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Abstract: This research study aims to investigate the feasibility of incorporating high-density
polyethylene waste (HDPEW) into bitumen applications. Two conventional conditions of bitu-
men, namely, aged bitumen (AB) and virgin bitumen (VB), are rejuvenated and modified, respectively,
using post-consumer HDPEW sourced out of bottle crates. The outcome (Pyro oil, PO-HDPEW) of the
pyrolysis thermochemical process is used by 10, 20, and 30% to rejuvenate AB, while the fine-ground
granules (FG) (FG-HDPEW) are used by 2, 3, 4, and 5% to modify the VB with different percentages.
Physical and rheological characterization testing, including penetration, softening point temperature,
and rotational viscosity (RV), is conducted to evaluate the performance of the HDPEW-rejuvenated
and -modified binders and optimize both rejuvenator and modifier percentages. In addition, physical
and chemical tests, including scanning electron microscopy (SEM), energy dispersive X-ray spec-
troscopy (EDX), and Fourier transform infrared spectroscopy (FTIR) are conducted to analyze the
composition, distribution of surface contaminants, and the molecular structure of the bitumen, based
on their respective wavelengths. Moreover, advanced mechanical and rheological tests, including
dynamic shear rheometer (DSR), multiple stress creep and recovery (MSCR), and linear amplitude
sweep (LAS) tests, are conducted to investigate the susceptibility of the rejuvenated and modified
bitumen with HDPEW to rutting and fatigue cracking. The testing results demonstrate that the
addition of PO-HDPEW to AB and FG-HDPEW modification of VB can enhance the physical, chem-
ical, mechanical, and rheological properties of bitumen; however, this study recommends further
research on the aging performance of the PO-HDPEW-rejuvenated bitumen. This research provides
insights into using HDPEW as a cost-effective and eco-friendly rejuvenator and modifier on bitumen
properties, which can aid in the longevity and performance of pavements.

Keywords: bitumen; pyro-oil; HDPE waste; PO-HDPEW-rejuvenated bitumen; FG-HDPEW-modified
bitumen; physical; chemical; mechanical; rheological tests

1. Introduction

Bitumen is a commonly utilized material in the construction industry, particularly in
the construction of roads, bridges, and other infrastructure projects. It is a byproduct of
crude oil refining and is a thick and dark-colored hydrocarbon substance with high viscosity.
The main application of bitumen is in the construction of roads, where it is mixed with
aggregate particles to form bituminous mixtures [1,2]. Bitumen contains two important
components: asphaltenes and maltenes. Saturates, aromatic substances, and resins are
the main constituents of maltenes [3,4]. When bitumen is aged, the saturate content is
decreased due to the oxidation that takes place. This leads to an increase in viscosity and
hence yields a harder and stiffer material due to the imbalance in the asphaltenes and
maltenes amounts [3,4]. This problem can be overcome by rejuvenating the aged bitumen,
which is extracted from reclaimed asphalt pavements (RAP), with recycling agents such as
hydrocarbon oils [3,4].
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In recent years, using waste materials in infrastructure construction has gained much
attention due to the great social, ecological, and economic benefits [5,6]. Although resources
are scarce, approximately 110 million tons of bitumen are consumed every year in pavement
construction activities worldwide [7,8]. Therefore, massive investments are spent in both
developing and developed countries all over the world on the reuse of RAP in pavement
construction and maintenance [9]. However, the reuse of such higher RAP amounts
in bituminous mixtures, which need to be rejuvenated first, is necessary not only for
environmental benefits and sustainability but also to reduce its disposal problems and
decrease the pavement life cycle costs [10]. On the other hand, other research efforts
have examined the feasibility of using waste polymers as a bitumen modifier [11]. The
application of polymer modifiers in bitumen has experienced a significant surge in recent
years, as they have proven their effectiveness in mitigating various types of distress in
flexible pavements, such as fatigue, rutting, and thermal cracking [12].

Rejuvenation of aged bitumen is an important and trending area of research. Several
studies have been conducted to identify different recycling agents, especially from waste,
that can effectively rejuvenate the aged bitumen by restoring the maltenes content as their
quantity is reduced by aging (oxidation) [10,13–15]. While traditional rejuvenators such as
soft bitumen, warm mix surfactant, and bio-rejuvenator have been used, new substances
such as waste hydrocarbon oils generated by thermal pyrolysis are being explored [16]. The
use of waste polymers in modifying bitumen or in rejuvenating extracted aged bitumen
from RAP is an environmentally friendly decision [17]. Several studies have reported
that the use of waste polymers can improve the performance of bituminous mixtures
containing high RAP percentages in comparison to conventional hot mix asphalt (HMA)
mixtures [18,19].

The European Commission published a document titled “Roadmap to a Resource
Intensive Europe” that highlights the role of waste in improving the economy by 2020
and actually viewing waste as a resource [20]. Recycling plastic waste is substantial for
reducing the adverse environmental impacts related to landfills while reducing the use
of energy and resources, which are limited, in addition to reducing emissions from the
production of new plastic [21].

Thermoplastic polymers are a type of material that can undergo a reversible phase
transition from a solid to a molten state when exposed to heat, followed by solidification
upon cooling [22]. This property of being able to reform upon heating makes them highly
malleable and versatile. In Western Europe, around 80% of used plastics are elastomers
that fall under this category, such as polypropylene (PP), low-density polyethylene (LDPE),
high-density polyethylene (HDPE), polyvinyl chloride (PVC), polyethylene terephthalate
(PET), and polystyrene (PS) [22].

