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Abstract: This paper presents a facile and effective method for the large-scale production of carbon
dots (CDs) from diverse coconut wastes (fronds, husk and shell). On comparing two different meth-
ods, namely (i) hydrothermal carbonization and (ii) novel sequential synthesis processes (pyrolysis
followed by sonication), the latter procedure recorded a higher recovery of CDs (14.0%) over the
hydrothermal method (2.33%). Doping agents such as urea, polyethyleneimine (PEI) and hexam-
ethylenetetramine (HMTA) were chosen at varying concentrations to synthesize surface-modified
CDs (SMCDs) for enhanced antibacterial properties. Among these SMCDs, urea-doped CDs (1:1) @
1000 ppm registered significantly higher cytotoxicity (20.6%) against Escherichia coli (E. coli). Sub-
sequently, to assess the applicability of CDs as a disinfectant in water purification systems, two
products, namely (i) CD-infused chitosan beads and (ii) pelletized CDs, were developed to ensure the
immobilization of CDs. Studies with lab-scale prototypes have revealed that CDs infused chitosan
beads reduced the colonies of E. coli from 5.41 × 102 CFU/mL (control group) to 2.16 × 102 CFU/mL,
in comparison with pelletized CDs that decreased to 3.30 × 102 CFU/mL. The biosafety of CDs
was assessed against Eisenia fetida for 21 days, and the observations revealed no mortality, even at
2000 ppm. Overall, this research demonstrated that a waste biomass can be effectively transformed
into a novel water disinfectant. Furthermore, this scientific endeavor opens up research avenues to
evolve advanced water purifiers using low-cost and eco-friendly nanomaterials.

Keywords: coconut waste; carbon dots; cytotoxicity; Escherichia coli; Eisenia fetida; water disinfectant

1. Introduction

Carbon dots (CDs) are new-generation carbon nanomaterials with a characteristic
diameter size less than 10 nm that were serendipitously discovered in 2004 at the time of
purification of single-wall carbon nanotubes (SWCNTs) [1]. In recent days, CDs have gained
a lot of attention among researchers because of their smallest size, tunable characteristics,
low toxicity, biocompatibility and cheaply available precursors for synthesis [2]. With
these intriguing characteristics, CDs have now emerged as a promising substitute for
metal-based quantum dots, with applications in bioimaging and photocatalysis [3], while
simultaneously opening up research avenues to resolve several environmental issues with
their unique surface chemistry [4].

The contamination of drinking water is one of the major health concerns that are
witnessed worldwide. Globally, 3 out of 10 people, or 2.1 billion people, lack access to
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safe and readily available water at home, and 6 out of 10 people, or 4.5 billion people,
lack access to safely managed water (WHO and UNICEF 2017). Every year, waterborne
infections claim millions of lives globally, with the majority of these deaths occurring in
developing nations [5]. Hence, the development of cost-effective and environment-friendly
water disinfection technologies is the need of the hour. At this juncture, CDs, which
have been reported to have antibacterial activity [6,7] while demonstrating nontoxicity
in mammalian systems and with a large opportunity of being synthesized from diverse
waste biomasses [8], makes this as a good candidate for exploring their potential as a water
disinfection agent.

Among the various agricultural wastes, the coconut waste biomass is considered a
sustainable, cheap and alternative feedstock for the preparation of carbon dots [8–10]. De-
spite the fact that coconut wastes such as shells and husks have been reported as precursors
for the synthesis of CDs, none of the published protocols favor large-scale production; in
addition, a systematic study is still lacking to demonstrate CDs’ ability as a water disinfec-
tion agent. Several review papers [11,12] have been published to highlight the scope and
prospectus of applying CDs in various environmental applications as organic pollutant
reduction through photocatalysis, pollutant ion sensing and heavy metal detection, as well
as reduction, adsorption treatment and membrane fabrication. Despite the fact that CDs are
considered as potent new age antimicrobial agents, numerous works have only elucidated
the potential of varied properties of CDs as a bactericidal effect and documented possible
mechanisms of action [13], while very limited papers have been reported to illustrate the
employability of biomass-derived pristine/bare CDs as water disinfectants in purifica-
tion systems. Nevertheless, the ability of CDs as nanocomposites, such as multiple-core@
shells [14], CD-loaded CoxNi1−xFe2O4 and x = 0.9/SiO2/TiO2 [15] for water disinfection by
enhancing the photocatalytic performance has been reported [16]. However, the potential
of biomass-derived pristine CDs and/or surface-modified CDs for disinfection in a water
medium through light independent reactions has rarely been studied. Hence, this research
was proposed to address two challenges, namely the lower yield of CDs and unexplored
immobilization platforms for CDs, that hinder the wide application of CDs in general and
as a water disinfectant in particular.

