrochemical reactions. This property can enhance
the capacity of batteries by increasing the amount of active material available for electro-
chemical reactions [35]. Additionally, the small size of 0D nanoparticles and nanodots
enables fast diffusion of lithium ions, leading to faster charging and discharging rates.
More efficient ion transfer and enhanced electrochemical performance are two benefits of
using 0D nanoparticles and nanodots in batteries, which benefit from their high surface
area-to-volume ratio [35].

Research has been conducted on various types of 0D nanoparticles and nanodots,
including metal oxide nanoparticles, carbon nanodots, and quantum dots. For instance,
studies have shown that tin oxide nanoparticles can improve the cycling stability and rate
capability of lithium-ion batteries, while carbon nanodots have been proven to enhance the
capacity and rate performance of sodium-ion batteries [36]. Quantum dots have also been
investigated for their potential use in next-generation batteries because of their unique
electronic and optical properties [36]. Moreover, 0D nanoparticles and nanodots have
unique properties that make them attractive for use in various electrochemical devices
beyond just batteries. For instance, their high surface area-to-volume ratio and tunable size
and shape make them ideal for use in sensors, catalysts, and supercapacitors. Addition-
ally, their small size can facilitate electron transfer and enhance ion diffusion, improving
overall device performance. Recent research has focused on developing novel synthetic
methods for producing highly uniform and monodisperse 0D nanoparticles and nanodots,
as well as exploring their electrochemical properties and potential applications in various
electrochemical devices [37].

Extensive research has been carried out on 1D nanowires and 2D nanosheets for
their applications in various electrochemical devices, such as supercapacitors and fuel
cells [38]. These materials exhibit high specific capacitance and fast charge/discharge rates
in supercapacitors due to their large surface area and excellent conductivity. In fuel cells,
1D nanowires and 2D nanosheets have been used as catalysts to improve reaction kinetics
and reduce the cost of electrochemical reactions. The unique properties of 1D and 2D
nanomaterials, such as their mechanical strength, flexibility, and transparency, make them
attractive for various electrochemical device applications [39].

Three-dimensional (3D) nanometer-sized structures, also known as nanoarchitectures
or nanostructures, have also been investigated for their potential use in electrochemical
devices. These structures can offer a high surface area and unique porosity, which can
enhance electrochemical reactions and improve the performance of electrochemical de-
vices [40]. Examples of 3D nanostructures include nanocubes, nanorods, and mesoporous
silica. Researchers have explored their use in batteries, supercapacitors, and fuel cells with
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promising results. However, challenges remain in synthesizing and integrating 3D nanos-
tructures into practical electrochemical devices, and more research is needed to overcome
these challenges and fully exploit the potential of these materials.

Definite analytical techniques are used for nanoparticle detection and characterization.
Advanced technologies include electron microscopes for scanning or transmission (SEM,
TEM) [38,39,41,42]. Different optical procedures can provide various types of physico-
chemical information for nanoparticles, but their usefulness depends on the technology
and particular material properties, such as composition and scale [43]. Electrochemical
technologies can address some problems, such as low-cost, easy-to-use portable controllers
and self-powered devices [44]. As many nanoparticles can generate electrical signals, have
high biocompatibility and stability, and are simple to operate, nanotechnology may be a
promising solution for many electrochemical technologies [45].

Quantitative techniques are required to quantify exposure to foreign organisms to
support the creation and implementation of biomonitoring programs. The electrochemical
phenomenon has many technological applications, such as chemical synthesis, electroextrac-
tion, metal refining, batteries, fuel cells, sensors, and surface modification by electrostatic
precipitation, separation, and corrosion. Recent studies have emphasized the importance
of nanotechnology in constructing promising electrode materials for high-performance
supercapacitors [43–47]. The synthesis of nitrogen-rich activated nanosized carbon with
hierarchical micro/mesoporous and ultra-high specific surface area was greatly simplified
and chemical waste was reduced when Zheng et al. [48] revealed a template-free and one-
step carbonization–activation technology. Activated carbon with a high nitrogen content
and strong electrochemical characteristics was obtained by synthesizing chitin nanoparticles
in a NaOH/urea solvent using a mechanically driven sol–gel transition process.

In Table 2, we compare different types of nanomaterials used in various electrochem-
ical devices. Metal oxides and hydroxides, such as titanium dioxide, zinc oxide, and
iron oxide, offer high surface area and redox properties, making them suitable for elec-
trochemical applications. Conducting polymers like polyaniline and polypyrrole exhibit
high conductivity and tunable redox potential, providing versatility in electrochemical
devices. Hybrid materials, which combine different nanomaterial classes, offer improved
performance and functionality due to synergistic effects. Furthermore, nanomaterials de-
signed for electrode materials in electrochemical devices demonstrate tailored properties for
high-performance devices. By understanding the distinctive characteristics and synthesis
methods of these nano-materials, researchers can develop cost-effective electrochemical
devices with enhanced performance.

Table 2. Comparative Analysis of Morphological Features and Properties of Nanomaterials Synthe-
sized via Different Methods.

Nanomaterials Synthesis Method Morphological Features Properties References

Metal oxides and
hydroxides Various High surface area, redox

properties
Suitable for electrochemical
devices [46,47,49,50]

Conducting polymers (e.g.,
polyaniline, polypyrrole) Various High conductivity, tunable

redox potential
Versatile for electrochemical
applications [51]

Hybrid materials
Combination of
nanomaterial
classes

Improved performance and
functionality

Enhanced properties
through synergy [52]

0D nanoparticles and
nanodots

Various synthesis
methods Small size, high surface area

Promising for batteries,
sensors, catalysts,
supercapacitors

[53]

1D nanowires and 2D
nanosheets

Various synthesis
methods

Large surface area, excellent
conductivity

Suitable for supercapacitors,
fuel cells, and other
electrochemical devices

[54]
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Table 2. Cont.

Nanomaterials Synthesis Method Morphological Features Properties References

3D nanostructures
(nanocubes, nanorods,
mesoporous silica)

Various synthesis
methods

High surface area, unique
porosity

Potential for batteries,
supercapacitors, fuel cells [55]

Nanomaterials for
electrode materials

Various synthesis
methods

Tailored properties for
high-performance devices

Potential for cost-effective
electrochemical devices [56]

4. Morphology and Properties of Nanomaterials Prepared by Different Synthesis Methods

Both top-down and bottom-up methods are employed in the production of nano-
materials. Top-down methods reduce raw materials to their nanoscale building blocks.
Mechanical milling, laser ablation, etching, sputtering, and electro-explosion are all ex-
amples of top-down processes. Manufacturing phase blends and nanocomposites can
benefit greatly from mechanical milling as it is a low-cost method for developing nanoscale
products from bulk materials [57]. Nanocomposite materials, such as those enhanced by
oxides and carbides, wear-resistant spray coatings, and nanoalloys of aluminum, nickel,
magnesium, and copper, have all been made using this technique. Carbon nanoparticles
that have been ball-milled are a special kind of nanomaterial that has applications in
environmental remediation, energy storage, and energy conversion [2]. To produce nanos-
tructured materials, such as nanofibers, from a variety of materials, most notably polymers,
electrospinning is a commonly used top-down approach. By using two coaxial capillaries
and either two viscous liquids or one viscous liquid as the shell and one non-viscous liquid
as the core, core–shell nanoarchitectures may be constructed in an electric field [58]. The
generation of carbon-based nanomaterials relies heavily on bottom-up approaches, such as
chemical vapor deposition techniques. This technique may be used to create a wide range
of carbon-based nanomaterials by chemically reacting vapor-phase precursors to generate
a thin coating on the surface of the substrate.

Despite these limitations, top-down techniques have several advantages, such as the
ability to produce well-defined, monodisperse nanoparticles with precise control over
size and shape. These techniques are also scalable and can produce large quantities of
nanoparticles. Recent research has focused on improving the efficiency of top-down
techniques and reducing their environmental impact, making them more sustainable for
industrial-scale production [59]. Top-down and bottom-up methods of creating graphene
have both recently been developed. Bottom-up manufacturing converts carbon precursors
including carbon-bearing gases, aromatic hydrocarbons, and polymers into graphene
by processes like chemical vapor deposition (CVD), laser and heat pyrolysis, epitaxial
growth, and direct organic synthesis. These processes are challenging because they often
need sophisticated equipment and elaborate surroundings. Graphite may be converted
to graphene via a variety of top-down methods, including chemical oxidation–reduction,
liquid-phase exfoliation (LPE), electrochemical exfoliation, solid-phase exfoliation, and
arc discharge.

It is not unexpected that the majority of commercially available graphene is made
using top-down methods due to its ease of usage and reduced production costs. However,
because of its high production cost, graphene is not yet widely produced across the world.
Successful commercialization and industrial adoption of graphene, therefore, remain criti-
cally dependent on the development of novel methodologies and improvements in existing
top-down procedures. The remarkable acceleration of graphene preparation progress over
the past several years is emphasized in Figure 2. This has allowed for the commercial
production of various types of graphene in metric ton quantities.
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Figure 2. Timeline of main events in the research and development of graphene preparation, begin-
ning with the isolation of graphene in 2004. Reprinted with permission from [59]. Copyright year,
Elsevier, 15 April 2023. License Number 5530201217040.

Table 3 provides a comprehensive comparison of different classes of nanomaterials,
highlighting their relevant properties and performance characteristics.

Table 3. Comparative Analysis of Nanomaterial Classes: Properties and Performance Characteristics.

Properties/Performance
Characteristics

Carbon-Based
Nanomaterials

Metal-Based
Nanomaterials

Metal Oxide
Nanomaterials

Semiconductor
Nanomaterials

Composite
Nanomaterials

High electrical conductivity

1 
 

 
 
 
 
 
 
 
 
 
 
✓ 

Large surface area

1 
 

 
 
 
 
 
 
 
 
 
 
✓ 

1 
 

 
 
 
 
 
 
 
 
 
 
✓ 

Excellent mechanical
strength

1 
 

 
 
 
 
 
 
 
 
 
 
✓ 

Unique catalytic properties

1 
 

 
 
 
 
 
 
 
 
 
 
✓ 

High surface-to-volume
ratios

1 
 

 
 
 
 
 
 
 
 
 
 
✓ 

Semiconducting behavior

1 
 

 
 
 
 
 
 
 
 
 
 
✓ 

1 
 

 
 
 
 
 
 
 
 
 
 
✓ 

Diverse functionalities

1 
 

 
 
 
 
 
 
 
 
 
 
✓ 

Size-dependent optical and
electronic properties

1 
 

 
 
 
 
 
 
 
 
 
 
✓ 

Enhanced conductivity

1 
 

 
 
 
 
 
 
 
 
 
 
✓ 

Tunable bandgap

1 
 

 
 
 
 
 
 
 
 
 
 
✓ 

Efficient charge separation

1 
 

 
 
 
 
 
 
 
 
 
 
✓ 

Improved photocatalytic
activity

1 
 

 
 
 
 
 
 
 
 
 
 
✓ 

High electrocatalytic activity

1 
 

 
 
 
 
 
 
 
 
 
 
✓ 

Fast charge transport

1 
 

 
 
 
 
 
 
 
 
 
 
✓ 

High stability

1 
 

 
 
 
 
 
 
 
 
 
 
✓ 

Efficient light absorption

1 
 

 
 
 
 
 
 
 
 
 
 
✓ 

Mechanical strength

1 
 

 
 
 
 
 
 
 
 
 
 
✓ 

Note: (

1 
 

 
 
 
 
 
 
 
 
 
 
✓ ): The sign refers to a specific characteristic that indicates the desired function of nanomaterial.

To create nanostructured materials, the hydrothermal process is one of the most well-
known and commonly utilized techniques. The hydrothermal method involves carrying
out a heterogeneous reaction in an aqueous medium at high pressure and temperature close
to the critical point in a hermetically sealed tank, resulting in nanostructured materials.
The solvothermal strategy is functionally equivalent to the hydrothermal one. The only
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difference is that it is performed in an organic solvent rather than water [60]. Closed systems
are typically utilized for hydrothermal and solvothermal processes. The sol–gel process
is a common wet-chemical strategy for fabricating nanomaterials [61]. This method is
employed to fabricate a wide range of superior metal-oxide-based nanomaterials. Because
the liquid precursor is first transformed to a sol before the metal oxide nanoparticles are
synthesized, this procedure is referred to as the sol–gel technique.