A literature review by Zhao et al. [23] evaluated papers that focused on the use of
plastics as solid waste materials in pavement construction between 2014 and 2019 and
found that PE and PP polyolefins were the most researched polymers [23]. Despite using
the dry process to recycle the plastic into bituminous mixtures, plastic can be introduced
directly by the wet method into a hot bitumen (polymer-modified bitumen, PMB). This is
completed before being incorporated into mixtures for the production of polymer-modified
bituminous mixtures [24]. Polymers are added to bitumen in amounts that range from
1 to 10% by bitumen weight, with the most common range being 3–5% by weight [25].
Alternatively, through the dry process, plastics can be integrated into hot mineral aggregates
preceding the addition of bitumen, effectively serving as another aggregate [25].

Recently, there has been growing attention to exploring diverse thermochemical
recycling methods for converting plastic solid waste (PSW) into useful products [26].
Thermal pyrolysis, a technique for converting organic matter into useful products through
thermal decomposition in an oxygen-free environment, has been identified as one of the
promising methods for PSW conversion [22,27,28]. Pyrolysis can be seen as a form of
feedstock recycling, as it involves breaking down long-chain organic materials into their
constituent components at high temperatures of 500 ◦C in the lack of air or other reactive



Sustainability 2023, 15, 10918 3 of 25

agents [29,30]. The absence of oxygen prevents combustion reactions, which include the
oxidation of the organic material and the production of carbon dioxide (CO2) and water
vapor (H2O) as byproducts. As a result, pyrolysis occurs under conditions of limited
or no CO2 production [29,30]. It was reported in 2018 that there were approximately
15 corporations operating 87 factories across the globe to produce petrochemical and
chemical raw materials from plastic debris through a thermal pyrolysis technique [31]. In
2021, Hadole et al. [32] produced pyro-oil-modified bitumen by blending pyro-oil high-
density polyethylene (PO-HDPE) with base bitumen (VG30). This study revealed no
apparent trends in the data analysis for the examined parameters. However, as modified
bitumen aged, its work of adhesion decreased while its work of cohesion increased, leading
to a higher susceptibility to moisture damage. Moreover, the findings showed that pyro-oil
is more effective than base bitumen in enhancing the surface tension parameter under
various aging conditions [32].

In the context of bitumen technology, there has been limited research conducted to
assess the durability of HDPE-modified binders against fatigue-related degradation and
thermal cracking [33]. Polyethylene, a semi-crystalline thermoplastic polymer synthe-
sized through ethylene polymerization, shares a chemical structure with the saturated
constituents of bitumen. As is typical of most polyolefins, polyethylene exhibits a slight
affinity for interacting with bitumen due to its non-polarity, saturated aliphatic nature,
and propensity to crystallize [33]. The molecular structure simulation shows that bitumen
consists of four components, as shown in Figure 1a; however, the molecular structure
of the analyzed compounds of polyethylene and HDPE prior to pyrolysis is shown in
Figure 1b [34,35].
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Figure 1. Models of bitumen main components and HDPE [34,35]. (a) The molecular models of
bitumen main components. (b) The molecular model of HDPE.

HDPE has an SPI (Society of the Plastics Industry, Inc.) resin identification code of 2
and its properties can be summarized based on previous research as follows [36,37]:

(1) Melting point in the range of 250–260 ◦C;
(2) Softening point from 90 ◦C (approx.);
(3) Transparent, robust, solvent-resistant, and a barrier to gases and moisture.

Various research efforts have been exerted examining the viability of employing HDPE
waste as a bitumen modifier [11]. The results show that incorporating waste HDPE into
binders improved their resistance to rutting due to the enhanced stability and high molecu-
lar weight (MQ) of the modified binders. Moreover, this approach offers an opportunity to
recycle plastic waste and contribute to environmental protection [11]. The choice to use
HDPE is more economical, considering its wide variety of applications that fall within the
properties of other polymers [38]. The research findings indicate that by adding HDPE to
bitumen, its capacity to endure deformation at high and moderate temperatures and its
resistance to shear is increased. Furthermore, this incorporation leads to an improvement in
the Marshall quotient (MQ) and indirect tensile strength (ITS) of bituminous mixtures [39].

Overall, the application of pyro-oil as an aged bitumen state-of-the-art rejuvenator
and the use of fine-ground granules of a high-density polyethylene waste (HDPEW) as a
modifier for virgin bitumen are promising techniques for improving the properties of bitu-
minous blends. These methods provide an opportunity to recycle plastic waste, contribute
to environmental protection, and enhance the durability and performance of bituminous
blends. However, further research and development are necessary to fully understand the
underlying mechanisms of these techniques and to optimize their application in bitumen
technology.

In this study, the potential of HDPEW out of bottle crates in bitumen applications
was explored by two different forms and usage of the waste. The first form was the
recovered hydrocarbon liquid form HDPEW by thermal pyrolysis as a rejuvenator for the
aged bitumen (AB). The second form was the fine-ground granules (FG) of HDPEW as a
modifier for the virgin bitumen (VB).

Thus, the objective of this research is two-fold. Firstly, to examine the applicability of
rejuvenating AB with 10%, 20%, and 30% (by weight of AB) from the pyro-oil of HDPEW
(PO-HDPEW). Secondly, to investigate the viability of modifying VB with 2%, 3%, 4%, and
5% (by weight of VB) from the FG of HDPEW (FG-HDPEW). These two main objectives
were achieved by: (1) verifying such dosage ranges, which were initially chosen based on
previous research studies [25,32], via conducting some traditional characterization tests, and
in the light of their results, the optimal percentage ranges were chosen for investigating the
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rest of the research study, and (2) performing multiple morphological, chemical, mechanical,
and rheological experimental tests on VB, AB, and PO-HDPEW-rejuvenated bitumen
(AB+PO-HDPEW) and FG-HDPEW-modified bitumen (VB+FG-HDPEW).

2. Materials and Methods
2.1. Materials

The flowchart, presented in Figure 2, outlines a matrix of the investigated materials
and the experimental work program, which are explained in more detail in the following
subsections.
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2.1.1. Virgin Bitumen (VB)

This research study employed the traditional Egyptian bitumen of 60/70 penetration
grade. It was procured by the Alexandria Specialized Petroleum Products Company
(ASPPC, Alexandria Egypt), which is a major bitumen producer and leading corporation in
Egypt. The main characteristics of VB are included in Section 3.