With this background, it was hypothesized that CDs with their unique surface chem-
istry owing to their high surface area-to-mass ratio and associated tunable properties can
exhibit antimicrobial activity against waterborne pathogens, paving the way for the devel-
opment of sustainable technology from waste biomasses. Hence, this study was undertaken
to demonstrate the potential of coconut wastes for transformation into CDs with water
disinfection properties. Moreover, this research also focused on evolving a suitable syn-
thesis method that favors the large-scale production of CDs from waste biomasses so as to
ensure sustainable solutions. Hydrothermal synthesis has been considered to be a simple,
inexpensive and eco-friendly method to synthesize CDs [17,18]. However, the percent
of recovery of CDs through this protocol is very low [10]. Thus, two novel sequential
processes (pyrolysis, followed by sonication) were evolved to assess the potential to obtain
the maximum recovery of CDs. Furthermore, surface = modified CDs with dopants (urea,
PEI and HMTA) were also synthesized to improve their antimicrobial properties [19–21].
In this study, to assess the potential of synthesized CDs as a water disinfection agent, CDs
were tested against Escherichia coli, a common indicator of fecal matter contamination in
drinking water. Subsequently, the compatibility of CDs with a suitable matrix (chitosan
beads) was also explored to ensure the effective immobilization of CDs without losing their
inherent propensity for application in water disinfection systems.

2. Materials and Methods

Coconut wastes (fronds, husks and shells) were collected from the coconut residue
processing unit located at Pollachi in Tamil Nadu, India. The coconut wastes were washed,
air-dried and ground to a fine powder using an impact pulverizer and sieved under a British
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Standard Sieve (BSS) 200 (75-micron mesh) to obtain uniform-sized particles and stored in
airtight plastic containers until use. Distilled water was used throughout the experiments.

2.1. Synthesis of Carbon Dots
2.1.1. Hydrothermal Carbonization

Carbon dots were synthesized by the hydrothermal carbonization method by employ-
ing a hydrothermal reactor (Model: Trident Labortek; 100 mL, non-stirred autoclave), as
optimized by Abinaya et al. [10]. Three grams of the powdered coconut waste was added to
75 mL of distilled water in a ratio of 1:25. Subsequently, the mixture was transferred into a
120 mL hydrothermal reactor and heated at 250 ◦C for 6 h. Then, the solution was subjected
to centrifugation at 10,000× g rpm for 20 min to remove the larger particles. Followed that,
the solution was filtered using a 0.22 µm syringe filter and then finally dried in a hot air
oven for 48 h to obtain the CDs.

2.1.2. Two Sequential Synthesis Processes

Methods such as pyrolysis and sonication have been employed separately to synthesize
CDs/carbon nanomaterials [22,23]. However, in this study, to ensure that the synthesized
CDs are below the size of 10 nm, though the majority of the particles are within this size
regime, two sequential processes, namely pyrolysis (muffle furnace) followed by sonication
(probe sonicator), were adopted as a maiden attempt to assess their potential to improve
the yield of CDs. Muffle furnace (Model: Sonics) and Probe sonicator (Model: Indfurr,
India) were employed. The precursor materials (coconut wastes) were initially subjected to
four hours of pyrolysis in a muffle furnace at 700 ◦C for the shell powder and 250 ◦C for
the fronds and husks. The resultant product was ground to fine powder in a grinder. It
was then sieved through a 0.09 mm Indian Standard (IS) sieve.

As the second step, the carbonized powder obtained after pyrolysis (1 g) was suffi-
ciently dissolved in 25 mL of distilled water, and the mixture was then sonicated after
optimization for 15 min and 90% amplitude at room temperature. To separate the super-
natant liquid from the carbon precipitate, the solution was centrifuged at 10,000× g rpm
for 10 min. The settled particles were collected and dried in a hot air oven at 80 ◦C for 12 h.
CDs obtained as dried powder were collected and macerated with pestle and mortar and
then subjected to further characterization and confirmation.