Morphology control is a promising and successful technique for changing surface
atomic active sites and thereby increasing intrinsic electrocatalytic activity and selectivity.
A change in morphology might result in the appearance of new physical and chemical
characteristics in the same material [62]. Because of the varied atom distribution, the
form of the nanomaterial might influence the electroanalytical properties. The intrinsic
morphology, crystal morphology, and aspect ratio of 1D transition metal oxides strongly
influence their electrochemical performance. Studies aimed at optimizing the electrochem-
ical performance of supercapacitors by controlling the aspect ratio and morphologies of
1D nanomaterials are being conducted on transition metal oxides used in supercapaci-
tor electrodes [63]. Mao et al. [64] manufactured core–shell CuCo2S4/CoMoO4 nanorods
by a hydrothermal and calcination process. Core–shell-structured CuCo2S4/CoMoO4
nanorods were generated on nickel foam using a combination of the hydrothermal tech-
nique and calcination in this work. The hydrothermal method was employed to grow the
CuCo2S4/CoMoO4 nanorod heterostructure on the NF substrate (Scheme 2). In Figure 3,
the morphologies of CuCo2S4, CoMoO4, and CuCo2S4/CoMoO4 are displayed. CuCo2S4
exhibits a porous cluster structure with interlaced nanowires, as depicted in Figure 3a,b.
During the hydrothermal reaction, CoMoO4 forms a nanosheet on the NF, as shown in
Figure 3c,d. Meanwhile, Figure 3e–h display the SEM images of CuCo2S4/CoMoO4, which
demonstrate that it has highly uniform nanorods with a diameter of approximately 100 nm.
Interestingly, this is in stark contrast to the morphologies of CuCo2S4 and CoMoO4.
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The electrochemical performance of the CuCo2S4/CoMoO4 heterostructure is en-
hanced. The CuCo2S4 nanorods provided pathways for quick electron transport and
efficiently disseminated CoMoO4 particles, while the outer CoMoO4 shell hindered the
inner CuCo2S4 nanorods’ expansion during the redox reaction and boosted the composite’s
stability [64,65].
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Titania nanostructures with low dimensions (such as 0D, 1D, and 2D structures) have
intriguing properties, including a high surface-to-volume ratio, clearly defined surfaces in
terms of structure and geometry, small curvature radii, and enhanced electrical, thermal,
and chemical stability. Electrochemical capacitors, photocatalysis, sensors, and energy
storage devices are just some of the many surface-related and interfacial applications that
might benefit from TiO2 nanostructures because of their unique features [66]. Incorpo-
rating 0D and 2D materials into a composite may be performed in four different ways
(Figure 4a–d): The 0D component is used as decoration for the bottom surface of the 2D
material (Figure 4a). The 0D part is placed around the boundaries of the 2D substance
(Figure 4b). A 2D substance encloses the nanoparticle (Figure 4c) [67]. as Additionally,
the dopants can be incorporated into the 2D material (Figure 4d) if the zero-dimensional
component consists of single atoms. In a composite where the particle is located on the
basal plane (as shown in Figure 4a), the nanoparticle or fullerene must be securely attached
to the two-dimensional material host to maximize catalytic activity, prevent nanoparticle
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ripening, or at the very least reduce the likelihood of the zero-dimensional component
detaching from the composite under practical conditions. By understanding the interaction
processes between the zero-dimensional and two-dimensional components and properly
capping the nanoparticle or treating the two-dimensional material host in advance, we
can better design our materials. Engineering functional groups for the zero-dimensional
component and/or the two-dimensional material that take advantage of one of four types
of interaction (Figure 4e–h) may improve its adherence, including van der Waals attrac-
tion (Figure 4e), hydrogen bonds, electrostatic repulsion, and dipole–dipole interactions
(Figure 4f), as well as p interaction with aromatic molecules (Figure 4g) or a covalent bond
(Figure 4h) [68].

In metal oxide supercapacitors, the charge storage mechanism is generally governed
by faradaic processes (reversible redox reactions) at the electrode surface [69]. Non-faradaic
supercapacitors, which are dominated by electrostatic charge diffusion and accumulation
at the electrode–electrolyte interface via an electric double-layer capacitor formation, can
be integrated into the metal oxide matrix to significantly improve hybrid supercapacitors’
capacitive performance [69]. In terms of electrochemical performance, TiO2 demonstrates
electrochemical double-layer capacitance (non-faradaic) with significantly lower specific
capacitance values than standard carbonaceous non-faradaic capacitors. Because titania is
semiconducting, its conductivity is limited, and the interfacial states/defects between the
titania and metal electrodes slow down charge transport, preventing the electrodes from
achieving their full electrochemical potential [70]. The hydrothermal procedure, which is
simple and inexpensive, is widely used to create various titania/titanate nanostructures [71].
In particular, the alkali-controlled hydrothermal treatment of titania is extremely effective
in controlling the surface shape of titania/titanate nanostructures. However, the Schottky
barrier, which is expressed by the Fermi level mismatch between the semiconducting titania
and the metallic electrode, is typically characterized by the interfacial contact between the
nanostructured titania and the metal electrode for electrochemical device applications.
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Figure 4. The different morphologies and potential interaction mechanisms for 0D-2D hybrids.
(a) Nanoparticles are arranged on the basal plane. A TEM image of CoS2 nanoparticles decorating a
reduced graphene oxide (r-GO) nanosheet [72]. (b) Nanoparticles are preferentially situated along
the nanosheet edge. A TEM image of triangular MoS2 with Au nanoparticles along their edges [73].
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(c) Nanoparticles encapsulated in 2D sheets. A TEM image of a Pt nanoparticle encapsulated in
several graphene layers. Scale bar 2 nm [74]. (d) Single-atom sites within, on top of, or along the edge
of the nanosheet. High-angle annular dark-field (HAADF) scanning-mode transmission electron
microscopy (STEM) image of Pt substitutions in MoS2 [75]. (e) A van der Waals interaction, such as
between graphene and a ligand-free nanoparticle. (f) Electrostatic dipole–dipole interaction, such as
between a hydroxyl functional on GO and a citrate ligand on a nanoparticle. (g) An aromatic/p-p
interaction, such as between graphene and a phenylethanethiol-capped nanoparticle. (h) A covalent
bond is typically formed between a functional group on GO and a ligand. Permission from Elsevier,
License Number 5527170984812. 13 April 2023.

The self-sourced Ti surface is directly modified into titania nanostructures in situ and
then used as-is as an electrochemical microelectrode, which is novel [71]. As a result, the
transition between metallic Ti and semiconducting TiO2 is greatly enhanced. The near-
defect-free interfacial feature of the Ti-TiO2 microelectrode has demonstrated outstanding
super-capacitive performance for enhanced charge storage devices, demonstrating the
importance of interfacial states and defects in controlling the charge transport characteristics
of electronic and electrochemical devices.

To create hollow carbon nanocages, scientists use graphene microcrystals as building
blocks to enclose curved carbon nanosheets with sub-micrometer gap space. A large num-
ber of sub-nanochannels (1 nm) or purpose-built nanopores (1–10 nm) connect the inside
and outside of carbon nanocages [76]. This unique carbon nanocage material has a number
of advantages over previously developed nanocarbon materials, including a readily accessi-
ble inner cavity, the coexistence of micropores, mesopores, and macropores, a high specific
surface area, and the ability to be easily doped and modulated. Also, the arch arrangement
of carbon layers in the cage-like carbon nanomaterials’ curved nanosheet structure may sig-
nificantly reduce anisotropy by obstructing interlayer sliding and guaranteeing structural
stability [76]. Designing interfacial composites based on hollow carbon nanocages may be
conducted in two ways: (a) by constructing metal or metal compounds enclosed by hollow
carbon nanocages and (b) by generating hollow carbon nanocages coated with metal or
metal compounds. Furthermore, the electrochemical energy storage capabilities of hollow
interfacial materials may be improved by the compact interfacial effect of carbon nanocages’
metal compounds. Molybdenum phosphide nanoparticles and nitrogen-doped carbon
(MoP-NC) complex hollow nanocages were successfully synthesized by Liu et al. [77]
by combining non-template and annealing techniques with both organic and inorganic
composite precursors. The findings suggest that there is a complementary relationship
between nitrogen-doped carbon and hydrogen production in alkaline electrocatalysis. The
use of hollow nanocages and molybdenum phosphide nanoparticles (metal-carbon) can
further enhance this relationship, resulting in faster hydrogen production. Therefore, these
materials can improve the performance of electrocatalysis for hydrogen production by
optimizing the interaction between nitrogen-doped carbon and the hydrogen production
process [77].

5. Nanotechnology-Based Electrochemical Sensors

The synthesis and characterization of nanomaterials have opened up new opportuni-
ties for the development of cost-effective electrochemical biosensors. These biosensors have
the potential to revolutionize various fields, including healthcare, environmental monitor-
ing, and food safety. Biosensors that detect analytes with high sensitivity and specificity
have been made possible by the use of nanomaterials due to their unique characteristics
and high surface-to-volume ratio.

The use of nanomaterials in biosensors has led to the development of various novel
sensing mechanisms, such as surface-enhanced Raman scattering (SERS), localized surface
plasmon resonance (LSPR), and electrochemical impedance spectroscopy (EIS). These
mechanisms offer several advantages, including improved detection limits, enhanced
selectivity, and reduced analysis time. Moreover, the use of nanomaterials in biosensors has
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enabled the development of portable, low-cost, and disposable devices, which are highly
desirable in resource-limited settings.

Electrochemical sensors are based on enzymes, such as oxidation and reduction en-
zymes, that stimulate chemical reactions that produce or consume electrons. The sensor
consists of three electrodes: the reference electrode or signal, the precipitation, and the re-
serve electrode [78]. The target analyte participates in the reaction on the active electrode’s
surface, and the ions produced generate an electrical potential from that electrode to trigger
a signal. The electron flow rate can be measured in proportion to the analyte concentration
when the voltage is constant, or it can be measured at the zero point (this provides the
logarithmic response). It should be noted that a sensitive charge capacitance is used in the
working voltage or active electrode. Direct electrophoresis of small peptides and proteins
may be made possible by their intrinsic charges used for bio-functionalized ions in the
influencing field of the transistor. The potentiometer is a type of position sensor that works
as an adjustable voltage divider. The sensors are print screens, cabling embedded polymers,
and open circuit sensors that rely on conjugated polymers for immunoassays [79]. These
appliances have only hypersensitive and long-lasting electrodes. The alleles can only be
detected by HPLC, LC/MS, and without preparing a simple model at existing levels. The
signal is generated by electrochemical energy and physical alterations to the conductive
polymer layer due to variations on the sensor surface [80]. These changes are attributed
to ionic force, water pH, and redox reactions as the latter bends the enzyme around the
base. An existing measurement detector estimates the current when a solvent is actively
in contact with a working electrode, which is fixed to a constant tension for a reference
electrode [81].

An electrode solution is used to determine the voltmeters that produce a characteristic
electrode signal, called waveforms, which are then expressed. Electrode current data are
quantified over time using voltmeter and ammeter detectors. Reversible pulse potentials
between high and low values are useful for voltmeter measurements because they provide
the distinctive current response for inverse interactions. In order to measure the voltage
flowing through the electrode during its lifetime, the signal must be pulsed with extra
voltage at short intervals between high and low values. An oxidized or reduced product can
be created on the electrode surface, resulting in a positive or negative current by applying
pulses of potential voltage between high and low voltage levels, respectively.

Recent technological developments have made it easier to design electrodes that are
sensitive to certain analytes while still being cost-effective, dependable, and selective.
Electrodes with screen printing, integrated nanomaterials, and EC immunoassays are three
examples of how these advancements might be used together to create electrical sensor
(EC) technology. These new technologies have led to the creation of heterogeneous systems
that combine their best features [81]. Chemical exposure analysis has several potential
uses in modern environmental and biological monitoring thanks to the development of
low-cost and selective EC sensors. Chemicals, metabolites, proteins, metals, inorganic ions,
organic compounds, and more may all be identified using these methods in a wide range
of biological matrices [82].

Nanomaterials provide several advanced analysis technologies, including more sensi-
tive, selective, and biomonitoring electrochemical sensors.

Carbon nanomaterials are favored in enhancing the performance of electrochemical
sensing [83]. Carbon nanomaterials can increase electrode surface area, accelerate electron
transfer, and act as catalysts, enhancing electrochemical processes such as detection, adsorp-
tion, and removal. Several carbon nanomaterials, including graphene, mesoporous carbon,
carbon nanotubes, and carbon dots, have demonstrated strong adsorption and detection
capacities (Figure 5). Electrochemical methods using anodic stripping voltammetry with
modified carbon electrodes are commonly used for detecting heavy metals due to the
excellent electrocatalytic properties of carbon and its derivatives. Surface modification of
the working electrode (GCE) increases the sensitivity of metal electrode detection. Electro-
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chemical sensors can be made much more effective by first coating the working electrode
with a layer of active electrocatalytic species.
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Electrochemical platforms with enhanced electrical conductivity and sensitivity can
be designed and fabricated using CNPs due to their excellent characteristics. In this
context, establishing a stable modifier coating on the electrode’s surface is crucial. Electrode
surface modification using CNPs has been accomplished in different ways, as illustrated
schematically in Figure 6. Drop-casting modification is a quick and simple approach to
creating customized electrodes. When a CNP suspension is dropped over the surface of bare
electrodes, stable films are generated due to the CNPs’ strong dispersibility in water. This
method is practical for carbonaceous electrodes like glassy carbon electrodes (GCE) due to
the strong contacts between the electrode surface and CNPs or CNP composites with other
carbon nanomaterials (such CNTs and graphene). However, the modifier film’s stability
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might be a problem for non-carbonaceous electrodes. Carbon paste electrodes (CPEs) are
fabricated using a similar process, except that a combination of carbon (microparticles)
powder and an appropriate binder (such as Nujol or ionic liquids (ILs)) is used to create an
electrode. Carbon nanoparticle (CNP) composites can be used as modified carbon paste
electrodes for electrochemical platforms. CNPs have excellent characteristics for surface
functionalization, and their composites with hydroquinone, sodium dodecyl sulfate (SDS),
and halloysite nanoclay (HNC) have been proposed for modified electrodes due to their low
background current, large potential window, low cost, ease of preparation, electrode surface
renewal, and potential for miniaturization. The layer-by-layer (LBL) assembly approach
has been used to manufacture multilayer uniform thin films with regulated architecture
and composition, which can address stability difficulties related to the drop coating method.
The LBL method involves alternating adsorption of polyelectrolytes and/or nanomaterials
onto a charged substrate with an opposing charge.