2.1.2. HDPEW-Modified Bitumen (VB+FG-HDPEW)

HDPEW-modified bitumen was manufactured in the laboratory by mixing VB with
FG-HDPEW, which was supplied from an Egyptian recycling plant with 2, 3, 4, and 5%
(by weight of VB) from fine granular HDPEW out of bottle crates. The supplied HDPEW
was in the form of large pieces; however, it was ground with a grinding machine until it
turned into fine-ground granules, then sieved using US standard sieve #16, as shown in
Figure 3. The FG-HDPEW was immersed in a tightly closed container with VB at 160 ◦C
for an hour. After that, the blend was mixed for 60 min using a high-shear mixer at an
elevated temperature of 180 ◦C and mixing speed of 3500 rpm using a high-shear mixer.
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These mixing conditions were optimal for producing HDPEW-modified bitumen for local
materials based on what has been reported in the literature [40].
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Figure 3. Modifying VB with fine granular HDPEW (VB+FG-HDPEW). (a) HDPEW out of bottle
crates. (b) grinding HDPEW. (c) sieving ground HDPEW on sieve #16. (d) FG-HDPEW passing sieve
#16. (e) producing FG-HDPEW modified bitumen.

2.1.3. Aged Bitumen (AB)

RAP materials were obtained from Coastal International Road and were estimated to
have a lifespan of more than 15 years. RAP samples were subjected to the extraction and
recovery centrifugation technique using a methylene chloride solvent solution based on the
ASTM D2172 test method [41]. The ASTM specification was used to carry out this process
to obtain AB, and any remaining solvent was eliminated by distillation of the tested sample,
as shown in Figure 4. The main characteristics of extracted AB are included in Section 3.
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2.1.4. Rejuvenated Aged Bitumen (AB+PO-HDPEW)

The pyrolysis process begins by placing 50 g of HDPEW from bottle crates in a heat-
resistant glass crucible, as assessed by Kumar and Singh [42]. The crucible is continuously
heated at a rate of 20 ◦C/min until the temperature reaches 500 ◦C. At this point, the
long chemical chains are cracked, and the pyro-oil starts to drip into a receiver bottle; this
continues until the temperature reaches 750 ◦C. The pyrolysis process occurs in the absence
of oxygen, according to [42], as described in Figure 5.
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Figure 5. Thermal pyrolysis process apparatus.

After conducting the extraction and recovery process on the RAP samples and obtain-
ing the AB, the pyro-oil was added in different proportions of 10, 20, and 30% (by total
weight of AB) to determine the optimal percentage of the pyro-oil as a rejuvenator for AB
locally extracted from an aged pavement to restore its original properties. Then, the blend
was mixed for 15 min using a high-shear mixer at an elevated temperature of 150 ◦C and
rotational speed of 5000 rpm. During the last 5 min, the mixing speed was reduced to
3000 rpm, according to Hadole et al. [32]. The production process of the rejuvenated aged
bitumen with the pyro-oil (AB+PO-HDPEW) is explained in Figure 6.

2.2. Methods

A comprehensive experimental testing matrix was performed on VB, VB+FG-HDPEW,
AB, and AB+PO-HDPEW to investigate their physical, chemical, mechanical, and rheologi-
cal characteristics. Each testing result was based on the average of three replicates to ensure
testing accuracy and reduce output variability. The testing program included (1) physical
and chemical tests such as scanning electronic microscopy (SEM), energy dispersive X-ray
(EDX), and Fourier transform infrared spectroscopy (FTIR); (2) mechanical and rheological
bitumen testing such as penetration, softening point, Brookfield rotational viscosity (RV),
dynamic shear rheometer (DSR), rolling thin-film oven (RTFO), multiple stress creep and
recovery (MSCR), pressure aging vessel (PAV), and linear amplitude sweep (LAS), as pre-
viously presented in Figure 2. The specimen type, aging condition, testing purpose, and
standard specifications of these experimental tests are summarized in Table 1.
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Table 1. The experimental testing program.

Type of Tests Experimental Tests Specimen Type Aging Condition Testing Purpose Specification

Traditional Characterization Tests

Penetration Conducted on AG, VB, and all
percentages of rejuvenated and
modified bitumen to determine

the optimum percentages

Unaged Specimens

Measure the consistency of bitumen
through penetration ASTM D5/D5M-20 [43]

Softening Point Determine the temperature at which
bitumen is softened ASTM D36/D36M-14 [44]

RV Characterize the bitumen dynamic
viscosity AASHTO T 316-19 [45]

Morphological and
Chemical Tests

SEM

Conducted on AG, VB, and
optimum percentages of

rejuvenated and modified
bitumen

Unaged Specimens

Investigate the micromorphology of
bitumen at microscopic scales ---

EDX
Quantitatively perform the bitumen’s

elemental analysis and its chemical
characterization

---

FTIR
Quantitatively analyze the change of

certain functional groups to identify the
aging degree of bitumen

---

Advanced Rheomechanical Tests

DSR

Conducted on AG, VB, and
optimum percentages of

rejuvenated and modified
bitumen

Unaged, Short-term aged, and
Long-term aged specimens

Characterize the viscous and elastic
behavior of bitumen and determine its

performance grade
AASHTO T 315-20 [46]

RTFO Unaged specimens Simulate short-term aging conditions AASHTO T 240-21 [47]

MSCR Short-term aged specimens Evaluate the bitumen’s ability to resist
permanent deformation (rutting) AASHTO T 350-19 [48]

PAV Short-term aged specimens Simulate long-term aging conditions AASHTO R 28-22 [49]

LAS Long-term aged specimens Evaluate the bitumen’s ability to resist
fatigue cracking AASHTO T 391-20 [50]
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Figure 6. Rejuvenating AB with pyro-oil (AB+PO-HDPEW). (a) HDPEW out of bottle crates. (b) ther-
mal pyrolysis setup. (c) PO-HDPEW. (d) producing PO-HDPEW modified bitumen.