2.2. Synthesis of Surface-Modified CDs

CDs were characterized as mentioned below (Section 2.3), and it was observed that the
synthesized CDs were anionic in nature. Hence, this modified protocol was adopted to promote
amine functionalization by adding urea/polyethyleneimine (PEI)/hexamethylenetetramine
(HMTA) so as to synthesize N-doped CDs. All the experiments were conducted with
sufficient replications (three replications repeated three times), synthesized CDs were
rigorously confirmed through various characterization techniques (Section 2.3) and the
data were cross-examined with each parameter to ascertain the reproducibility of the
protocol to obtain homogeneity of the CDs.

All the surface-modified carbon dots were synthesized from coconut shell powder as
a precursor material, since the smallest size CDs (7 nm) was achieved from the coconut
shells when compared to the CDs (15 nm) from the fronds and shells (9 nm). The surface
charge-modifying agents, namely urea, PEI and HMTA, were purchased from Central Drug
House (P) Ltd. (Delhi, India), Sigma Aldrich (St. Louis, MO, USA) and SDFCL (Chennai,
India), respectively.

2.2.1. Urea-Doped CDs

Coconut shell powder obtained from muffle furnace was taken and mixed with dis-
tilled water in the ratio (biomass:water) of 1:25. To prepare four types (urea-doped CDs
(1:1); urea-doped CDs (1:2); urea-doped CDs (1:3); urea-doped CDs (1:4)), four different urea
concentrations of 1, 2, 3 and 4 g were individually poured into each beaker. It was then
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subjected to stirring at 280 rpm for 24 h in magnetic stirrer followed by sonication (90%
amplitude for 15 min) and centrifugation (10,000× g rpm for 10 min). Finally, the settled
particles were dried under hot air oven at 80 ◦C for 12 h and Urea-doped CDs (four types)
were obtained.

2.2.2. PEI-Doped CDs

Coconut shell powder obtained from a muffle furnace was used and mixed with
distilled water in a ratio (biomass:water) of 1:25. To prepare three types of PEI-doped
CDs, three different PEI concentrations of 0.5, 1.0 and 1.5 g were individually poured into
each beaker. Ten milliliters of distilled water was added to each beaker and subjected to
magnetic stirring at 280 rpm for 20 min. Different concentrations of PEI that were available
in the three beakers were added to the coconut shell powder mixture and subjected to
ultrasonication for 15 min at 90% amplitude. The resultant solution was centrifuged at
10,000× g rpm for 10 min. The settled particles (PEI-doped CDs (0.5:1), PEI-doped CDs (1:1)
and PEI-doped CDs (1.5:1)) were collected and dried at 80 ◦C in a hot air oven for 12 h.

2.2.3. HMTA-Doped CDs

Coconut shell powder obtained from a muffle furnace was mixed with distilled water
in a ratio (biomass:water) of 1:10. Then, 1 g of HMTA was added to this coconut shell
powder mixture. It was then subjected to stirring at 280 rpm for 10 min with a magnetic
stirrer, followed by sonication (90% amplitude for 15 min) and centrifugation (10,000× g
rpm for 10 min). Finally, the settled particles were dried in a hot air oven at 80 ◦C for 12 h,
and HMTA-doped CDs (1:1) were obtained.

2.3. Characterization of CDs

The size and morphology of the synthesized CDs were analyzed using high-resolution
transmission electron microscopy (JEOL, Tokyo, Japan) and scanning electron microscope
(SEM) (FEI, Quanta 250, Hillsboro, OR, USA), respectively. The average particle size was
measured with a Gaussian fitting curve using ImageJ software (version: 1.8.0). The crystal
structure of the material was determined by selected area electron diffraction (SAED) of
a high-resolution transmission electron microscope (HR-TEM), and it was verified using
an X-ray diffractometer (Shimadzu Model, Make XRD 600, Rigaku, Japan). The optical
properties were determined with a UV–Vis spectrophotometer (Specord 210 plus, Jena,
Germany) in the range 190–1100 nm. The functional groups, as well as chemical bonding,
of the CDs were recorded by employing Fourier-transform infrared (FTIR) (Jasco Model: R-
3000-QE, Woburn, MA, USA). The data obtained were plotted using ORIGIN Ver.8.5. The
zeta potential was measured using a nanoparticle size analyzer (HORIBA-SZ-100, Kyoto,
Japan), in which the zeta potential was measured between −200 mV and +200 mV. The pH
of the solution was adjusted to neutral before measuring the zeta potential, as outlined by
Qiang et al. [24].