The electrode surface modification with the LBL technique has been used to assemble
negatively charged phenyl sulfonated carbon nanoparticles onto positively charged sub-
strates, such as chitosan, poly (diallyldimethylammonium chloride) (PDDAC), imidazolium
salt ionic liquid (IL) precursor, and sol–gel-processed functionalized silicate.
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The modification of carbon nanoparticle (CNP) electrodes with organic compounds
significantly improves their electrochemical sensitivity to both organic and inorganic
analytes. Electrochemical polymerization of conducting polymers (CPs) is an effective
method for creating modified electrodes with excellent electrical conductivity. One such
method involves the electro-polymerization of CNPs/pyrrole aqueous solution on the
surface of a glassy carbon electrode (GCE) by cycling the voltage between 0 and 0.8 V. This
process creates a sensing platform where the synergistic impact of polypyrrole (PPy) and
CNPs enhances electrochemical performance beyond the sum of their separate surface
area effects.

CNPs are responsible for high electrochemical activity because they can act as liquid–
liquid interface stabilizers and interfacial conduits for electrons. Another method for the
formation of CNPs on the surface of electrodes is through the cyclic voltammetry (CV)
technique, which was used to achieve surface nanocrystallization of carbonaceous surfaces
like glassy carbon electrodes in anhydrous N, N-dimethylformamide (DMF) containing
tetra-n-butylammonium bromide (TBAB) [85]. As shown in Figure 7, in situ synthesis of
CNPs on the surface of GCE occurred due to redox reactions and the insertion of Bu4N+

ions and electrolytes into the surface layer of the GC electrode during continuous cathodic
and anodic scanning.
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Biosensors are analytical devices that combine a biological component, such as an
enzyme or antibody, with a physicochemical transducer to convert a biological response
into a measurable signal. Electrochemical biosensors, in particular, have emerged as a
promising tool for healthcare applications, as they can detect biomarkers in body fluids
such as saliva, interstitial fluid, and sweat. By functionalizing carbon nanomaterials with
chemical and biological components, biosensors can be made to work at the same scale as
natural biological processes, providing high sensitivity and specificity for the detection of
target analytes.

Electrochemical sensors are used in the medical sector; for instance, a glucometer
(glucose meter) is used to monitor blood levels of glucose in diabetic patients [86]. Modern
electrochemical biosensors are promising tools for the healthcare sector, because they can
detect biomarkers in body fluids such as saliva, interstitial fluid, and sweat. Blood is
the standard biofluid for glucose monitoring. For example, the blood glucose level is
well known to be used for warning patients with diabetes. Blood glucose levels are about
4.9–6.9 mM, while patients can have a high (even 40 mM) or a low glucose level (2 mM) [87].
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Two types of electrochemical glucose sensors are available, enzyme and non-enzyme.
The electron redox mediators are organic and organometallic compounds like ferrocene
derivatives, ferrocyanide, organic salt conducting agents, and quinones. In contrast, the
electrochemical properties of glucose sensors still depend on GOx properties, and it has
been more complicated to manufacture glucose sensors [87].

The schematic and operational mechanisms of glucose detection utilizing single nano-
material and nanocomposite sensors are depicted in Scheme 3 [88].
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The third generation of glucose sensors has lower detection features and a smaller
linear range compared to the first- and second-generation sensors. Non-enzymatic glu-
cose sensors are based on direct glucose oxidation on the electrode surface and can use
methods such as potentiometry and amperometry to measure the electrode’s potential.
Certain metals such as Pt, Au, Cu, Ni, and Co, metal oxides like CuO and CO3O4, and
carbon materials are promising candidates for non-enzymatic glucose sensors due to their
electrocatalytic activity. An ideal glucose sensor should be selective for glucose and have a
sensitivity of more than 1 µA/mMcm2. Additionally, the sensor should remain stable for at
least 6 months during application.
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Bare carbon electrodes have inadequate sensitivity and an excessive level of electro-
chemical insulin detection. To improve electrode sensitivity, various types of nanoparticles
such as SiO2NPs, NiONPs, SiCNPs, CNTs, RuOCNTs, Ni (OH)2, and GO have been used for
electrode surface modification. The electrocatalytic activity towards insulin has been found
to increase when nanoparticles are modified with metal and graphene oxide. Researchers
have used a chemical method and polyaniline conductance polymer as a support holder
to develop a flexible glucose sensor that can be synthesized and deposited into the cotton
material substrate using nickel phosphide (NiP) and copper oxide (CuO) nanoparticles [89].

Scientific studies can use additional electronic measurements for glucose detection
besides resistance- and conductance-based methods. In the existence of glucose, the
ConA dextran displacement, immobilized with gold-coated nanostructures on an electrode,
changes capacity throughout the electrode. Potentiometrically, ion-selective electrodes can
measure free silver ions (Ag+), which in GOx-generated hydrogen peroxide are released
from silver nanoparticles. After glucose oxidation, it can be detected in nanotubes that
function on palladium, although it is several orders of magnitude below physiological
blood glucose with a linear range of detection [90].

To improve the sensitivity of electrochemical flavonoid sensors, modified materials
such as carbon nanomaterials, metal nana-particles, and the liquid combination of these
materials were employed [91]. The sensing elements could deliver more active sites, in-
crease the active electrical surface area, and improve mass transport rates and the speed
of electron transfer rates. A new electrochemical platform based on ionic nanocomposite
nanoparticles CoFe2O for the analysis showed an excellent result because the ionic liquids
have high conductivity and quick mobilization The electrochemical flavonoid biosensors
have attracted attention because of their outstanding electric conductance, biocompatibility,
and significant stability. Electrochemical sensor construction with carbon-based nanomate-
rials has substantial properties, such as high chemical stability, large thermal and electrical
conductivity, and a high surface-to-volume ratio [92]. The carbon set as C6-C3-C6 is derived
from 2-phenyl chromone as the core of the flavonoid compounds.

The natural flavonoid compound mother’s core has hydroxyl, methoxy, oxygen hy-
drocarbon, isoprene oxygen, and other substitutes. Because of the location and difference
between substituents, flavonoids are divided into six subunits of isoflavone, flavonols, and
anthocyanin. The flavonoid structure has a powerful linkage to its redox characteristics [93].

Nanomaterials are significant to the sensor for the functionality of biological systems,
subject to fluctuating conditions. Nanomaterials can be developed to adjust the desired
electrocatalytic activity and improve the sensor’s stability. Non-enzymatic glucose sensors
have reported materials based on copper oxide, tin oxide, or titanium dioxide [94].

Table 4 shows some sensors based on nanomaterials, such as CNTs, and their methods
of manufacturing are chemical vapor deposition, arc discharge, laser ablation, and gas-
phase catalytic growth [95]. It also shows polymer nanowires with their methods [96],
graphene nanostructures [97], metallic nanowires [98], and silicon (Si) nanowires [99].

Avoiding drift and fouling, developing reproducible calibration methods, applying
preconcentration and separation methods to achieve a proper analyte concentration that
avoids saturation, and integrating the nanosensor with other elements of a sensor package
in a reliable manufacturable manner are all challenges for nanosensors [100]. Because
nanosensors are a new technology, there are numerous unsolved problems with nanotoxi-
cology, which restricts their usage in biological systems for the time being [100].

Table 5 provides a summary of the most common types of nanomaterials used in
electrochemical biosensors. Carbon nanotubes are highlighted for their high surface area,
good electrical conductivity, and excellent mechanical properties. These properties make
them a popular choice for detecting biomolecules such as glucose, cholesterol, and DNA.
Graphene is also used in biosensors to detect biomolecules such as glucose, dopamine,
and DNA. Metal nanoparticles are then described for their high surface area and excellent
catalytic activity. This property makes them useful in the detection of biomolecules such as
glucose, cholesterol, and DNA. Quantum dots are highlighted for their unique optical and
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electronic properties. They are used in biosensors to detect biomolecules such as proteins
and DNA. By functionalizing these nanomaterials with chemical and biological components,
biosensors can be made to work at the same scale as natural biological processes, providing
high sensitivity and specificity for the detection of target analytes.

Table 4. Nanosensors and methods of manufacture with one-dimensional materials.

Nanostructure Method of Manufacture References

Carbon nanotubes

Chemical vapor deposition

[95]
Arc discharge
Laser ablation
Gas-phase catalytic growth

Polymer nanowires
Electrochemical deposition

[96]Template filling
Reactive ion etching

Graphene nanostructures
Exfoliation

[97]Chemical vapor deposition
Epitaxial growth

Metallic nanowires

Template-assisted electrodeposition

[98]
Electrochemical deposition
Electroless deposition
4- Template filling

Si nanowires
Reactive ion etching

[99]Photolithography

Table 5. A summary of the nanomaterials commonly used in electrochemical biosensors.

Nanomaterials Properties Application References

Carbon nanotubes (CNTs)

High surface area, good electrical conductivity,
and excellent mechanical properties
The development of (bio)sensors capable of
tackling future biosensing challenges in clinical
diagnostics, environmental monitoring, and
security control represents a very good
alternative when the special properties of CNTs
are combined with the potent biomolecule
recognition properties and the known benefits of
the electrochemical techniques.

Detection of glucose,
cholesterol, and DNA [101]

Graphene (GR)

With high sensitivities, broad linear detection
ranges, low detection limits, and long-term
stabilities, GR-based biosensors displayed
exceptional performance.

Detection of glucose,
dopamine, and DNA [102]

Metal
nanoparticles High surface area and excellent catalytic activity Detection of glucose,

cholesterol, and DNA [103]

Quantum dots Unique optical and electronic properties Detection of biomolecules
such as proteins and DNA [104]

Metal oxide nanoparticles High surface area and excellent catalytic activity Detection of glucose,
cholesterol, and DNA [105]

6. Nanostructured Materials for Enhanced Electrochemical Performance in Energy
Storage Devices

Providing robust electrochemical energy conversion and storage systems is one of
our society’s most difficult issues [103,104,106,107]. Because of their nanoscale size impact,
nanomaterials have numerous attractive features for electrochemical energy storage de-
vices that are considerably different from bulk or micron-sized material [108]. Constrained
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dimensions, in particular, play crucial roles in regulating the attributes of nanomaterials,
including ion transport kinetics, strain/stress magnitude, and active material consump-
tion. Because they can sustain electron transport along the longitudinal plane and have a
confinement effect throughout the diameter, nanowires, as one of the characteristic one-
dimensional nanomaterials, offer significant potential for realizing a range of applications
in the disciplines of energy storage. Using renewable energy and avoiding conventional
fossil-fuel-related environmental issues has become critical for achieving a globally sus-
tainable energy future. Electrochemical conversion and storage methods for “clean energy”
(e.g., fuel cells, electrolyzers, photo-electrolyzers, metal–air batteries, metal-ion batteries,
and supercapacitors) have played critical roles in this regard [109]. To rival existing fossil-
fuel-based energy supply systems, the performance of renewable energy devices must
be greatly increased. Electrochemical energy conversion and storage typically involve
many intricate chemical reactions and physical interactions at the surface and inside of
electrodes/electrolytes, and the kinetics and transport behaviors of different carriers (e.g.,
electrons, holes, ions, molecules) are closely associated with the electrode materials and
electrode structures [110].

To qualify nanostructures as excellent electrodes for energy conversion and storage
that meet industry standards for device applications, it is essential to achieve well-defined
nanostructures with accurately controllable geometries of four key structural parameters:
size, structure, hetero-architectures through combining different nano-units, and spatial
arrangement [111].

Non-rechargeable primary batteries are essential in various applications, including
wristwatches, remote controls, and electronic keys, as they store energy for a long time, up
to ten years, and self-discharge less than rechargeable batteries [112].

Several types of batteries have been marketed for practical electrochemical appli-
cations [113]. The first portable, non-spill battery was the zinc dioxide and manganese
dry cell, which made light bulbs and other devices more convenient. However, mercury
batteries of zinc and mercury oxide, which had a higher energy level, were phased out due
to potential contamination and widespread mercury from discarded batteries. Lead–acid
batteries were the first practical rechargeable batteries that could be recharged from an
external source, and their reversible electrochemical reaction allows for the exchange of
electrical and chemical energy. They contain sulfuric acid and water, as well as lead plates,
with the most commonly used blending being 30% acid. However, if the acid remains
unchanged, it can crystallize inside the battery’s lead plates and render it useless. The
average lifespan of these batteries is around three years [114]. They are widely used in cars,
but their electrolytes of water limit the maximum voltage for each cell, and freezing water
can limit their performance in low temperatures [115]. In comparison, lithium batteries
do not use water in their elements. Rechargeable lithium-ion batteries are an essential
factor in many mobile devices. Experimental flow batteries provide a wider option to
regenerate reactants from external tanks [116]. Fuel cells have much greater efficiency than
any combustion process and can convert the chemical energy of hydrocarbon gases into
electric power. They are used to power spacecraft and for public energy grid storage [117].