3. Results and Discussion
3.1. Traditional Characterization Tests
3.1.1. Penetration and Softening Point

Penetration at ambient temperature and softening point tests were considered two
simple properties for measuring the bitumen consistency and the temperature at which
bitumen is softened, respectively [43,44]. The penetration and softening point effect of
adding 10, 20, and 30% PO-HDPEW (by total weight of AB) to rejuvenate AB was inves-
tigated, as shown in Figure 7a,b. However, the penetration and softening point effect of
adding 2, 3, 4, and 5% FG-HDPEW (by total weight of VB) to modify VB according to [25]
are shown in Figure 7c,d.
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FG-HDPEW-modified bitumen.

It was obvious that the penetration value increased linearly with the increase in the
PO-HDPEW percentage. Based on the penetration testing, the penetration value of AB
was the lowest among the explored sample types, followed by 10%, 20%, and 30% of
PO-HDPEW (by total weight of AB), respectively. The 30%PO-HDPEW-rejuvenated bitu-
men has almost the same penetration as VB, which was graded (Pen 60/70), as shown in
Figure 7a. Similarly, the softening point temperature decreased linearly with the increase in
PO-HDPEW percentage. Based on the softening point testing with a target temperature of
at least 45 ◦C, the softening point temperature of AB was the highest among the explored
samples, followed by 10%, 20%, and 30% of PO-HDPEW (by total weight of AB), respec-
tively. The 30%PO-HDPEW-rejuvenated bitumen had the nearest level of softening point
to VB with a value of 42 ◦C, as shown in Figure 7b. However, it achieved the minimum
required SP according to the Egyptian specifications which is 45 ◦C. Thus, rejuvenating AB
with 30% of PO-HDPEW resulted in similar values of penetration and softening point to
the pristine values of VB.

Contradictorily, the trend of both penetration and softening point values was reversely
followed when the VB was modified with 2, 3, 4, and 5% of FG-HDPEW (by total weight of
VB), respectively, in Figure 7c,d. Whereas VB showed the highest penetration and lowest
softening point among the explored samples, this was due to a decrease in aromatic content,
which has been linked to a reduction in penetrability and a rise in softening point [51–53].
Therefore, the results referred that modifying VB with FG-HDPEW has a considerable
influence on leading to harder or stiffer bitumen and decreasing aromatic components.

Moreover, the penetration index (PI), which evaluates the temperature susceptibil-
ity at the mean in-service temperature, can be determined according to the following
equation [51].

PI =
(1952 − 500 log(P25)− 20SP)
(50 log(P25)− SP − 120)

, (1)
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where P25 is the penetration value at room temperature of 25 ◦C, and SP is the softening
point, ◦C.

The PI values for the AB, PO-HDPEW-rejuvenated bitumen, VB, and FG-HDPEW-
modified bitumen are included in Table 2. Lower PI values refer to higher susceptibility
to temperature. According to the findings, AB was the lowest sensitive bitumen to tem-
perature variations, while VB was the highest sensitive bitumen to temperature variations.
The vulnerability of the investigated percentages of PO-HDPEW-rejuvenated bitumen
to temperature fluctuations increased when the proportions of PO-HDPEW were raised
significantly due to the significant changes in their penetration and softening point values.
However, the vulnerability of the investigated percentages of FG-HDPEW-modified bitu-
men to temperature fluctuations had a non-significant increase when the proportions of
FG-HDPEW were slightly raised due to the non-significant changes in their softening point
values, which, in turn, affected their PI values.

Table 2. PI of the investigated bitumen types.

Bitumen Type
AB

AB+PO-HDPEW
VB

VB+FG-HDPEW

10% 20% 30% 2% 3% 4% 5%

PI 0.06 −0.67 −0.91 −1.44 −3.02 −1.98 −2.05 −2.19 −2.37

3.1.2. Rotational Viscosity (RV)

By conducting the RV test according to AASHTO T 316 [45], the viscosity of the AB, VB,
rejuvenated PO-HDPEW bitumen, and modified FG-HDPEW bitumen was determined at
135, 150, and 165 ◦C. Figure 8 represents the viscosity measurements in cP at the investigated
temperatures in ◦C for each bitumen type.

It was noticed that the AB had the highest absolute viscosity, while the VB had the
lowest absolute viscosity among the explored types of bitumen. The viscosity decreased in
a logarithmic manner with the increase in PO-HDPEW percentage, as shown in Figure 8a,
while it increased in a logarithmic manner with the increase in the FG-HDPEW percentage
in Figure 8b. The effect of increasing the percentage of FG-HDPEW from 4% to 5% was not
overly significant on the absolute viscosity. In addition, the examined types of bitumen
met the Superpave criteria of not exceeding 3000 cP at 135 ◦C according to AASHTO M
320 [54] except the AB.
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rejuvenated bitumen; (b) rotational viscosity of VB vs. FG-HDPEW-modified bitumen.

3.2. Morphological and Chemical Tests
3.2.1. Scanning Electron Microscopy (SEM)/Energy Dispersive X-ray Spectroscopy (EDX)

SEM/EDX is a valuable technique for determining the surface profile and physical
properties in addition to characterizing the composition and distribution of surface contam-
inants of bitumen. For SEM and EDX analyses, a JEOL JSM 65101v microscope and Oxford
X-Max 20 equipment were used, respectively.