2.4. Assessment of Antimicrobial Activity of CDs

Escherichia coli, an indicator of fecal matter contamination in drinking water, was used
as the test species to assess the potential of the synthesized CDs as a water disinfection
agent.

Lactate Dehydrogenase (LDH) Assay

The effect of CDs on the integrity of E. coli cell membranes was assessed using the
LDH assay (Kit: EZCount, CCK036, Thane, India). The study comprised nine treatments,
namely pristine CDs, PEI (0.5:1)-doped CDs, PEI (1:1)-doped CDs, PEI (1.5:1)-doped CDs,
urea-doped CDs (1:1), urea-doped CDs (2:1), urea-doped CDs (3:1), urea-doped CDs (4:1) and
HMTA-doped CDs (1:1). Briefly, E. coli was cultured in triplicate in Luria Bertani media
at 34 ◦C overnight. Cells cultured were treated with all the treatments at a concentration
of 1000 ppm (1 mg/mL, w/v), which was dispersed in the media by sonication at 40%
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amplitude for 4 min. The log phase and stationary phase for the chosen culture were at the
3rd and 9th hours, respectively. Accordingly, at the 3rd and 9th hours of incubation, the
culture supernatant was collected by centrifugation and incubated with the LDH reaction
mixture in a 96-well plate. For the positive control wells, a lysis solution was added to
obtain the maximum LDH release control, and untreated cells were taken as the negative
control. All the assay treatments were carried out in 3 replications. The absorbance values
were taken at 490 nm and 600 nm using a spectrophotometric multi-well plate reader. LDH
was quantified using the following Formula (1):

LDH % = 100 × (A − C/B − C) (1)

where A = average (Avg) absorbance of the test − Avg absorbance of the background
control, B = Avg absorbance of the maximum LDH control − Avg absorbance of the volume
correction control and C = Avg absorbance of the untreated control − Avg absorbance of
the background control.

2.5. Development of CD-Based Prototypes to Assess the Water Disinfection Potential
2.5.1. Synthesis of CD-Infused Chitosan Beads

To immobilize the CDs, chitosan beads were selected as a platform for infusing the CDs
into chitosan beads. CD (urea-doped CDs (1:1))-infused chitosan beads were synthesized as
outlined by Yan et al. [25].

2.5.2. Synthesis of CDs Pellets

CDs were made into pellets using a tablet pressing machine (RIMEK, PC 20). To
enhance the compactness of the synthesized CD pellets, 4% PVA (polyvinyl amine) was
added as a binding agent to the CDs. The resultant CD pellets were air-dried for 2 h with
an average weight of 600 mg.

2.6. Assessing the Water Disinfection Potential of CDs

The water disinfection potential of CD-infused chitosan beads and pelletized CDs
were assessed with the fabricated lab-scale prototype. Fifty grams each of CD (1:1)-infused
chitosan beads and CD pellets were loaded into the specific cartridges. For this prototype,
50 mL of sterile water and 50 µL of overnight-grown E. coli culture (known load) were
added and left for filtration. At every 2 h interval (2, 4 and 6 h), 100 µL of sample was
retrieved to analyze the colony-forming units using the spread plate technique, and the
initial control culture was found to have >5.41 × 102 CFU/mL.

2.7. Biosafety Studies of Synthesized CDs

The acute toxicity study of pristine CDs and urea-doped SMCDs (urea-doped CDs (1:1))
at four different concentrations (250, 500, 1000 and 2000 ppm) were assessed against
earthworms by adopting the filter paper contact test as per OECD TG (207). Whatman
no. 1 filter paper was placed in the petri dish, and 2 mL of CD solution was added to
the filter paper. Two adult earthworms in each petri dish were exposed to the above
CD concentrations. All experiments were carried out in the dark at 20 ◦C for 48 h. The
observations were recorded continuously for 21 days at 24 h intervals. The mortality %
was calculated and recorded. Worms were considered dead when they did not respond to
touch of the anterior region. The results of the treatment group were analyzed to estimate
the mortality of the earthworms upon exposure to CDs.