A flow battery system generates energy using an electrochemical cell and electrically
active solutions, typically mineral salts [118]. This non-metallic material with electric
activity provides large-scale energy storage, which is crucial for utilizing renewable and
intermittent energy sources like solar and wind energy, which can account for over 20%
of the total energy capacity when paired with storage systems for electrical power. These
applications are used in electrical grids and remote generating stations that require inex-
pensive and flexible storage systems [119]. There are options for using water pumping
from a reservoir to high elevations as a power source, but these can be expensive and lim-
ited to specific geographic locations, such as conventional batteries and superconducting
electromagnetic storage [120]. Flow batteries, on the other hand, require two active and
dissolved components—compounds that can participate in the electrochemical reaction
that occurs at the electrode [115]. In the electrochemical cell, chemical energy is transformed
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into electrical energy and vice versa via an ionic conducting membrane. Electrically active
substances are pumped through the cell into a fluid and kept in separate tanks outside the
cell, as opposed to conventional electroactive materials (Figure 8). This design allows for
optimum separation of the energy stored, depending on the size of the electrochemical cell
or the cell group [121].
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Nanostructured materials are of interest for electrochemical energy conversion and
storage devices due to their large surface area, new size effects, and increased kinetics and
other properties. Two types of nanoscale size effects have been discovered in these materials:
“trivial size effects,” which rely solely on the increased surface-to-volume ratio, and “true
size effects,” which also require changes in local material characteristics [123]. The field of
“nanoionics” has established a significant place in this area, comparable to nanoelectronics
in semiconductor physics, and its advancement may lead to future generations of clean
energy devices.

To significantly improve the electrochemical efficiency of electrode materials, their
dimensions can be decreased to a nanoscale level to benefit from the nanoparticle effect,
which results in a higher surface area and shorter ion spreading time [124]. Various
nanoparticle materials with improved electrochemical performance have been fabricated,
although controlling the size, especially when it is less than 10 nm, can be a difficult
problem [125].

Some studies have developed the nano-molecule flow battery, which can store electric and
hydrogen gas for supplying hybrid energy storage systems. This battery adopts a nano-battery
design, “hybrid hydrogen energy flow,” to store energy and release on-demand electricity or
hydrogen gas for use as fuel [126]. When a condensed liquid containing nanoparticles is used,
the volume of stored energy is increased by around ten times. This system allows for flexible
operation of the equipment, requiring either fuel or electricity [125].

Rechargeable batteries must meet several main parameters to be useful in hybrid
electric vehicles and electric vehicles, including cost, higher energy capacity, longer cycle
life, safety, and environmental viability [125].

Nanometer-sized electrode materials may improve electroactivity toward Li insertion
and high rate capability, enabling high power performance [127]. The high rate capacity
results directly from the transport benefits of tiny particle sizes, such as shorter transport
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lengths for both e- and Li+ transport and a greater electrode/electrolyte contact area due to
the higher surface area [128]. The former allows for complete Li diffusion in a short storage
period, i.e., at high charge/discharge rates, while the latter considerably lowers the specific
current density of the active material [128]. In addition to the “conversion” mechanism,
an interfacial Li storage mechanism has recently been proposed to explain the additional
Li+ storage capacity in nanometer-sized transition metal oxides at low potential. Li surface
storage may play a key role in total capacity in nanostructured devices. This technique may
be more energy-efficient for nanometer-sized particles than for bulk insertion.

In recent years, metal oxide nanostructures have been investigated for various appli-
cations such as sensors, energy-efficient coatings, and semiconductor devices [129]. These
nanowires are covered with a gold–palladium alloy that functions as an existing conductor.
Manganese oxide is deposited on the alloy surface in the electrochemically active form [130].
The result is a hundred-fold increase in the surface area of the brush-like layer compared
to the copper cable because the broad surface is an essential factor for storing energy. The
nanowire acts as the sheath that covers the copper wire and is the supercapacitor’s first
electrode. Some researchers have investigated environmentally friendly batteries that can
provide cars and mobile phones with the necessary energy, using nanotechnology and
genetically modified viruses. These viruses infect bacteria, do not harm humans and have
been used to build the two charged terminals (poles) of lithium-ion batteries, which have
the same power, capacity, and performance as the latest rechargeable models [131]. As
a result, they operate hybrid energy cars and personal electronic devices. When tested
in laboratories, the new cathode material could be charged and discharged more than a
hundred times without losing any part of its capacity or electrical capacity. This technology
enables lithium-ion batteries to charge in seconds, not hours. This achievement will lead to
smaller, faster-charging batteries for mobile phones and other devices.

The incorporation of nanoscale silicon in lithium-ion batteries can increase their energy
density by up to 10 times due to the high surface area of the silicon nanoparticles, which
can store more lithium ions. Similarly, the use of nanostructured sulfur as the cathode
material in lithium–sulfur batteries has been shown to improve their energy density and
cycle life.

Lithium–sulfur batteries offer three times higher energy density than standard lithium-
ion batteries, thanks to the low atomic weight of lithium and moderate weight of sul-
fur [132]. During discharge, lithium dissolves from the cathode layer and reverses this
process on the anode surface during charging. Lithium–sulfur batteries can be refilled
at a temperature of 60 ◦C and exhibit good cold–hot discharge characteristics. However,
they face challenges such as limited cycle life (40–50 charge/discharge cycles) and poor
stability at high temperatures [133–135]. Despite these challenges, lithium–sulfur tech-
nology shows promise for use in battery experiments with nanowires. Researchers have
developed a new high-performance lithium battery anode–electrode structure using carbon
and silicone nanomaterials. This material contains potent and durable silicon circuits with
irregular channels that increase molecular mass–lithium battery receptivity [131,132]. The
research has shown stable performance and capacity with graphite cathodes five times
larger than regular lithium batteries. Manufacturers tout it as a simple, cost-effective, safe,
and widespread technology [136]. However, structural problems limit the cycle life and
extraction of lithium at higher volumes. When compared to the more traditional method of
oxidizing and reducing organic molecules in organic synthesis, organic electrophoresis is a
more eco-friendly and reliable option. Electro-oxidation processes have various advantages
over conventional reagent-based reactions [137], including functional tolerance, moderate
conditions, scalability, and sustainability. Careful applications of electrochemical oxidation
to electrophoresis have been made [138]. Sustainable methods and tactics including oxida-
tion mediators for direct re-operation of anabolic and inactive C-H in massive industrial
contexts have also been created by researchers [139]. Some researchers have conducted
electrochemical anodic oxidation using the galvanizing method without catalysts and
oxidation. Recent studies have also focused on anode/cathode electrodes modified with
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electrolytic oxidation/reduction nanomaterials [140]. Using electrodes can expand the
electrode synthesis range and improve electrode synthesis efficiency. Therefore, developing
modified electrodes with special electrical synthesis functions is essential [141].

Nanotechnology provides new opportunities for designing, synthesizing, and modify-
ing cathode materials to overcome capacity limitations and significantly improve battery
performance. The nano-template approach allows the creation of nanostructure materials
with complicated morphology in a single step while maintaining high control over size and
form, which would otherwise be challenging to achieve [142]. Solvothermal/hydrothermal
and coprecipitation synthesis techniques are widely used, easy, and low-cost approaches
for producing cathode nanostructures with high yield, but they lack control over the final
nanostructure size and form [143]. The nanostructural fabrication of cathode materials
has resulted in improved battery performance due to their enhanced structure and shorter
Li+ diffusion route lengths, allowing for faster Li+ insertion/extraction processes [144].
Advances in nanosynthesis processes have led to precise control over size, form, and
repeatability at low to medium processing costs, and the limitations are quickly closing.

Supercapacitors, on the other hand, rely on the fast charge–discharge of ions at the
electrode–electrolyte interface, making them ideal candidates for nanomaterials. Nanoma-
terials such as graphene, carbon nanotubes, and metal oxides have been used as electrode
materials in supercapacitors to enhance their energy and power densities, as well as their
cycle life [145]. The use of these nanomaterials can increase the specific capacitance of
the electrodes by several orders of magnitude, due to their large surface area and high
conductivity. Supercapacitors can store a lot of energy and charge quickly; their working
voltage is between 1 and 3 V, which is suitable for both organic and aqueous electrolytes.
Batteries have a high energy density so our gadgets may be used all day, but they might
take a long time to charge. Electrochemical capacitors known as supercapacitors are utilized
for quick power supply and recharging (i.e., high power density). Nanomaterials are par-
ticularly well suited for use in supercapacitors because of their high surface area-to-volume
ratio, which provides a large interface area for ion adsorption and desorption. The fast
charge–discharge rate of supercapacitors is dependent on the rapid transfer of ions at the
electrode–electrolyte interface, and nanomaterials with their large surface area and short
diffusion distance are ideal for facilitating this process. Unless basic performance parame-
ters are carefully considered, the fuzziness between these two electrochemical techniques
might lead to misunderstanding and even inappropriate claims (Figure 9).
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Figure 9. Comparing batteries and supercapacitors. (A,D) The different mechanisms of capacitive
energy storage are illustrated. Double-layer capacitance develops at electrodes comprising (A) carbon
particles or (B) porous carbon. The double layer shown here arises from the adsorption of negative
ions from the electrolyte on the positively charged electrode. Pseudocapacitive mechanisms include
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(C) redox pseudocapacitance, as occurs in hydrous RuO2, and (D) intercalation pseudocapacitance,
where Li1 ions are inserted into the host material. (E,H) Electrochemical characteristics distinguish
capacitor and battery materials. Cyclic voltammograms distinguish a capacitor material where the
response to a linear change in potential is a constant current (E), as compared to a battery material,
which exhibits faradaic redox peaks (F). Galvanostatic discharge behavior (where Q is a charge)
for a MnO2 pseudocapacitor is linear for both bulk and nanoscale material (G) [146,147], a LiCoO2

nanoscale material exhibits a linear response while the bulk material shows a voltage plateau (H).
Permission from Elsevier, License Number 5526570094637. 12 April 2023.

Table 6 provides an overview of the best-performing materials in various electro-
chemical devices, highlighting their material class, synthesis method, performance pa-
rameters, and applications. These materials play a crucial role in advancing the field
of electrochemistry by offering enhanced performance and enabling the development of
high-performance devices.

Table 6. Best-Performing Materials in Electrochemical Devices.

Material Name Material Class Synthesis Method Performance Parameters Application References

Lithium Cobalt
Oxide (LiCoO2) Metal Oxide Solid-state reaction High specific capacity,

good cycling stability
Lithium-ion
batteries [148,149]

Lithium Iron
Phosphate (LiFePO4) Metal Phosphate Sol–gel method High energy density, long

cycle life
Lithium-ion
batteries [150]

Silicon/Graphene
Composites Composite Chemical vapor

deposition (CVD)
High specific capacity,
enhanced stability

Lithium-ion
batteries [151]

Sodium-ion
Intercalation
Materials

Metal Oxide Hydrothermal
synthesis

Good rate capability, low
cost

Sodium-ion
batteries [152]

Graphene Carbon-based
Material

Mechanical
exfoliation

High specific capacitance,
fast charge–discharge rate Supercapacitors [153]

Activated Carbon Carbon-based
Material

Chemical
activation

High energy density, long
cycle life Supercapacitors [154]

Polyaniline Conductive
Polymer

Chemical
oxidation

High capacitance, good
stability Supercapacitors [155]

Carbon Nanotubes Carbon-based
Material

Chemical vapor
deposition (CVD)

High power density,
excellent cycling stability Supercapacitors [156]

Proton Exchange
Membrane (PEM)

Polymer
Electrolyte Solution casting High proton conductivity,

Low permeability

Polymer
electrolyte fuel
cells

[157]

Platinum-based
Catalysts Noble Metal Wet chemical

synthesis
High catalytic activity,
good durability

Polymer
electrolyte fuel
cells

[158]

Solid Oxide
Electrolyte Ceramic Solid-state

sintering

High ionic conductivity,
stable at high
temperatures

Solid oxide fuel
cells [159]

Perovskite Oxides Metal Oxide Sol–gel method Good oxygen reduction
reaction, thermal stability

Solid oxide fuel
cells [160]

Metal Oxide
Semiconductors Metal Oxide Chemical vapor

deposition (CVD)
High sensitivity, selective
detection Gas sensors [161]

Enzymes Biocatalyst Enzyme
immobilization

High specificity, rapid
response Biosensors [162]

Nanomaterials (e.g.,
Carbon nanotubes,
Graphene)

Various Various synthesis
methods

High sensitivity, versatile
applications Biosensors [163]
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In the realm of lithium-ion batteries, Lithium Cobalt Oxide (LiCoO2) demonstrates
high specific capacity and good cycling stability, while Lithium Iron Phosphate (LiFePO4)
excels in energy density and cycle life. Silicon/graphene composites exhibit a high specific
capacity and enhanced stability. These materials have found significant applications in
lithium-ion batteries due to their favorable electrochemical properties.

For alternative energy storage systems, sodium-ion intercalation materials have gained
attention for their good rate capability and low cost, making them promising candidates for
sodium-ion batteries. Additionally, supercapacitors, which offer rapid charge–discharge
capabilities, find valuable materials in graphene, activated carbon, polyaniline, and car-
bon nanotubes.

Polymer electrolyte fuel cells rely on Proton Exchange Membranes (PEMs) with high
proton conductivity and low permeability, while platinum-based Catalysts provide ex-
cellent catalytic activity and durability. In the realm of solid oxide fuel cells, solid oxide
electrolytes with high ionic conductivity and stability at high temperatures, along with
perovskite oxides with good oxygen reduction reaction and thermal stability, contribute to
their efficient operation.