Figure 9 shows the SEM images, while Table 3 presents the EDX analysis data of AB,
VB, PO-HDPEW-rejuvenated bitumen, and FG-HDPEW-modified bitumen. The examined
types of bitumen are depicted in Figure 9 at a scale of ×2000. All samples were suitable for
the voltage intensity of 30 kilovolts at this scale and were in their original condition (no
aging condition) except for the AB.

Table 3. EDX outcomes of AB, VB, PO-HDPEW-rejuvenated bitumen, and FG-HDPEW-modified
bitumen.

AB PO-HDPEW AB+30%PO-HDPEW

Element Weight % Element Weight % Element Weight %

C 86.45 C 53.16 C 51.22

O 7.32 N 41.30 N 21.87

Al 0.07 O 5.49 O 23.95

Si 0.41 Cu 0.05 Ca 2.28

S 4.32 --- --- Cu 0.68

Ca 1.34 --- --- --- ---

Fe 0.08 --- --- --- ---

VB VB+3%FG-HDPEW VB+5%FG-HDPEW

Element Weight % Element Weight % Element Weight %

C 90.57 C 89.76 C 93.72

O 2.80 Al 3.59 Si 1.02

S 6.62 Si 5.43 S 5.12

--- --- Ca 1.21 Ca 0.14
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Figure 9. SEM images of AB, VB, PO-HDPEW-rejuvenated bitumen, and FG-HDPEW-modified
bitumen at (×2000). (a) AB; (b) AB+30%PO-HDPEW; (c) VB; (d) VB+3%FG-HDPEW; (e) VB+5%FG-
HDPEW.

As shown in Figure 9a,b, adding 30% of PO-HDPEW to the AB improved the mor-
phological properties; the disturbances faded, producing a softer surface and supporting
the application of PO-HDPEW to rejuvenate the AB. According to Table 3, the AB had
predominant elements such as C, O, and S, in addition to small proportions of Al, Si, Ca,
and Fe. During the pyrolysis of HDPE, the main products typically include hydrocarbons,
such as alkanes, alkenes, and aromatic compounds. Nitrogen-containing compounds are
not inherent to HDPE itself and are less likely to be formed during the pyrolysis process
unless nitrogen-containing additives or impurities are present in the HDPE material. There-
fore, under normal circumstances, the oil obtained from the pyrolysis of HDPE would not
contain significant amounts of nitrogen. However, it is important to note that the specific
conditions and additives used in the pyrolysis process can influence the composition of
the resulting products. As long as the HDPEW used in this study was out of bottle crates,
PO-HDPEW was composed of the following elements: C, N, O, and Cu. Adding 30% of
PO-HDPEW to the AB led to the survival of some of the main elements, such as C and N.
Nevertheless, other elements’ percentages increased, such as O, Ca, and Cu. Finally, the
30% PO-HDPEW-modified AB showed the disappearance of some elements such as Al, Si,
S, and Fe.

On the other hand, FG-HDPEW was used as a modifier to VB, with two different
ratios: 3% and 5%. The SEM technician had to raise the voltage intensity to 30 kV to be able
to record the bumpy side of the FG-HDPEW-modified bitumen (VB+3%FG-HDPEW and
VB+5% FG-HDPEW). Therefore, Figure 9c–e demonstrates that the microstructure of the
VB tends to be wavy in particular directions and helps to improve the reaction with the
FG-HDPEW modifier. According to Table 3, the predominant mineral phases of the VB
were C, O, and S. Adding 3% of FG-HDPEW to VB led to the disappearance of O and S
elements and the appearance of other elements such as Al, Si, and Ca. However, increasing
the percentage of FG-HDPEW to 5% represented the S element again in addition to Si and
Ca elements.
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3.2.2. Fourier Transform Infrared Spectroscopy (FTIR)

Vibrational spectroscopy using FTIR analysis is a method for both qualitative and
quantitative determination of molecular structure in a variety of substances, including
organic, polymeric, and sometimes inorganic compounds [55]. By examining the FTIR
spectrum using the Nicolet iS10 device, chemical bonds can be identified to distinguish
the presence of polymers in modified bitumen based on their respective wavelengths, as
well as to elucidate the mixing mechanism between polymers and VB. Table 4 represents
the main functional groups and provides their corresponding peak locations. In this study,
FTIR chemical analysis was conducted by coating a thin potassium bromide disc (KBr)
with a bitumen binder solution (0.05 g bitumen/50 mL dichloromethane).

Table 4. Functional groups based on FTIR wavelength results.

AB AB+30%PO-HDPEW

Wavelength
(cm−1) Function group Wavelength

(cm−1) Function group

--- --- 3378 OH–

2921 CH-Alkane
stretching 2921 CH-Alkane

stretching

2853 C-H 2853 C-H

1696 C=O 1694 C=O

1513 C=C stretching 1520 C=C stretching

1457 C–H bending 1455 C–H bending

--- --- 1375 C-H bending

1028 C–O 1037 C–O

725 C-H bending 725 C-H bending

VB VB+3%FG-HDPEW VB+5%FG-HDPEW

Wavelength
(cm−1) Function group Wavelength

(cm−1) Function group Wavelength
(cm−1) Function group

3438 -OH stretching 3412 -OH stretching 3445 -OH stretching

2922 CH-Alkane
stretching 2921 CH-Alkane

Stretching 2920 CH-Alkane
stretching

2854 C-H 2853 C-H 2852 C-H

1644 C=O --- --- --- ---

1519 C=C stretching 1599 C=C stretching 1597 C=C stretching

1455 C–H bending 1454 C–H bending 1454 C–H bending

1377 C-H bending– 1372 C-H bending 1373 C-H bending

1047 C–O --- --- --- ---

877 -CH2 810 -CH2 810 -CH2

725 C-H bending 725 C-H bending 725 C-H bending

Figure 10 shows the FTIR spectrum of the VB, AB, PO-HDPEW-rejuvenated bitumen,
and FG-HDPEW-modified bitumen. Without shifting in position, AB displayed the primary
characteristic vibration bands, as shown in Table 4, based on their predefined wavelength
ranges. Due to the high concentration of vibration groups of 30%PO-HDPEW-rejuvenated
bitumen, all bands were intensified when added to AB. The OH absorption band vanished
at a wavelength of 3438 cm−1 in the FTIR spectrum of AB, and two CH alkane-related
absorption bands were visible at wavelengths 2921 and 2853 cm−1. The existence of the
carbonyl group (C=O) was further indicated by a strong absorption band at a wavelength
of 1696 cm−1, and the presence of the C=C function group in AB was also supported by
an absorption peak with one stretching at a wavelength of 1513 cm−1; however, the band
at a wavelength of 725 cm−1 is always associated with bending vibrations of the C–H