2.8. Statistical Analysis

The data obtained from the above experiments were statistically analyzed using Origin
software version 8.5.
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3. Results and Discussion

This study demonstrated that a higher recovery of CDs (14.7%) from coconut wastes
could be possible when these biomasses were subjected to sequential processes (pyrolysis,
followed by sonication), while the hydrothermal method showed a minimal recovery
percentage of 2.33%. In the hydrothermal carbonization method, the biomass/raw material
first undergoes hydrolysis, followed by dehydration, and subsequently, aromatization,
decarboxylation, polymerization and aldol condensation reactions take place and lead
to the formation of aromatic clusters, and if the aromatic concentration reaches a critical
supersaturation point, a burst nucleation takes place, and CDs are ultimately formed [26].

In the sequential processes (pyrolysis, followed by sonication), the first process favors
the conversion of biomass into CDs by mechanisms such as drying, followed by the release
of volatile substances and the development of a carbon core as a consequence of the
conversion of cellulose, hemicellulose and lignin [20]. On the other hand, the sonication
method is also well reported for its ability to synthesize CDs [27,28]. During the sonication
process, the underlying mechanisms such as the production of a strong hydrodynamic
shear force by means of high- or low-pressure waves generate and distribute tiny vacuum
bubbles into the liquid, which favors the formation of CDs by splitting the carbon bonds [29].
Overall, the combination of the two methods yielded a higher recovery, and these sequential
processes are considered to be highly beneficial for the large-scale production of CDs from
waste biomasses.

3.1. Size, Morphology, Crystallinity and Stability of CDs

The HR-TEM images showed that the CDs synthesized from fronds, husks, shells and
urea-doped CDs (1:1) were in the range of 15, 9, 7 and 7 nm, respectively (Figures 1a, 2a,
3a and 4a), which is consistent with the results of Baweja and Jeet [30], who synthesized
carbon quantum dots (CQD) and two different graphene quantum dots (GQD1 and GQD2)
in the size range between 3 and 15 nm that were derived from sugarcane bagasse. It is clear
from the images that CDs are spherical in shape and dispersed uniformly. The selected
area electron diffraction (SAED) portrayed in Figures 1c, 2c, 3c and 4c showed diffused
rings, which indicates the poly-nanocrystalline nature of CDs [31]. The zeta potential of
all the synthesized CDs, as given in Table 1, was found to be negative, which indicates
that the surfaces of CDs have negative charged moieties like hydroxyl and carboxylate
groups [23,32] that aid in achieving a good dispersion in water [22]. The addition of urea
during the synthesis process also resulted in the synthesis of anionic CDs. This result is
consistent with the results of Arvapalli et al. [33], who synthesized urea-doped carbon dots
with citric acid as precursor materials in a ratio of 1:1 and found that the zeta potential was
−38.5 ± 2.72 mV. Despite the fact that urea contributes to amine groups, urea-doped CDs
in a ratio of 1: 1 did not exhibit positive zeta potential. This may be due to the fact that a
higher ratio of COO- groups on the surfaces of CDs/precursors could not be outnumbered
by positively charged functional groups of urea.

Table 1. Size, morphology, crystallinity and surface charge of carbon dots derived from coconut
waste.

S. No. Precursor Material Average Size (nm) Shape Zeta Potential (mV)

1. CDs (Fronds) 15 Spherical −22.4
2. CDs (Husk) 9 Spherical −28.8
3. CDs (Shell) 7 Spherical −14.8
4. Urea-doped CDs (1:1) 7 Spherical −33.3
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of carbon dot). (b) SEM. (c) SAED pattern. (d) UV–Vis spectrum. (e) FTIR peaks. (f) XRD pattern.

3.2. Optical Studies

The optical properties of CDs from fronds, husks, shells and urea-doped CDs (1:1)
were investigated using the UV–Vis absorption spectrum, and the corresponding results
are exhibited in Figures 1d, 2d, 3d and 4d. First, the absorption peak was observed at
226 nm for the CD-derived fronds and husks and at 263 nm for the CDs derived from shells.
Secondly, the shoulder peak was observed for all the three types of CDs. These two peaks
were mainly raised due to the existence of the π–π* transition and n–π* transition of C=O
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bonds. This finding is in line with the results of Dager et al. [22], who synthesized carbon
quantum dots from fennel seeds by using the pyrolysis method.