Metal oxide semiconductors find applications in gas sensors due to their high sensi-
tivity and selective detection capabilities. Enzymes, immobilized for enhanced stability,
offer high specificity and rapid response in biosensor applications. Nanomaterials like
carbon nanotubes and graphene exhibit versatile applications and high sensitivity in biosen-
sor technology.

The mentioned materials are synthesized using various methods such as solid-state
reactions, sol–gel methods, chemical vapor deposition (CVD), and solution casting. These
synthesis techniques play a crucial role in tailoring the properties and performance of
the materials.

However, there are still some challenges that need to be addressed in the application
of nanomaterials to energy storage devices. One of the key challenges is the scalability
of the production of nanomaterials, which can be a complex and expensive process. In
addition, the stability and durability of nanomaterials in harsh operating conditions need
to be improved to ensure their long-term stability and performance. Furthermore, the
cost-effectiveness of using nanomaterials in energy storage devices needs to be evaluated
against traditional materials. Despite these challenges, the potential of nanomaterials for
improving the electrochemical performance of energy storage devices makes them an
important research area for the development of advanced energy storage technologies.

There are various factors that contribute to the performance of materials in electro-
chemical devices. Understanding these factors is crucial for optimizing the design and
performance of these devices. The composition of the material plays a critical role in its
electrochemical performance. Different materials exhibit varying chemical and physical
properties, which directly impact their charge storage capacity, energy density, and stability.
For example, in lithium-ion batteries, materials like lithium cobalt oxide (LiCoO2) and
lithium iron phosphate (LiFePO4) are widely used due to their high specific capacity and
long cycle life.

The method of synthesis greatly affects the structural characteristics and performance
of materials. Various synthesis techniques, such as sol–gel, hydrothermal synthesis, chem-
ical vapor deposition (CVD), and solid-state reactions, result in materials with different
morphologies, crystal structures, and surface areas. These factors influence the electro-
chemical properties, including specific capacitance, energy density, and power density.

The surface area and porosity of materials significantly impact their electrochemical
performance. Materials with high surface areas provide more active sites for electrochemical
reactions, leading to improved charge storage capacity and faster reaction kinetics. The
porosity of materials affects ion diffusion and electrolyte accessibility, influencing the
overall device performance.

The morphology and nanostructure of materials play a vital role in determining their
electrochemical properties. Nanomaterials, with their unique size-dependent properties,
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offer enhanced electrochemical performance due to their large surface-to-volume ratio
and shortened diffusion paths for ions and electrons. Materials with well-defined nanos-
tructures, such as nanowires, nanotubes, and nanoparticles, exhibit improved electrical
conductivity, ion diffusion, and stability.

The interaction between the electrode and electrolyte interface significantly impacts
the performance of electrochemical devices. A well-designed interface with good electrode–
electrolyte compatibility, minimized interfacial resistance, and effective charge transfer
enhances the device’s overall performance. Surface modification techniques and the use
of specific electrolytes can improve the electrode–electrolyte interface and boost device
performance. Understanding these factors and their interplay is essential for tailoring
material properties to meet specific device requirements. By optimizing composition,
synthesis methods, morphology, and interface characteristics, researchers can develop
high-performance materials for electrochemical devices with improved energy storage
capacity, cycling stability, power density, and overall efficiency.

7. New Types of Nanomaterials for Electrochemical Devices

Recent advances in nanotechnology have led to the development of new nanomate-
rials designed specifically for electrochemical devices. Among these emerging classes of
nanomaterials are metal–organic frameworks (MOFs), covalent organic frameworks (COFs),
and MXenes, which hold tremendous promise for the next generation of electrochemical
devices. COFs are a type of crystalline porous material composed of light components
bonded reversibly via covalent bonds in two to three dimensions. These materials have
gained attention due to their unusual characteristics and wide range of potential uses [164].
Previously, it was challenging to create organic polymer networks with distinct pores of
varying sizes, but the advent of reticular chemistry changed this. Reticular chemistry
was initially used to manufacture MOFs, which are also porous materials. MOFs with
very small dimensions, known as micro/nano MOFs, have better conductivity, a shorter
diffusion distance for guest transport, and more accessible surface-active sites compared to
bulk MOFs, without sacrificing any fundamental features of MOFs [165]. The structure of
MOFs can vary depending on the reaction duration, particle size, yield, and morphology,
even when using the same reactive combination (metal source, organic ligand, and sol-
vent). Some approaches of synthesis lend themselves particularly well to implementation
on a massive scale. Conventional solutions, diffusion synthesis, solvothermal synthesis,
microwave synthesis, sonochemical synthesis, electrochemical synthesis, and iono-thermal
synthesis are all employed to create MOFs, as shown in Figure 10. In addition, specific struc-
tural designs of micro/nano MOFs may confer novel functionalities and characteristics on
conventional MOFs [165]. For instance, MOF nanowires oriented in a particular direction
offer advantages for catalytic applications due to improved reactant and electron transport
and the exposure of surface locations. When utilized as electrode materials, ultrathin
metal–organic framework (MOF) nanosheets with high surface area-to-volume ratios may
assure electrolyte penetration and improve the performance of energy storage devices [166].
Micro/nano MOFs have desirable features that make them attractive as electrode materials
and high-performance catalysts for use in energy conversion and storage devices (such as
rechargeable batteries, supercapacitors, and catalysis) [167]. The coordination modulation
method allows for the expansion of MOF frameworks in specific directions by selectively
coordinating modulators on particular crystal planes. This results in the formation of
MOFs with different shapes, such as nanocubes, nanorods, and nanosheets. Researchers
Sikdar et al. discovered that lauric acid can be used as a modulator to control the size
and morphology of Zn-MOF. Without lauric acid, the MOF has an irregular shape due
to metal ions combining with organic ligands. However, with the addition of lauric acid,
the balance between the ligand and modulator coordination changes, leading to growth
along a specific crystal plane and resulting in an anisotropic shape (as shown in Figure 10a).
Varying concentrations of lauric acid enhance the competitive coordination, leading to
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the formation of hexagonal nanoparticles, 1D nanorods, and 2D nanosheets (as shown
in Figure 10b–d).
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With 4-methoxy benzoic acid (MBA) as a modulator, Cu-MOF nanosheets were pro-
duced by Zhou et al. [169]. The MBA and BDC competed synergistically to generate highly
distributed CuBDC-MBA-X when a Cu2+ and MBA combination was dripped into a mixture
containing terephthalic acid (BDC). Two-dimensional nanosheets had their homogeneity
altered by MBA. MOFs were created by the synthesis of a network of clusters containing
polyatomic inorganic metal atoms connected by polytopic linkers [170]. Wang et al. [171]
successfully synthesized a new hexagonal MOF nanoplate by using pyridine as a modulator.
This MOF is composed of two Ni2+ cations, four BDC anions, and the nitrogen-containing
terminals of 1,4-diazabicyclo[2.2.2]octane (DABCO) molecules. A paddlewheel secondary
construction unit (SBU) is generated when pyridine and DABCO molecules fight for coor-
dination, and this SBU subsequently self-assembles into 2D nanoplates. Because pyridine
replaces some of the DABCO on the crystal’s surface, a robust 2D growth trend is seen in
its presence. As concentrations of pyridine were lowered, changes occurred in the shape of
the nanocrystals and hexagons.

Using polyvinylpyrrolidone (PVP) as a regulator, Zheng et al. [172] synthesized Co-
MOF of varying sizes. While both Co-MOFs had identical chemical and physical character-
istics, the ultrathin 2D Co-MOF NS demonstrated superior performance in supercapacitor
tests due to its greater exposure of active sites and faster electron transport. In addi-
tion, high-performance energy storage and conversion applications (such as rechargeable
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batteries, supercapacitors, and fuel cells) rely heavily on materials having hybrid mi-
cro/nanostructure. These multicomponent structures are difficult, yet they can potentially
outperform their simpler single-component analogues. Because of its hybrid nature and the
wide range of components available, the performance of any given application may be fine-
tuned [173]. To date, several different synthesis methods have been developed to generate
micro/nano hybrid structures; these approaches often include the use of precursors and
sacrificial templates to build the complicated hybrid structures. Because the surface energy
plays a role in the thermodynamic and kinetic processes of various re-actions happening at
the interface of micro/nanocrystals, the design and management of different morphologies
of MOF nanocrystals has been a popular issue in recent years [174].

Metal–organic frameworks (MOFs) are crystalline porous materials that are con-
structed from metal ions or clusters, which are linked together by organic ligand molecules.
The modular approach used to create MOFs allows for the production of three-dimensional
(3D) frameworks of varying topologies. MOFs are distinguished from their less-ordered
counterparts such as activated carbon, metal oxide, and silica by their well-defined pore
system [175]. MOFs have a wide variety of potential uses, including catalysis, the capture of
greenhouse gases, and electronic device manufacturing, among others, which are enabled
by their well-defined crystal structure. The storage and transformation of energy are among
the many possible applications for metal–organic frameworks. Redox-active metals are
particularly promising for electrochemical energy applications as they provide better charge
transfer between the ligand and metal nodes. In the field of electrochemistry, MOFs have
recently garnered much attention due to their high specific surface area, tunable shape,
numerous pores, and adaptability. Publications on the energy-related uses of MOFs have
increased significantly in the past two years [176]. Researchers have employed MOFs as
building blocks to create nanomaterials with a wide range of shapes and sizes, including
nanosheets, nanoparticles, nanospheres, and nanorods. However, the use of metal–organic
frameworks (MOFs) in electrochemical devices poses several challenges. One significant
challenge is their relatively low electrical conductivity, which can limit their use as electrode
materials in electrochemical devices. This can be addressed by incorporating conductive
materials into the MOF structure or by designing MOFs with higher intrinsic conductivity.
Another challenge is the stability of MOFs in the presence of moisture, which can cause
their structure to degrade and their performance to deteriorate. Researchers are working
on developing MOFs with improved moisture resistance or implementing protective coat-
ings to address this issue [177]. Additionally, the synthesis of MOFs can be complex and
time-consuming, which can hinder their commercial application. Therefore, efforts are
underway to develop simpler and more scalable synthesis methods for MOFs to overcome
this challenge. Furthermore, although MOFs have exhibited potential in electrochemical
devices, their electrochemical properties remain partially understood, and further research
is necessary to optimize their utilization in practical applications.

COFs, which are the initial form of porous organic frameworks (POFs), have been suc-
cessfully developed to incorporate organic building blocks into a systematically arranged
structure [178] and may be created utilizing the principle of dynamic covalent chemistry,
which involves linking together organic building blocks [179]. Through reversible ther-
modynamic bond formation, COF crystallization is facilitated via error correction and
self-healing, whereby structural abnormalities are dynamically rectified [180]. Due to their
composition of light elements linked via robust covalent bonds, COFs have exceptional
thermal stability and possess low mass densities and permanent porosity [180]. COFs may
be produced utilizing various energy sources, including heat, mechanical agitation, light
irradiation, ultrasound, electron beams, and microwaves. Microwave-assisted synthesis
has garnered significant attention due to its beneficial reaction features, such as reduced
energy consumption, faster reaction speeds, and increased yields [181]. COF-5, a Boronate
ester-linked COF, was synthesized in under 20 min at 100 ◦C under microwave irradiation
by condensing 2,3,6,7,1,11-hexahydroxytriphenylene and 1,4-benzenediboronic acid, two
hundred times quicker than the standard solvothermal method [182]. Compared to the
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solvothermal synthesis, COF-5’s Brunauer–Emmett–Teller (BET) surface area is higher at
2019 m2g1, whereas the solvothermal synthesis yielded only 1590 m2g1 [183]. Addition-
ally, Bein’s team utilized microwave-assisted synthesis to produce mesoporous Boronate
ester-linked COF (BTD-COF), yielding a highly crystalline BTD-COF with a BET surface
area of 1000 m2g1 after two successive heating periods of 40 min [184]. Sonochemical
synthesis drastically reduced the synthesis time by avoiding the induction phase, using
less energy and, as a result, less money, and generating higher pressures and temperatures
(>1000 bar and >5000 bar, respectively) due to the accelerated crystallization rate [185].
Sonochemically synthesized COF-5’s yield is better, with a BET surface area of 2122 m2g1,
than a solvothermally manufactured equivalent [186]. While mechanochemical synthesis
(MS) has been employed to create a wide range of porous materials, including metal oxides,
porous carbon, metal–organic frameworks, and graphene derivatives, COFs remain a work
in progress in terms of MS synthesis. MS is a low-cost, simple, and environmentally friendly
technique. The photochemical synthesis method is useful for generating various functional
materials, and Choi, Lim, and their colleagues established a photochemical method for
synthesizing COF-5 (UV-COF-5) at room temperature in the presence of UV light, resulting
in a 48-fold increase in growth rate and a BET surface area of 2027 m2g1.

The production of functional materials was achieved by utilizing high-energy radia-
tion, where Imine-based covalent organic framework EB-COF-1 was synthesized in just
160 seconds. This was accomplished by condensing 2,4,6-tris-(4-formylphenoxy)-1,3,5-
triazine and TAPB at room temperature in the presence of a 1.5 MeV electron beam. The
rapid synthesis of the EB-COF-1 framework demonstrates the potential of high-energy
radiation as a powerful tool for producing advanced materials with specific properties
and functionalities [129]. This technology has opened up avenues for industrial-scale COF
production and ensures their rapid synthesis.

Covalent organic frameworks (COFs) also face several challenges in their application
in electrochemical devices. One significant challenge is their low electrical conductivity,
which can limit their use as electrode materials in electrochemical devices. This can be
addressed by incorporating conductive materials into the COF structure or by designing
COFs with higher intrinsic conductivity [187].