Sustainability 2023, 15, 10918 16 of 25

bond in long alkyl chains. Additionally, the existence of the frequencies at a wavelength
of 1457 cm−1 was for bending vibrations of the C-H bond in the CH2 and CH3 groups.
As shown in Figure 10a, the OH stretching absorption band was present at a wavelength
of 3378 cm−1; however, the high-intensity band at a wavelength of 1375 cm−1 is always
attributed to bending vibrations of the C-H bond in the CH3 and CH2 groups, and it existed
in the 30%PO-HDPEW-rejuvenated bitumen as seen in the FTIR spectra due to the PO-
HDPEW rejuvenator. Additionally, the 30%PO-HDPEW-rejuvenated bitumen, as shown in
Figure 10a, exhibited two enlarged absorption bands at wavelengths of 2921 and 2853 cm−1

because the rejuvenator contains CH aliphatic. The existence of the C=C function group
was confirmed by one absorption peak having a stretching frequency peak at a wavelength
of 1520 cm−1 and a C–H bending frequency peak at 725 cm−1. The occurrence of stretching
frequency for the rejuvenated bitumen at a wavelength of 1455 cm−1 relates to aromatic
rings, as previously illustrated in Figure 10a. The rejuvenator’s infrared spectrum exhibited
an absorption peak caused by C-O around a wavelength of 1037 cm−1. In conclusion,
the addition of 30%PO-HDPEW to AB caused the development of both the OH group at
3378 cm−1 and C-H bending vibrations at 1375 cm−1, which vanished in AB. Additionally,
the conjugated system with the C=O function was enhanced, which resulted in a minor
drop in the stretching frequency (C=C). This modest reduction in C=C bonds following the
addition of 30%PO-HDPEW to AB may result in a reduction in the number of asphaltenes.
However, the appearance of hydroxide (-OH) was increased in the rejuvenated bitumen by
the rejuvenator, indicating an increase in the maltenes concentration. As a result, rather than
increasing as it did in AB, the asphaltenes to maltenes ratio was reduced in the rejuvenated
bitumen; however, it did not return to the virgin sample’s original levels. Finally, there
was an increase in the intensity of the signals so that they approached the VB, as shown in
Figure 10a.

On the other hand, the FTIR spectrum of VB showed bands at 3438, 2922, 2854, 1644,
1455, 1377, and 1047 cm−1, which are characteristic of OH stretching, CH alkane stretching,
C=O carbonyl, C-H bending, C-H bending, and C-O function groups, respectively, as
shown in Table 3. The FTIR spectrum of FG-HDPEW-modified bitumen showed all bands
at the same positions, except two bands at wavelengths of 1644 cm−1 (C=O) and 1047 cm−1

(C-O); their disappearance was due to the addition of FG-HDPEW to VB. In addition, the
peak at 1519 cm−1 for VB underwent a shift to 1599 and 1597 cm−1 for VB+3%FG-HDPW
and VB+5%FG-HDPW, respectively. Additionally, the peak at 877 cm−1 for VB underwent a
shift to 810 cm−1 in both VB+3%FG-HDPW and VB+5%FG-HDPW, as shown in Figure 10b
and Table 4. In conclusion, when the FG-HDPEW is added to VB, the percentage of
asphaltene increases, and the percentage of maltene decreases in FG-HDPEW-modified
bitumen.

3.3. Advanced Rheomechanical Tests
3.3.1. Dynamic Shear Rheometer (DSR)

In order to study the elastic and viscous behaviors of the investigated bitumen types,
complex shear modulus (G*) and phase angle (δ) at high and intermediate temperatures
were determined using a DSR device (Anton Paar SmartPave 102e). This classification
was performed according to AASHTO T315 [46] at no aging, after rolling thin film oven
(RTFO)/short-term aging, and after pressure aging vessel (PAV)/long-term aging condi-
tions. Three replicates were tested from each bitumen type, and the results were analyzed
based on the average of their measurements. The DSR testing parameters were used to
evaluate the resistance of the bitumen blends to rutting and fatigue cracking and to charac-
terize the shear stress resistance of RTFO-aged specimens at high-temperature utilization
and PAV-aged specimens at intermediate temperatures. The test was conducted according
to AASHTO T315 [46].
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Rutting Parameter (G*/sin δ)