3.3. Fourier-Transform IR Spectroscopy

The FTIR spectroscopic investigations of carbon dots are depicted in Figures 1e, 2e
and 3e. The evidence of hydrophilic surfaces on CDs from the shells was confirmed by the
formation of the O-H stretching vibration, as denoted by the intense peak at 3440 cm−1 [34].
The peaks at 3022 and 2970 cm−1 were attributed to the C-H stretching vibration. Fur-
thermore, it also displayed the stretching bands of C=O at 1738 cm−1, which is a specific
feature of CDs [32], -OH bending at 1442 cm−1, C-OH at 1375 cm−1, C–O stretching at
1213 cm−1 and epoxy at 918 cm−1. These results coincide with the FTIR spectrum dataset of
Manoharan et al. [35], who synthesized fluorescent carbon dots from tender coconut water
using the acid-assisted ultrasonic route, whereas, in the cases of the fronds and husks, the
major peak obtained at 2974 cm−1 corresponded to the C-N and C-H stretching vibrations.
The C=C stretching vibration was observed at 1378 cm−1 [36], and the peaks at 1230, 1051
and 805 corresponded to the C-O-C, -C-OH and -CH bands [37], respectively.

Surface-modified carbon dots with urea as the doping agent showed a peak at
3323 cm−1 (Figure 4e). Arvapalli et al. [38], who synthesized urea-modified carbon dots
from citric acid and urea in a ratio of 1:1, showed that the peak range between 3000 and
3500 cm−1 with the stretching vibrations of O-H and N-H corresponded to the carboxylic
acid and amine groups, respectively. The characteristic O-H bending was observed at the
peak value of 1655 cm−1 [38]. Simultaneously, the peak at 1574 cm−1 was associated with
the C-N stretching vibration, indicating the formation of -CONR [39].

3.4. X-ray Diffraction (XRD)

The XRD patterns of CDs derived from fronds, husks and shells, as well as urea-
modified CDs (1:1) (Figures 1f, 2f, 3f and 4f), evidently displayed the fingerprints of CDs
with two peaks, namely a broad peak (2θ = 23.4o) that confirmed CDs have disordered
carbon [35,40] and a weak shoulder peak (2θ = 42.5o) that could have favorably occurred
due to the graphitic carbon core in CDs. From this observation, it can be presumed that the
structures of the CDs obtained from all the three coconut wastes and surface-modified CDs
have two sections, an amorphous layer and a minor portion of a crystalline layer. These
findings are in line with the observations of Manoharan et al. [35] and Zheng et al. [41].

3.5. EDAX (Energy-Dispersive Analysis of X-ray)

The EDAX (Table 2 and Figure 5) showed that the synthesized carbon dots contain the
highest weight percentage of carbon, followed by oxygen, which indicates that the carbon
dots are highly pure in nature [36].

Table 2. Elemental compositions of the carbon dots.

Elemental
Composition CDs (Fronds) CDs (Husk) CDs (Shell) Urea-Doped CDs

Carbon 90.41 91.46 95.82 94.74
Oxygen 9.59 8.54 2.57 3.26
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3.6. Surface Area and Pore Size

The total surface area of the carbon dots was obtained by using both the Langmuir
method and multi-point Brunauer–Emmett–Teller (BET) method. The increased surface
areas of CDs when compared to their respective precursor materials confirmed the size
reduction [42,43]. The corresponding summary of the surface area, total pore volume and
average pore diameter is tabulated in Table 3.

Table 3. Surface area characteristics of pristine CDs and SMCDs.

CDs Average Pore
Radius (nm)

Total Pore
Volume (cc/g)

BET Method
(m2 g−1)

Langmuir Method
(m2 g−1)

CDs (Fronds) 4.31 0.03 12.9 361
CDs (Husk) 2.09 0.02 18.0 1478
CDs (Shell) 1.97 0.02 139 4535

Urea-doped CDs (1:1) 1.73 0.01 99.1 3653

3.7. Antibacterial Activity of Synthesized CDs

The LDH study was employed for assessing the antibacterial activity of CDs. At
the end of the third hour of the growth phase of E. coli, which was the early exponential
stage, the results showed that the % cytotoxicity at the concentration of 1000 ppm was the
maximum for urea-doped CDs (1:1). The CDs without any surface modification showed
4.89% toxicity. On the other hand, CDs modified with PEI did not show any cytotoxicity
against E. coli, which can be compared with the findings of Devkota et al. [44], who
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synthesized amine-functionalized carbon dots with PEI and found no antimicrobial effect
on bacterial species like Agrobacterium, Salmonella, Pectobacterium and E. coli. Hence, our
study showed that doping with urea during CD synthesis contributed to favorable surface
modifications in CDs and exhibited antibacterial properties when compared to other doping
agents such as PEI and HMTA (Table 4).