Another challenge is the limited stability of COFs under acidic or basic conditions,
which can cause their structure to degrade and their performance to deteriorate. This can
be addressed by developing COFs with improved stability under harsh conditions or by
implementing protective coatings.

The practical use of COF materials in energy-related devices is hampered by their
poor stability or limited endurance. The collapse of COF structures in high aqueous
acidic/alkaline electrolytes may make active centers inaccessible and hinder mass and
charge transfer. Because most COFs are synthesized by solvothermal reactions of precursors
in sealed glass tubes at elevated temperatures, resulting in completely insoluble powders
comprised of randomly aggregated crystallites, poor process ability may be another major
issue for their applications in electrocatalysis. This complicates the use of COF materials in
energy-related equipment.

Consequently, it is preferable to create synthetic processing methods for building
COFs with improved stability and process ability, which allows shaping, positioning, and
orienting COFs as required, while integrating them with other components of the devices
for stable functioning. Improving COFs’ electrical conductivity is further required for
enhancing their electrocatalytic performance and energy storage performance. One way
to do this is to grow oriented COF thin films on a conducting support or to produce com-
posites [188]. Finally, employing the novel stable and completely conjugated COFs made
of cyanovinylene or olefin linkages would be beneficial for improving charge transport
characteristics, which are required for electrochemical applications, and for increasing the
recyclability (robustness) [188]. Additionally, the synthesis of COFs can be complex and
time-consuming, which can limit their commercial application. Efforts are underway to
develop simpler and more scalable synthesis methods for COFs to overcome this challenge.
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Moreover, while COFs have shown promise in electrochemical devices, their electro-
chemical properties are not yet fully understood, and more research is needed to optimize
their use in practical applications [189].

MXenes are a new type of 2D material composed of transition metal carbides, nitrides,
or carbonitrides. They exhibit impressive electrochemical properties such as rapid specific
capacitance, rapid charge–discharge rates, and great cycle stability [190]. Due to their high
conductivity, MXenes are suitable as electrodes in electrochemical devices [107].

Despite graphene’s significant contributions to scientific and technological advance-
ments, its basic structure and chemistry limit its further development compared to other 2D
materials. MXenes are a class of novel materials that have recently gained attention across
various disciplines due to their many layers and adjustable features, which allow for a wide
range of applications such as energy storage devices, catalysts, sensors, and biomedical
applications [191,192]. Recent studies have shown that, like graphene, MXenes’ surface
functional groups can be fine-tuned to alter their electrical and electrochemical properties.
MXenes exhibit high electrical conductivity, electrochromic behavior, antimicrobial charac-
teristics, and transparency, making them attractive for various applications [189,190]. The
exfoliation of the layered transition metal carbide Ti3AlC2 to produce MXenes using the
top-down method involves immersing Ti3AlC2 powders in 50% hydrofluoric acid (HF).
During exfoliation, OH and F groups are added to the surface, while Al layers are selec-
tively scratched away [193]. MXenes can be broken down into ML powder by exploiting
their inherent limitations. However, the search for inexpensive, environmentally friendly
alternatives to traditional metals and plastics for use in high-capacity batteries and superca-
pacitors is ongoing. MXenes have exceptional electrical and electronic properties, such as
a large specific surface area, a low energy barrier for electron transport, and a short ion-
diffusion route due to their atomic thickness, crystalline nature, and layered structure [194].
MXenes’ electrical properties can be tuned by adjusting their surface terminations [194].
To develop effective energy storage devices in the future, researchers have been exploring
novel applications of MXenes and MXene-based materials. MXenes face challenges in
their application in electrochemical devices, including the difficulty of large-scale synthesis,
susceptibility to oxidation in air, and sensitivity to the pH of the electrolyte, which can limit
their electrochemical performance in certain devices.

At high current densities, the rate capability of MXene-based electrode materials is
severely limited by the extremely high ionic diffusion resistance in the vertical direction
that arises from stacking the layers of MXenes [195]. A possible way to improve MXenes’
electronic conductivity, stability, and ion/electron transport is to structure them and cre-
ate hybrid materials based on them. Improved electrochemical performance may result
from the increased interlayer distances, which allow for the rapid passage of ions and
electrolytes. Accordingly, further research has to be conducted to strike a good compro-
mise between high-rate electrochemical performance and high-volume capacitance [196].
The influence of surface termination on the functional characteristics of MXene is poorly
understood [197]. The optimization of the MXenes’ surface terminations has great promise
for controlling their characteristics, but a thorough study is needed to demonstrate the
necessary relationships [198].

The key obstacles for MXene manufacturing and the limiting constraints for commer-
cial development are the availability and expense of MAX phase powders and the usage
of a significant volume of intrinsically dangerous high concentrated HF [199]. To reduce
the environmental impact of MXene-based products, a concerted, multifaceted effort is
necessary and desired [199].

The oxidation rate of MXenes may be slowed by removing the dissolved oxygen with
dry nitrogen and storing the compound at low temperatures. Thus, the electrochemical
charge storage mechanism of MXene-based electrode materials has been significantly
impacted by aggregation of the produced MXene and impacts of MXenes’ structural
properties like basal spacing, surface chemistry, etc. [197].
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One of the biggest obstacles to making flexible supercapacitor devices is striking a
compromise between the mechanical features of MXenes (such as mechanical strength,
toughness, flexibility, etc.) and their electrochemical properties [196].

Colloidal MXenes created by solvent sonication or by applying extensive mixing/shaking
durations are widely employed in most research studies, although neither method demon-
strates a viable technology with practical application [200]. To actualize the achieved and
predicted property advantages, colloidal MXenes must be avoided; otherwise, the industrial
adoption of MXene into the electrodes of energy storage devices would run into the same
problems seen with graphene. For MXene to be used in industrial settings, the current high
cost of manufacture must be reduced [196].

Despite these obstacles, the outlook for pure MXenes and MXene-based materials
is brightly promising in not only the energy storage and energy conversion fields but
also in a wide range of other fields including catalysis, environmental protection, and
biomedicine. Specifically, improved performances may be achieved by a deeper knowledge
of the electrochemical charge storage mechanism of MXene-based materials, but this
requires extensive effort, novel concepts, and the application of cutting-edge research and
investigation techniques.

8. Nanotechnology through Electrochemistry in Water Purification

Nanotechnology has the potential to address critical challenges in developing coun-
tries, particularly the significant public health hazard posed by waterborne pathogens in
underdeveloped nations, which claim millions of lives each year. To minimize the risk
of waterborne diseases, it is essential to remove and/or inactivate viruses, bacteria, and
protozoa through point-of-use technologies [201]. Past research has mainly focused on
the electrochemical production of active chlorine species (>2.5 V; HOCl, Cl2 3−) or electro-
chlorination, which may generate hazardous disinfection byproducts [202]. Interestingly,
studies have reported the successful elimination of bacteria and viruses by microfilters
based on single-walled and multi-walled carbon nanotubes, which also possess antibac-
terial properties. Furthermore, carbon nanotubes have shown potential as substrates for
photovoltaic and fuel cell applications. Hence, CNT-based microfilters may be employed
in an electrochemical manner similar to carbon anodes for pathogen inactivation [203,204].

Boron-doped diamond anodes, which do not create effective chlorine species and
are believed to be efficient for bacterial inactivation, might be a solution. Electrochemical
processes are versatile and provide technologies for cleaning. Desalination in most countries
is based on a technique called the reverse osmosis technique, and this method depends on
the osmotic property [205]. The pressure exerted on the surface of the membranes is used
to overcome the natural osmotic pressure of water. So, if a semi-permeable membrane is
placed between two solutions of equal concentration under equal temperature and pressure,
no water passage occurs through the membrane because of reciprocal chemical effort on
both sides. If we add a soluble salt, the two solutions decrease pressure, so an osmotic
flow of water occurs from the less salty side to the saltier one until the chemical voltage
returns to its equilibrium state. This equilibrium occurs when the pressure difference in the
saltier volume liquid becomes equal to the osmotic pressure [206]. Organic, inorganic, and
biological contaminants may be water contaminants. Specific contaminants are toxic and
carcinogenic and harm people and ecosystems. Highly toxic water pollutants are famous
for some heavy metals. Arsenic is one of the deadliest elements in history. Cadmium,
chromium, mercury, lead, zinc, nickel, and copper are other heavy metals and water
pollutants with significant toxicity [207].

The population increase combined with the exploitation of water resources for domes-
tic, industrial, and agricultural purposes has resulted in a shortage of freshwater supplies
in many parts of the world [208]. Seawater desalination and brackish water treatment
have become alternatives to freshwater resources. Different membrane processes are used,
such as nanofiber and reverse osmotic pressure membranes, to extract potable water [209].
However, the limitations associated with existing membranes (i.e., dirt, biological de-
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composition, physical and mechanical change of membrane properties) result in reduced
membrane productivity because of high energy requirements and the cost of cleaning
procedures and regular replacement membranes [210]. In contrast, ultrafine nanofilms are
less expensive and require fewer operational requirements than reverse osmotic pressure
films. Despite their high productivity levels in water flow, their efficiency in filtering some
saline ions is lower than that of osmotic pressure membranes. Additionally, they differ
in terms of diffusion and distribution of pore size. Wastewater is defined as any water
contaminated with organic or bacterial pollutants or microorganisms, whether from an
industrial source or not, and can be divided into wastewater and industrial wastewater.
Wastewater treatment includes primary and secondary procedures and a triple technique
to remove residual protein from organic and inorganic materials and pathogenic microor-
ganisms through filtration and sterilization. To improve water treatment, nanomaterials
are used, such as nano-titanium oxide [211]. Nanoparticles of TiO2 have become a new gen-
eration of advanced materials, with a diameter of 100 nm, and their various environmental
applications, including gas sensors, are of great interest.

Recent studies have confirmed the importance of activated carbon in removing water
pollutants. Granular activated carbon has numerous uses, particularly in aqueous solutions,
and has increased in demand for various industrial applications [212]. The use of these
GACs for water treatment has shown considerable promise, sometimes outperforming
commercial carbons depending on the target pollutant [212].

The electrochemical method has been used to produce titanium dioxide nanoparticles.
Inorganic mediums such as tetrahydrofuran and acetonitrile in a 4:1 ratio and a stabilizing
agent increase the current density. Tetra-propyl bromide salt is a commonly used organic
medium. Solvent polarity, electrode distance, and stabilizer concentration are used to
control nanoparticle size. Electrochemical methods are applied to synthesize titanium diox-
ide nanoparticles for small-sized metal nanoparticles [213]. The overall process involves
oxidizing the bulk metal on the anode, migrating the metal cations to the cathode, and
decreasing them in a null-oxidation state by forming a metal or oxide. An ammonium
stabilizer prevents agglomeration by creating unwanted metal powder [213]. The electro-
chemical deposition approach is therefore discovered to be innovative and very effective in
suppressing microorganisms. Shashikala et al. [214] discovered that this approach delivers
silver immediately in metallic form, unlike conventional ways of preparing silver catalysts.
It is particularly cheap in recovering hydrogen by eliminating its usage in the process of
catalyst manufacturing. Hydrogen is the most recent energy supplier, with several social,
economic, and environmental benefits, including its use in chemical industries, which
accounts for up to 30% of its usage. This implies the value of H2 and its great demand in
the world today and in the future [215].

Nanoparticles can be emitted into the environment from point sources, such as pro-
duction plants and wastewater treatment plants, or non-point sources, such as washing
machines, garbage, or other nanoparticle materials [216]. Due to their high specific surface,
most nanoparticles accumulate and absorb immediately after water contact, losing their
nanoscale characteristics. The surface configuration of polymers influences the agglomera-
tion of nanoparticles in aqueous systems, such as polyethylene, providing interaction with
different proteins [217]. Besides polymer nanoparticles, different proteins like fetal bovine
serum can also interact.

Nanoparticles can be placed in natural water (lakes or rivers) and industrial storage
systems for a long time as agglomerates or adsorbed with macro-molecules. The nanoparti-
cles are bound to be “inactive” but not harmless because a changing environment, such
as an increase in temperature or a decrease in pH, may cause nanoparticle dissolution.
Different studies have calculated environmental concentrations of nanomaterials to esti-
mate their impact on the environment. Gottschalk et al. [218] concluded that there is a
risk associated with nanosilver, nano-TiO2, and nano-ZnO when used for waste purposes
in the USA, Europe, and Switzerland. The risk quotient is defined as the predicted con-
centration of the environment and the predicted no-effect concentration. Nanoparticles
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can be degraded and sedimented through biological treatment by interacting with the
microbiological community [219]. Due to their high specific surface, nanoparticles can form
large particles or absorb larger particles, aiding in their separation. If the particles do not
aggregate naturally, adequate flocculation surfactants can be added to cause larger clusters
to form. For example, this process can easily remove colloidal C60 aggregates.