The rutting parameter (G*/sin δ), which was recommended by the AASHTO M320
Superpave bitumen specification [54], was determined and is presented in Figure 11a,b.
This parameter was used to characterize the ability of the investigated binders to resist
permanent deformation (specifications recommend G*/sin δ ≥ 1 KPa for bitumen at
no aging condition and ≥2.2 KPa for bitumen after RTFO aging condition). Figure 12a
illustrates that the rutting parameter for AB was shifted at elevated temperatures due to the
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long service life of the pavement (around 15 years). By adding 30%PO-HDPEW (optimal
ratio) to AB at no aging condition, an improvement in the G*/sin δ values was evident
and became almost very close to the ideal values for the G*/sin δ of VB. After the short-
term aging condition, Figure 11b reveals the change in the G*/sin δ value for the RTFO-
sample of 30%PO-HDPEW-rejuvenated bitumen. There was a significant transformation
for G*/sin δ values of rejuvenated bitumen after the introduction of short-term aging and
the volatilization of the pyro-oil components. The DSR test was carried out on the RTFO
sample, and the test results returned to the same or close to the results of AB; this is due
to the instability of the PO-HDPEW rejuvenator after short-term aging conditions. Once
the blended bitumen with pyro-oil was subjected to aging conditions, the rate of aging
increased significantly, which negatively impacted the rejuvenated bitumen. This indicates
that PO-HDPEW needs more deep research in order to be successfully used in flexible
pavement applications.
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parameter of VB vs. AB and PO-HDPEW-rejuvenated bitumen after RTFO aging condition.
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On the other hand, FG-HDPEW-modified bitumen was investigated under no ag-
ing and RTFO-aging conditions and compared to VB (see Figure 12a,b). Higher rutting
parameter values indicated that FG-HDPEW-modified bitumen had greater resistance to
permanent deformation compared to VB, and thus its performance at elevated temperatures
was improved, as shown in Figure 12a,b. Based on DSR testing, Figure 12a,b shows the
tested failure temperatures under no aging and RTFO-aging conditions. According to this
study, the FG-HDPEW modifier enables modified bitumen to achieve Performance Grade
PG 70 and PG 76, which are required for the northern and southern Egyptian regions,
respectively [52]. Therefore, FG-HDPEW-modified bitumen is suitable to resist the hot
summer climate in Egypt.

Fatigue Parameter (G* × sin δ)

By comparing the fatigue parameter (G* × sin δ), the DSR device was also utilized
to determine the long-aged bitumen’s resistance to fatigue crackability at intermediate
temperatures (specifications recommend G* × sin δ ≤ 5000 KPa for bitumen under PAV
aging condition). This is ascertained in Figure 12c. As long as the bitumen meets the
maximum Superpave criterion of 5000 kPa or less at certain intermediate temperatures, this
means better fatigue resistance. Therefore, as shown in Figure 12c, adding the FG-HDPEW
modifier to VB was valid and suitable for the local climate to resist fatigue cracking at
intermediate climate temperatures.
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Figure 12. DSR testing results of VB and FG-HDPEW-modified bitumen. (a) Rutting parameter
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FG-HDPEW-modified bitumen after PAV aging condition.

3.3.2. Multiple Stress Creep and Recovery (MSCR)

The MSCR test was employed to investigate the elastic behavior of the examined
bitumen types, particularly in cases where the response exhibited nonlinearity and was
highly dependent on the magnitude of the applied pressure during the test. This type
of testing was especially relevant for the modified types of bitumen [56,57]. The MSCR
test was carried out according to AASHTO T350 [48] on RTFO-aged samples. The testing
procedure involved subjecting the tested samples to a couple of different stress states (0.1
and 3.2 kPa) at the high-performance grade temperature and allowing them to recover
after stress level application during each cycle. The testing process included 10 cycles of
creep/recovery at each stress level with a one-second creep load followed by a nine-second
recovery period in each cycle.

Table 5 presents the results of MSCR testing on the investigated bitumen types based
on an average of three replicates. The bitumen’s performance was evaluated based on
the nonrecoverable creep compliance (Jnr), which reflects its ability to resist permanent
deformation at high temperatures [58]. Table 5 displays the results of the MSCR test
conducted on AB, VB, and PO-HDPEW-rejuvenated bitumen and the bitumen modified
with different dosages of FG-HDPEW. The findings indicated that adding 2% of FG-HDPEW
was able to increase the bitumen to one high PG grade; however, to achieve two successive
high PG grades, VB had to be modified with no less than 5% of FG-HDPEW. In addition,
the suitable traffic levels based on MSCR results for different types of bitumen are included
in the table (“S” for standard traffic and “H” for heavy traffic).

The modified bitumen’s elastic response and stress dependence are assessed in
Figure 13. This was examined by plotting the percentage recovery at 3.2 kPa, against
the 3.2 kPa nonrecoverable creep compliance. Based on Figure 13, FG-HDPEW-modified
bitumen indicated non-elastomeric behavior at high temperatures as the points fell way
below the curve. As expected, there was non-significant recovery observed for VB, AB, and
PO-HDPEW-rejuvenated bitumen matching the rutting parameter results.
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Table 5. MSCR testing results on the rejuvenated and modified bitumen.

Parameters AB VB AB+30%PO-
HDPEW

VB+2%FG-
HDPEW

VB+3%FG-
HDPEW

VB+4%FG-
HDPEW

VB+5%FG-
HDPEW

Temp. (◦C) 94 64 94 70 70 70 76

R0.1 (%) 15.51 3.11 14.86 2.43 9.80 12.58 9.55

R3.2 (%) 3.66 0.00 3.32 0.00 0.00 0.34 0.19

Jnr0.1 (KPa·1) 1.52 2.73 1.62 3.55 2.41 1.99 1.91

Jnr3.2 (KPa·1) 1.92 2.96 1.83 3.93 2.97 2.63 2.49

Jnrdiff (%) 27.04 8.53 25.64 10.72 23.02 32.32 30.82

Traffic level “H” “S” “H” “S” “S” “S” “S”
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3.3.3. Linear Amplitude Sweep (LAS)

In accordance with AASHTO T 391-20 [50], the LAS test was conducted to investigate
the fatigue behavior of VB and FG-HDPEW-modified bitumen. Two procedures were con-
ducted to determine the fatigue life criterion (Nf) and the undamaged material parameter
(α) using the viscoelastic continuum damage theory. The first procedure involved applying
constant amplitude oscillatory shear loading to a variety of loading frequencies using a
frequency sweep testing technique. The second procedure used amplitude sweep testing
and employed oscillatory shear operating in strain-control mode at a frequency of 10 Hz.
The testing results were used to determine Nf and α according to Equations (2) and (3) [50].