Table 4. Comparison of the % cytotoxicity of CDs at the concentration of 1000 ppm against E. coli
after 3 h of growth.

Treatments % Cytotoxicity

Pristine CDs 4.89 (±0.24) f

PEI-doped CDs (0.5:1) 1.96 (±0.18) g

PEI-doped CDs (1:1) 1.02 (±0.03) h

PEI-doped CDs (1.5:1) 1.28 (±0.03) h

Urea-doped CDs (1:1) 20.6 (±0.70) a

Urea-doped CDs (2:1) 8.41 (±0.17) c

Urea-doped CDs (3:1) 6.81 (±0.09) d

Urea-doped CDs (4:1) 6.17 (±0.08) e

HMTA doped CDs 14.6 (±0.35) b

Data in the parentheses indicate the standard deviation from the mean. Different letters in superscript indicate the
existence of significant differences among the treatments.

The antibacterial activity of CDs is a result of a single mechanism of action, or there
may be a coexistence of multiple mechanisms, such as (1) physical/mechanical damage
to the cell membrane, (2) inhibiting bacterial cell wall synthetases, (3) triggering the cel-
lular production of reactive oxygen species (ROS), (4) disrupting cell membrane electron
transport, (5) internalization into the cell, damaging DNA and protein synthesis, (6) affect-
ing the synthesis of bacterial biofilm, etc. [45]. Nevertheless, the most-reported principal
mechanism that is responsible for causing toxicity in any biological system by the majority
of nanomaterials is its role in creating oxidative stress as a consequence of the excessive
production of ROS, and only the reaction pathway to generate ROS varies from one nano-
material to another [46]. Specific studies undertaken with CDs have also reported that the
surface charge plays a key role in causing antibacterial activity [47]. They have reported
that positively charged CDs (zeta potential of 27.6 mV) exhibited antibacterial activity by
disrupting the bacterial cytoplasmic membrane. However, neutral (0.94 mV) and nega-
tively charged (−19.5 mV) CDs interacted with the bacteria, resulting in the generation
of ROS, and this is considered a major factor in inhibiting bacterial growth, leading to
bacterial apoptosis (programmed cell death). Recent reports [24,48,49] on the antibacterial
activity of CDs, especially in the E. coli system, have demonstrated that ROS production by
activating the oxygen in air or water led to toxicity. In the present study, both the pristine
and surface-modified CDs are anionic in nature, and the observed toxicity against E. coli
might also be due to ROS production, and our LDH assay dataset confirms this notion,
since LDH leakage is mainly attributed to oxidative stress. Other than ROS generation,
the physical disruption of the E. coli cell membrane is also reported when interacting with
negatively charged CDs [50]. Generally, in cases of physical disruption as a means of
toxicity, it is widely stated that the electrostatic interaction between positively charged
CDs and the negatively charged cell membranes of both Gram-positive and Gram-negative
bacteria is the key mechanism [6]. Nevertheless, it is also reported that interactions be-
tween anionic charged CDs with slightly negatively charged bacterial surfaces are still
possible due to other van der Walls forces, consisting of weak London dispersion forces
and stronger dipole–dipole forces [51,52]. Recently, Qiang et al. [24] also reported that
negatively charged carbon quantum dots have caused toxicity in E. coli and explained that
adhesion of these CDs to the bacterial cell wall has led to ROS production, destruction of
the cell membrane and causing cytoplasm leakage. Overall, our study also indicated that
CDs with an overall anionic charge could also cause toxicity to bacterial cells. Furthermore,
this work also demonstrated that the surface modification of CDs (urea-doped carbon
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dots (1:1)) by doping nitrogenous materials has also exhibited a maximum toxicity in E.
coli. Earlier studies [48–50,53,54] have also shown that nitrogen-doped CDs had improved
antibacterial activity, and this is attributed to amine functional groups on the surface of
CDs having directly enhanced ROS production and or through its lower band gap, thus
ultimately contributing to the bactericidal effect. These reports add strength to our findings
that SMCDs (urea-doped CDs (1:1)) exhibited the maximum toxicity. However, further and
thorough explorations are needed and underway to document the underlying mechanisms
of nitrogen-doped CDs in enhanced antibacterial activity.