9. Green Nanoscale and Electrochemical Methods in High-Precision Economical Products

Recently, there has been growing interest in the natural synthesis of nanoparticles
and the use of electrochemical methods to produce them [220]. This trend aligns with the
concept of green nanotechnology, which aims to create safe, environmentally friendly, and
energy-efficient products and processes while minimizing waste, greenhouse gas emissions,
and reliance on non-renewable resources [221]. By integrating nanotechnology with other
fields such as materials science, environmental science, electronics, and computing, green
applications are emerging that leverage various technological advancements. For example,
a study has shown that green cars with energy storage and release systems benefit from
nanotechnology-enabled batteries, which improve their efficiency and use a natural mineral
called lithium ferrophosphate (LiFePO4) as an electrode component [222]. However, while
nanotechnology plays a small role in the final product, green nanotechnology has significant
potential to enhance sustainability and economic benefits while reducing risks and costs.
Nevertheless, there are still concerns about the environmental and health implications of
some green nanotechnology applications [223,224].

Nanostructures can be categorized according to their size and structure, and they can
be synthesized using different atoms such as copper, calcium, magnesium, protein, and
DNA [225–227]. Each of these formulas serves a specific purpose: Copper nanoflowers
are used for efficient drug delivery, cell imaging, biosensing, and various medical appli-
cations [105]. Calcium nanoflowers improve the function of proteins in the environment,
while nano-magnesium acts as a catalyst for better drug delivery and high-resolution imag-
ing of cells. Researchers have also developed AuPt bimetallic nanoflowers using a one-step
electrochemical reduction method [207,208]. To accomplish electrochemical reduction at
low temperatures, this approach makes use of a unique mechanism involving the addition
of 10% water to eutectic solvents. Glassy carbon electrodes (GCEs) modified with nanoma-
terials (AuPt NFs/GCEs) were made available for the first time by the researchers to be
used as the anode in the electrical oxidation of XT to XO [228,229]. XO was synthesized by
electrical oxidation of XT with a high yield of XO (Figure 11). The researchers achieved a
high yield of XO through the electrical oxidation of XT with significantly lower applied
potentials (0.80 V versus Ag/AgCl) in the modified reaction and electrode system, making
the system safer than other oxidation potentials. In addition to oxidizing XT to XO, the
system also had a low ability to cause side reactions.
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Bimetallic nanoparticles possess unique properties and have shown promise as cata-
lysts with various applications [225,226]. The electrostatic deposition reduction method is
a green, controllable, and efficient approach to synthesizing alloy nanoparticles compared
to conventional methods [230]. Deep eutectic solvents, a new generation of green solvents,
exhibit remarkable physical and chemical properties, making them useful in nanoparticle
synthesis, electrochemistry, and biochemistry, besides ionic fluids. These natural products
have significant biological and pharmaceutical properties, such as antibacterial, anti-cancer,
and anti-viral properties [231].

In electrochemical oxidation reactions, potential control is critical to achieving safe
electrical oxidation or avoiding unwanted side reactions [232]. Gold nanowires have
been found to enhance the performance of cobalt oxide microelectrodes in electrochemical
biosensors, which are widely used in clinical, environmental, industrial, and agricultural
applications [233]. The catalytic activity of glucose oxidase (GOx) is sensitive to environ-
mental conditions, such as temperature, humidity, pH, and toxic chemicals. The controlled
use of nanostructured metal oxides can overcome the limitations of costly enzymes like
GOx, thereby improving the sensitivity and stability of glucose detection [234].

The correlation between biosensing performance and the electrochemical and struc-
tural properties of electrodes has led to significant efforts to optimize charging and elec-
tronic transmission processes in advanced materials, thereby reducing primary resistance
in bioanalysis [235]. Metal oxides with nanostructures offer promising applications as
non-enzymatic catalysts in miniature glucose sensors due to their low cost, high bio-
compatibility, electrical catalytic activity, and enhanced electron transfer and adsorption
capabilities [236]. Researchers have focused on simpler and more manageable methods to
fine-tune pore size and np-Au ligaments for various applications. Electrochemical methods
provide proper control over pore and ligament sizes, making np-Au electrodes an efficient
and easy-to-handle option for electrochemical biosensing [237].

The surface morphology, pore size, and ligament size of np-Au can be determined
using scanning electron microscopy (SEM) [238]. For higher resolutions, transmission
electron microscopy (TEM) can be used to study thin np-Au films. X-ray energy dispersive
spectroscopy can offer information on mineral composition, aiding in the validation of the
exclusion of metals from np-Au.

Electrochemical techniques are significant for assessing the surface area and kinetics
at the np-Au interface. The method of choice for determining the np-Au electrode surface
area is cyclic voltammetry (CV). In CV, a particular scan rate is used to generate a triangular
waveform and calculate the resulting current [238]. In the reverse scan, the Au-electrode
immersed in diluted H2SO4 is treated with an anodic scan to form a gold oxide layer. The
charge beneath the cathodic peak is measured, and the surface area of np-Au is calculated
based on the required charge to extract gold oxide from a square centimeter of the gold
surface. However, due to the double-layer charging, the contribution from other faradaic
processes, and variation in the metal’s crystal face, there is always the possibility that this
value will be lost. The geometric surface area is divided from tens to thousands, depending
on the preparation methods, the number of materials, and the size of the pores, and it is
possible to determine the roughness factor of np-Au against a planar surface [239].

Silver nanoparticles have attracted researchers’ attention due to their appropriate ap-
plications in various domains, including electronic science, physical sciences, and medicine.
Nanotechnology occupies a prominent place among innovative approaches to developing
agricultural processes and food production. The wide variety of methods for prepar-
ing nanoparticles in materials science, energy, medicine, and life sciences research has
contributed to the use of nanotechnology and the expansion of its fields [240].

Moreover, from its applications in genetically changed crops and agricultural chemical
production techniques, silver nanoparticles show potential antimicrobial effects against
infectious organisms such as Escherichia coli, Bacillus subtilis, Vibrio cholera, Pseudomonas
aeruginosa, Syphilis typhus, and Staphylococcus aureus [240]. More recently, Ag-NPs have
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been used in a wide range of applications in fields such as mechanics, optics, biomedical
sciences, chemical industries, and electronics.

Different electrochemical techniques, thermo-destructiveness, laser ablation, and mi-
crowaves have been used in manufacturing silver nanoparticles [241]. To reduce the
electrochemical silver, a galvanostatic method (electrolysis) was used in this proposal. A
simple system of three silver anodes (50 × 10 × 0.2 mm3) and two silver wires (0.8 mm
diameter) as cathodes was placed at the half-distance between the anodes. Anodes were
positioned perpendicular to the direction in which the electrodes were placed. The dis-
tance between neighboring electrodes was 15 mm [242]. The electrolysis was performed
at 323 K with a current frequency of 0.5 mA cm−2. A Phillips CM20 TWIN microscope
operating at 200 kV was used to investigate the size, morphology, and composition of the
obtained nanoparticles using transmission electron microscopy (TEM) (Figure 12A), energy
dispersive X-ray analysis (EDX) (Figure 12B), and electron diffraction. Silver oxidation is
noticeable above 0.4 V in the previous work on rising current densities in the anode curve.
This silver anode dissolution process proceeds on a surface with a one-electron reaction.
The nanoparticles form a polarization of silver in an ethanol solution, either potentiostat-
ically or galvanostatically. In the presence of ethanol, the proposed process mechanism
assumes anodic silver oxidation and dissolution. Aldehyde was obtained simultaneously
with the anode during ethanol oxidation to reduce Ag2O in the last step. The presented
method is simple and ecological, does not require costly tools, and there will be no need for
surfactants or other reduction agents.
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Another study described an efficient electric approach for colloidal AgNP synthesis
using bulk silver, bidistilled water, trisodium citrate, and an applied direct current (DC)
voltage source [243]. A substantial majority of colloidal AgNPs can be derived in one
process with a high antibacterial effect, as synthesized AgNPs could be used for different
biomedicinal uses. This way, the magnet stirrer was connected as an electrode in the 500 mL
glass beaker to two silver bars parallel to the direct voltage source. The two electrodes
were 6.5 cm apart, and bidistilled water was filled in with silver electrodes up to 7 cm. The
magnetic mixing was performed for 0.016 percent (wt%) of trisodium citrate. For a further
2 h under magnetic revolution and room temperature, it supplied a 12 V DC voltage to
the silver bars. The stirring was still in operation for half an hour to prevent the scattering
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of the residue produced during synthesis. The solution beaker was kept in the dark for
24 h to complete the AgNP formation. At 2000 RPM, the AgNP solution was decanted and
sediment-free before use and measurements at 2000 RPM for 10 min. The colloidal AgNP
solution for Gram-positive and -negative bacteria achieved high antibacterial effectiveness.
The advantages of the above method show the simplicity of preparation, high efficiency,
uniformity, and purity of colloidal ANPs. A recent study illustrated evaluating photo and
electrocatalytic activities in Iso-AgNPs using isoimperatorine, a furanocoumarin-natural,
as a significant decrease in the synthesis of synthesizing isoimperatorin mediated silver
nanoparticles (Iso-AgNPs) [244].

Iso-AgNPs, which were spherical particles ranging from 79–200 nm in size, exhibited
catalytic activity for sunlight-induced degradation (increased yield). This suggests that
Iso-AgNPs hold potential as effective catalysts for environmental remediation applications
that require sunlight-induced degradation. Compounds contained 4-chloro-fluorescein,
methylene blue, erythrosine B, and new fuchsine. Degradation rates for MB, NF, ER,
and 4-CP with iso-AgNPs were 96.5%, 96.0%, 92.0%, and 95.0%, respectively. Iso-AgNPs
showed an excellent electrocatalytic activity towards H2O2 in many biological systems
without additional binder and conductive additives. There is a wide range of catalytic
applications for synthesized nanoparticles. A dropping method has been developed as
Iso-AgNPs can change glassy carbon electrodes (GCEs).

The working electrode was polished with alumina powder to achieve a mirror-like
surface. A 5 µL volume of an aqueous solution of Iso-AgNPs was directly applied to a
cleaned area of the glassy carbon electrode (GCE) and allowed to dry at room temperature,
resulting in the formation of Iso-AgNPs/GCE. This process ensures the uniform and
controlled application of Iso-AgNPs to the GCE surface, which is critical for accurate and
reliable electrochemical measurements.

The electrocatalytic activity, stability of Iso-AgNPs, and the decrease in H2O2 in
0.1 M PBS was assessed using cyclic voltammetry and differential pulse voltammetry. The
PBS buffer was purged with ultra-pure nitrogen for 10 min to remove dissolved oxygen
before measuring.

10. A Fusion of Nanostructures with the Electrochemical System in Applications of
Economic Importance

Nanoscale working techniques have become essential in electronics, and nanoscale ma-
terials are emerging in consumer products, although it may take decades to develop small
usable devices [245]. For example, millions of nano-lines are molecularly applied to natural
and synthetic fibers to impart resistance to clothing and other fabrics at a scale of around
10 nanometers. Zinc oxide nanocrystals are used to create invisible sunscreens that block
UV rays, and silver nanocrystals are added to dressings for killing and preventing bacterial
infections [246]. The future scope for nanotechnology is vast. It is possible to manufacture
lightweight, robust, and programmable materials that require less energy to build than
traditional materials, which produce less waste and increase fuel efficiency in land, ship,
and aircraft transport compared to conventional manufacturing. Additionally, electronic,
magnetic, and mechanical devices and data processing systems can be manufactured for
human and environmental conservation, as well as chemical, optical, and biological sensors.
Innovative photovoltaic materials will make efficient solar panels possible, and molecular
hybrid semiconductors will drive the next revolution in the information age. There is
enormous potential for improvement in health, safety, quality of life, and conservation, and
we must address these opportunities to reap the benefits of nanotechnology [247].

Hierarchical assemblies of nanoscale materials, or their incorporation into devices,
provide a basis for the radical design of new materials and machines, even those intended
for large structures. This advance in structural materials benefits the automotive industry
because reduced weight leads to improved fuel efficiency [248]. Additional improvements
can improve safety or reduce the environmental impact of manufacturing and recycling.
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Further advances, such as active materials showing impending failure or even being capable
of self-repairing faults, may be possible.

For almost every modern control system, sensors are critical. Multiple sensors, for
example, are used in automobiles for various tasks, such as motor control, emission con-
trol, safety, convenience, vehicle monitoring, and diagnostics [249]. Nanosensors exhibit
unexpected speed and sensitivity because of their small size and sometimes extend to the
detection of individual particles. Nanowires made of carbon nanotubes, silicon, and other
semiconductor materials, for example, have an extraordinary sensitivity to chemical species
or biological substances. The charging-induced changes in current can detect different
species on the nanowire surfaces coated with sensor molecules, which selectively bind
species. Many classes of sensor systems have adopted the same strategy [250]. There will
be several applications for new kinds of highly sensitive and specific sensors. When com-
posed of a few cells, sensors that can detect tumors are a significant development. Various
nanostructure fabrication technologies are becoming significant in sensors. Nanostructured
materials have sparked great interest in many sensor applications because of their superior
physical, chemical, and plasmonic properties [251]. Although there are many applications
for these nanostructures in sensor applications, certain limitations can restrict their use.
Gas sensors made of carbon nanotubes, for example, are nonselective. For example, there
was a lack of selectivity for gas sensors based on carbon nanotubes [252]. This lack of
selectivity is an essential factor that can prevent the further use of these CNT-based devices,
which can be reduced by the combination of CNT with other materials. There are also
technical problems in the manufacturing of nanostructures and serious concerns concerning
toxicity of nanostructures that could vary in the quality of each new type of particle’s phys-
ical characteristics [252]. Many sensors, such as electrochemical sensors, enzyme-based
biosensors, genetic sensors, immune sensors, and cellular sensors, are available. Rele-
vant electrochemical sensor developments open new avenues and strategies for research
into the future [253]. The high specificity of enzymes is combined with the sensitivity
of electrochemicals in the electrochemical enzyme-based sensor. Enzyme electrodes are
electrochemical samples on the surface of the working electrode with a thin layer of immo-
bilized enzyme. Because it provides selectivity for the sensor and catalyzes the formation
of the electroactive substance for detection, the enzyme is the most significant part of the
enzyme electrode. The production of various materials, techniques, and applications of
electrochemical enzyme-based biosensors has been the subject of several studies in the last
two years [254]. Nanoforms of minerals such as silver, titanium, and zinc and their oxides
are used in several kinds of toothpaste, cosmetics, sun protection, paint, clothes, and food.
Carbon nanotubes (graphene) also have exceptional properties. They are stronger than
steel, conduct electricity better than copper, and have a higher thermal conductivity than
diamond [255]. In a recent study, nanosynthesis, characterization, and implementation
of zinc oxide-graphene oxide (ZnO/GO) in the electrochemical system have been carried
out. Because of its exceptional properties, for instance, large area size proportions and
low production costs, graphene oxide has been given considerable attention in science
and engineering. It has emerged as a new carbon-based nanomaterial that provides an
alternative route to graphene. Graphene oxide (GO) is a feedstock for graphene, and it has
unique properties from its analog.