N f = A35(γmax)
−B, (2)

α =
1
m

, (3)

where Nf is the bitumen fatigue performance parameter; α is the undamaged bitumen
parameter; γmax is the maximum expected bitumen strain for a given pavement structure,
percent. A35; B are the regression parameters that depend on bitumen characteristics; m is
the slope of the frequency–shear modulus graph.

For a given stress level, lower Nf values indicated that the bitumen was increasingly
prone to fatigue cracking. The fatigue properties of the tested bitumen types are exhibited
in Table 6 based on the average of the measurements of three PAV-aged replicates that
were examined at intermediate temperature levels. Based on the PG of the examined bitu-
men types, the intermediate temperatures of VB, VB+2%FG-HDPEW, VB+3%FG-HDPEW,
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VB+4%FG-HDPEW, and VB+5%FG-HDPEW were 22, 25, 25, 25, and 28 ◦C, respectively,
as shown in Table 6. In addition, the fatigue lives for the tested bitumen types of 2.5%
and 5.0% strain illustrated a significant increase in Nf (2.5) and Nf (5.0) with the increase
in the intermediate testing temperature, as shown in Table 6. In addition, it was evident
that the Nf (2.5) values were remarkably higher than the Nf (5.0) values, which led to a
decrease in crack resistance. When the intermediate testing temperature increased, the
adhesive material was found to be more flexible and less stiff, indicating better resistance
to fatigue. Furthermore, it was more obvious within the same performance grade level
due to the 2, 3, and 4% addition of FG-HDPEW to VB that increasing the percentage
of the modifier enhanced the resistance of the FG-HDPEW-modified bitumen to fatigue
cracking. Summarizing LAS testing results, 3% of FG-HDPEW to achieve PG70 and 5%
of FG-HDPEW to achieve PG76 were able to enhance the bitumen cracking resistance at
intermediate temperature levels compared to VB performance.

Table 6. LAS testing results of VB vs. FG-HDPEW-modified bitumen.

Parameter VB VB+2%FG-
HDPEW

VB+3%FG-
HDPEW

VB+4%FG-
HDPEW

VB+5%FG-
HDPEW

S, ◦C 22 25 25 25 28

α 2.628 2.650 2.784 2.819 2.945

A35 × 1000 1,262,000 681,500 2,582,000 3,966,000 5,142,000

B −5.256 −5.300 −5.568 −5.638 −5.890

Nf (2.5) × 1000 10,215.8 5299.3 15,709.0 22,637.4 23,303.5

Nf (5.0) × 1000 267.3 134.5 331.1 454.6 393.1

4. Conclusions

In conclusion, the rejuvenation of aged bitumen is a crucial area of research as it helps
to restore the maltenes content that is reduced by aging. Additionally, modifying virgin
bitumen is essential to enhance its rutting and cracking resistance properties. This approach
offered an opportunity to recycle HDPE plastic waste and contribute to environmental
protection while also being more economical, considering the wide variety of applications
that fall within the properties of other polymers. The pyro-oil and fine-ground granules
of HDPEW sourced out of bottle crates were explored as a rejuvenator and modifier to
bitumen, respectively.

Based on the morphological and chemical testing results, it can be concluded that
the addition of PO-HDPEW to AB improved its physical properties, resulting in a softer
surface. The formation of an OH- bond and C-H bending vibrations at wavelengths 3378
and 1375 cm−1, respectively, indicated the interaction between PO-HDPEW and AB. FG-
HDPEW-modified bitumen with 3% and 5% ratios showed an improved microstructure,
which helps to enhance the reaction with the modifier. Additionally, the breakup of C=O
and C-O bonds at wavelengths of 1644 and 1047 cm−1, respectively, also indicated the
interaction between FG-HDPEW and VB. The FTIR analysis of the AB, VB, PO-HDPEW-
rejuvenated bitumen, and FG-HDPEW-modified bitumen revealed the characteristic vi-
bration bands of each type, indicating the presence of different functional groups. The
addition of PO-HDPEW to AB and FG-HDPEW to VB intensified all bands. FTIR results
demonstrated that the addition of PO-HDPEW to AB and FG-HDPEW modification to
VB can enhance the physical and chemical properties of bitumen, which can improve its
performance in pavement construction and maintenance.

Based on the mechanical and rheological testing results, the PI revealed that AB was
the least sensitive to temperature variations, while VB was the most sensitive. Increasing
the percentage of PO-HDPEW and FG-HDPEW made the bitumen more vulnerable to
temperature variations. The RV results exhibited that AB had the highest absolute viscosity
while VB had the lowest. The viscosity decreased logarithmically with the increase in
PO-HDPEW percentage and increased logarithmically with the increase in FG-HDPEW
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percentage. The DSR results showed that adding 2% of FG-HDPEW was able to increase
the high-temperature PG of bitumen by one grade (PG70), while adding 5% of FG-HDPEW
was required to pump the high-temperature PG by two grades (PG76). Incorporating
HDPEW into bitumen has shown improved resistance to permanent deformation and
fatigue cracks due to the enhanced stability, flexibility, and high molecular weight of the
modified binders. The results of the MSCR test revealed that VB and rejuvenated bitumen
had no significant recovery, indicating low elasticity, while FG-HDPEW-modified bitumen
displayed non-elastomeric behavior at high temperatures. The LAS test showed that
increasing the intermediate testing temperature improved the fatigue performance of the
bitumen.

The study recommends further research on the aging performance of PO-HDPEW-
rejuvenated bitumen and the optimization of the dosage of the modifier for better perfor-
mance. Overall, the findings of this study contribute to the knowledge of the use of waste
polymers as rejuvenators and modifiers to bitumen and provide insights into the properties
and behavior of HDPEW-rejuvenated and -modified bitumen.
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