3.8. Water Disinfection Potential of CDs

In order to assess the applicability of CDs as a disinfectant in water purification
systems, two products, namely (i) CDs infused chitosan beads and (ii) pelletized CDs, were
developed to immobilize CDs, and the efficiency of these two interventions were examined.
The observations revealed that the CD-infused chitosan beads reduced the colonies of
E. coli from 5.41 × 102 CFU/mL (control group) to 2.16 × 102 CFU/mL in comparison
to pelletized CDs that decreased to 3.30 × 102 CFU/mL (Table 5). Thus, the CD-infused
chitosan beads showed better water disinfection potential, as indicated by the reduction in
the number of colonies (Figure 6). This can be explained with the findings of Kurt et al. [55],
who developed chitosan fibers embedded with CDs from citric acid and assessed their
antibacterial activity by using the disc diffusion method against E. coli and found that the
inhibition of the zone increased from 1.8 ± 0.2 cm to 2.9 ± 0.4 cm against E. coli when
increasing the concentration of the CDs from 2.9 mg to 5 mg.

Table 5. Water disinfection potential of CDs assessed with the developed prototypes.

Treatment

Number of Colonies
(×102 CFU/mL) Efficiency (%)

Before Filtration After Filtration

Pelletized CDs 5.41 3.30 40
CD-infused

chitosan beads 5.41 2.16 61
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3.9. Biosafety Studies of Synthesized CDs

Earthworms were used to investigate the biosafety of pristine CDs and urea-doped
CDs (1:1), and the results revealed that the mortality rate was from 0 to 2000 ppm for a
study period of 21 days (Figure 7). These observations are similar to the reports of Zhang
et al. [56], who assessed the biosafety of carbon nanomaterials against earthworms by
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using a filter paper contact test for 28 days and found that it was nontoxic even up to
the concentration of 1000 mg/L. Several publications have also suggested that CDs are
nontoxic to human cell lines. Liu et al. [57] reported that the CDs derived from wheat straw
exhibited negligible cytotoxicity up to the concentration of 0.8 mg/mL, indicating that CDs
are biocompatible in nature. In addition, Shi et al. [58] proved that amine-functionalized
lignin CDs were nontoxic when tested against mouse macrophage cell lines at a dose of
100 µg/mL, for which the cell viability still remained 96.8%. Hence, the results of our
biosafety studies with earthworms also suggested that CDs derived from coconut wastes,
regardless of whether they are pristine or surface-modified, are biocompatible and safe.
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4. Conclusions

This study demonstrated that the novel sequential synthesis processes (pyrolysis
and sonication method) is the best method to transform coconut wastes into CDs in the
scope of large-scale production. Pristine CDs were anionic in nature, and the LDH assay
confirmed their antibacterial ability against E. coli. The surface modification of CDs by
doping urea during the synthesis process contributed to enhanced antibacterial properties.
The principal mechanism behind the bactericidal effect of the CDs was the oxidative stress
that was triggered as a result of the excessive production of ROS, and our measurement
of the LDH leakage confirmed this mode of action. In addition, the amine functional
groups on the surfaces of the CDs could have directly enhanced ROS production through
its lower band gap, thus ultimately contributing to an enhanced bactericidal effect. Since
these carbon nanomaterials are less than 10 nm in size, a challenge exists for employing
them as a water disinfectant in purification systems. Thus, a suitable immobilization
platform was identified by infusing CDs with a polymer, chitosan. A CD-based lab-scale
prototype developed by utilizing urea-doped CDs infused with chitosan beads showed
promising results for their applicability in water disinfection. Overall, this investigation
highlighted that CDs are potential water disinfection agents that can be easily synthesized
from waste biomasses so as to ensure sustainable solutions. Furthermore, this scientific
endeavor has also opened up research avenues to redesign the prototypes for upscaling
this nanotechnology to provide safe drinking water for all mankind.
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