The general structure of graphene oxide can be described as a hexagonal carbon lattice
in which some carbon atoms exhibit sp2 hybridization and others exhibit sp3 hybridization
due to the presence of oxygen functional groups. These oxygen groups can be found
attached to both two- and three-hybridized carbon atoms, resulting in a highly functional-
ized graphene lattice.These oxidative functions give it fluctuation properties by being at
the hydrophilic boundary and hydrophobic level. Zinc oxide (ZnO) is an inorganic and
non-toxic semiconductor compound. Its chemical and thermal properties are stable; as an
inexpensive material, this makes it a significant material for research. A unit crystal cell
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with constants a = 3.2499A0 and c = 5.2060A0 where the u-coordinate is from creates the
following relationship [256]:

u = 1/4 + a2/3c2 = 3/8 = 0.375 Wurtzite

The compact formation of the ZnO/GO nanocomposite was stated by microscopy
of electric field scans, HRTEM, X-ray diffractive, and reduced overall reflectance spec-
troscopy [257]. Compact ZnO/GO nanocomposites are also confirmed (Scheme 4). The
efficiency of direct electron transfer was therefore confirmed and was used for hydro-
gen peroxide amperometric detection. In another analysis, the GO/ZnO nanocomposite
was produced with ZnO nanoparticles synthesized by decorating expanded and oxidized
graphite oxide nanosheets. Photocatalysts were used to degrade basic fuchsin (BF) color.
The production process was based on the deposition of a two-step sol–gel process. A two-
dimensional structure with 0.54Go/0.46ZnO (w/w) composition and an average ZnO parti-
cle size of 25–30 nm was developed by the GO/ZnO nanocomposite. The GO nanosheet
ZnO nanoparticles have 3.25 eV bandgaps, while the bulk ZnO nanoparticles have a 3.70 eV
bandgap [140]. This research could lead to the growth of structurally engineered and
efficient composite catalysts by providing detailed technical details for catalyst synthesis,
characterization, and testing of performance issues [258].
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At the bench level, global efforts are still working on developing desired materials
that can treat water supplies. The principal trustworthy applicant suffered from many
challenges considering adsorbent and photocatalytic materials that limit its large-scale
application. Magnetic activated carbon, nanotubes (CNT), graphene (G), quantum GO,
carbon nanotubes and reduced graphene oxide (RGO), zeolite, silica, and clay-based
nanomaterials are recently advanced water treatments. Materials are available in various
countries [260]. Thus, water-treating techniques have been developed.

The adsorption and photocatalytic properties of these nanomaterials make them a
promising option for the removal of heavy metals and organic dyes. Additionally, their
photocatalytic properties enable the degradation of pollutants under light irradiation,
further enhancing their potential for environmental remediation applications. The main
features of these materials make them suitable to treat wastewater even in a low pollutant
concentration in combination with higher kinetics of adsorption or decomposition [260].

11. Future and Challenges

Nanomaterials have shown great potential in electrochemical devices. However,
several challenges and limitations need to be addressed before their widespread adoption
can take place.

One of the key challenges is the synthesis and scalability of nanomaterials. The
synthesis of nanomaterials can be challenging due to their small size and complex structures
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and may require specialized equipment and expertise. Scaling up the production of
nanomaterials to meet commercial demands can also be difficult, especially if the synthesis
process is complex and expensive [261].

Another challenge is the stability and durability of nanomaterials. Nanomaterials
can be susceptible to degradation over time, especially under harsh operating conditions.
This can limit the lifetime and reliability of electrochemical devices that incorporate these
materials. Developing new synthesis methods and surface modification strategies that
can protect the materials from degradation will be critical to improving their stability and
durability [262].

Nanomaterials also have the potential for toxicity and environmental impact. Some
nanomaterials are toxic to living organisms, especially at high concentrations. In addition,
the environmental impact of nanomaterials is not yet fully understood, and their potential
effects on ecosystems and human health need to be carefully evaluated [263]. Rigorous
testing and evaluation will be necessary to address the toxicity and environmental impact
of nanomaterials before they can be safely used in electrochemical devices.

Integration and compatibility with existing device components are other challenges
for nanomaterials. Nanomaterials may not always be compatible with certain electrode
materials or electrolytes and may require specialized equipment or conditions that may not
be compatible with existing device manufacturing processes. Developing new integration
strategies and improving compatibility with existing device components will be critical for
the successful incorporation of nanomaterials into electrochemical devices [264].

Finally, cost-effectiveness is a limitation of nanomaterials in electrochemical devices.
While some nanomaterials can be synthesized at a low cost, others may require more
expensive production methods. Additionally, the cost of incorporating nanomaterials into
electrochemical devices can be higher than traditional materials, which can limit their
commercial viability [265]. Developing new synthesis methods and improving scalability
will be critical for reducing the cost of nanomaterial production. Identifying applications
where the performance benefits of nanomaterials outweigh the additional cost will also
be important for maximizing their commercial potential. According to some studies,
nanoparticles may cause symptoms similar to those induced by asbestos fibers. The
inhalation of TiO2 particles of an elemental particle size between 2 and 5 nm has resulted in
pneumonitis at a concentration of 8.8 mg per metric m3, as confirmed by other authors [266].

Carbon nanotubes (CNTs), including nanocrystals and quantum dots, have a lot in
common in creating more sophisticated and powerful solar cells [267]. Today, we can obtain
multiple groups of these advanced nanotubes and control the change in the shapes and
sizes of their grains. In nano-energy, significant work has been conducted to develop an
all-in-one system made up of multiple components that, when integrated, could produce
synergistic effects and meet all the criteria for a successful solar-to-fuel conversion [268].

Silicon electrodes now stand out because they have nearly ten times the power of a
graphite anode. Intelligent structural designs aim to combat instability caused by massive
volumetric changes. Nanowires, porous and core–shell structures, and surface change
composites produced with CNTs and graphene have been documented to have a low
specific ability compared to theoretical values [269].

Scientists are adjusting their research methodologies to create renewable energy from
readily available resources at a low cost. Because of its large surface area, optical characteristics,
and catalytic nature, they discovered that Nanoparticles (NPs) are the optimum contender
for this purpose. Therefore, NPs are used to generate energy from photoelectrochemical and
electrochemical water splitting, particularly in photocatalytic applications [270].

Green nanotechnology applications can clean polluted surroundings such as air and
water and prevent climate change by lowering gas emissions and hazardous waste. It is
still not clear how green nanotechnology will achieve environmental sustainability in the
future. The progress of green nanotechnology solutions must mitigate these risks [271].

As part of a comprehensive initiative toward green nanotechnology, research is per-
formed to produce safe and non-toxic nanomaterials to minimize potential risks.
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The properties of nanostructures that lead to increased sensor selectivity are a sig-
nificant downside of electrochemical sensors. Furthermore, the shape of nanoparticles is
particularly important in identifying their applications. Recently, the tip-head ellipticity in
gold nanoparticles (AuNPs) has been identified as a physical parameter that directly affects
electromagnetic radiation scattering [272].

Intensive research using nanotechnology and electrochemical methods holds promise
for making desalination more efficient. Much of this research focuses on improving the
efficiency of the membranes used in reverse osmosis and other membrane desalination pro-
cesses [273]. Nanotechnology-based membranes have been shown to achieve productivity
gains of up to 20%. Using packed carbon nanotubes in reverse osmosis membranes can
reduce the costs of desalination to the level of technology [274]. For water technology to
be sustainable and cost-effective, we need to invest more in best practices that promote
efficiency and sustainable energy. In hard water and seawater, nanoparticles appear to
accumulate, and the type of organic matter or other natural particles (colloids) present in
freshwater has a significant impact [275]. Dispersion affects ecotoxicity, but several abiotic
factors that influence it, such as pH, salinity, and organic matter, have yet to be thoroughly
investigated in ecotoxicological studies [276].

The issue is how to implement new technology on a small scale and then scale it up to
commercial use on a large scale, and there is no single new technology that can solve this
problem. Performance, cost, safety, compliance with regulations, and lower environmental
impacts are some of the barriers that can prevent new technology from being used on a
large scale. Novel solutions in large-scale research can help identify current obstacles and
develop solutions that enhance efficiency, cost, safety, environmental acceptability, and
customer satisfaction [277].

Titanium dioxide has recently gained popularity as a large-scale semiconductor mate-
rial used in the fields of energy conversion due to its low cost, zero contaminants, relatively
high performance, and excellent chemical stability. However, it faces challenges such as
reduced carbon dioxide absorption and fast electron–vacuum recombination [278]. Carbon
materials, in addition to suitable metals and metal oxides, are a viable option. The electro-
chemical reactor system was designed and innovated to convert carbon dioxide from the
solid electrochemical state to chemicals with benefits [279]. We recommend that nanoparti-
cles be used carefully, especially for unknown toxic materials. Some authors consider the
risk of nanotoxicity to be superficial in terms of concentration volume and nanoparticles.

12. Conclusions

The conclusion drawn from the extensive analysis and findings presented in this
manuscript highlights the significant role of nanomaterials in shaping the future of various
industries and scientific domains. The demand for new devices capable of manipulating
materials at the nanoscale underscores the need for continuous advancements in the field of
nanotechnology. Computer simulations of atomic and molecular structures have emerged
as crucial tools in realizing the full potential of nanomaterials.

Nanomaterials have demonstrated their exceptional utility in enhancing electrochem-
ical performance, thanks to their unique properties such as large surface areas, distinct
structures, and abundant active sites. Their application extends beyond performance en-
hancement, with an emphasis on cost reduction in the development of nanotechnology
products. This pursuit of improved efficiency and affordability opens up new avenues for
widespread adoption and commercialization of nanomaterial-based solutions.

Looking ahead, the future of nanomaterials appears incredibly promising. These
materials are poised to play a vital role in addressing the increasing energy needs of
the future by powering next-generation devices. Additionally, they are anticipated to
revolutionize biosensors and nanomedicine, with far-reaching implications for diagnostics
and medical treatments. The ongoing advancements in nanomaterial research will continue
to drive innovation and contribute to addressing global challenges.
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In essence, the exploration and application of nanomaterials present remarkable op-
portunities for scientific and technological advancements. By harnessing their exceptional
properties and leveraging advanced computational tools, we can unlock transformative pos-
sibilities in material design, energy technologies, and healthcare. The remarkable potential
of nanotechnology ensures a future characterized by sustainability, enhanced performance,
and groundbreaking innovations.
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1D One-dimensional
2D Two-dimensional
3D Three-dimensional
AgNPs Silver nanoparticles
Au Gold
AuPt Gold–platinum
BET Brunauer–Emmett–Teller
BF Basic fuchsin
BTD-COF Boronate ester-linked COF
CNTs Carbon nanotubes
CNTs Carbon nanotubes
Co Cobalt
CO3O4 Cobalt tetraoxide
CoFe2O Cobalt ferrite
COFs Covalent organic frameworks
Cu Copper
CuO Copper oxide
CV Cyclic voltammetry
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EDX Energy dispersive X-ray
ES Electrical sensors
GCE Glassy carbon electrode
GO Graphene oxide
GOX Glucose oxidase
HPLC High-performance liquid chromatography
Iso-AgNPs Isoimperatorin-mediated silver nanoparticles
LC/MS Liquid chromatography–mass spectrometry
Li Lithium
LiFePO4 lithium ferrophosphate
MA Methyl-ammonium
MB Methylene Blue
MOFs Metal–organic frameworks (MOFs)
MoP-NC Molybdenum phosphide nanoparticles and nitrogen-doped carbon
MS Mechanochemical synthesis
NaOH Sodium hydroxide
NF New Fuchsine
NFs Nanoflowers
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Ni Nickle
NiONPs Nickel oxide nanoparticles
NiP Nickel phosphide
NPS Nanoparticles
POFs First covalent organic frameworks
Pt Platinum
RGO Reduced graphene oxide
SEM Scanning electron microscope
Si Silicon
SiCNPs Silicon carbide nanoparticles
SiO2NPs Silicon Dioxide Nanoparticles
TEM Transmission electron microscope
TiO2 Titanium dioxide
XO Xanthone
XT Xanthene
ZnO Zinc oxide
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