Geospatial Analysis for Relative Seismic Activity Assessment: A Case Study of Fatima Suture Zone in Western Saudi Arabia
Abstract
:1. Introduction
2. Regional Geological and Structural Setting
3. Methodology
3.1. Morphometric Indices
3.1.1. Stream-Length Gradient Index (SL)
3.1.2. Asymmetric Factor (Af)
3.1.3. Hypsometric Integral Index (Hi)
3.1.4. Drainage Basin Shape Index (Bs)
3.1.5. Valley Floor Width-to-Height Index (Vf)
3.1.6. Mountain Front Sinuosity Index (Smf)
4. Results and Discussion
4.1. Morphometric Indices
4.1.1. Stream-Length Gradient Index (SL)
4.1.2. Asymmetry Factor Index (Af)
4.1.3. Hypsometric Integral Index (Hi)
4.1.4. Drainage Basin Shape Index (Bs)
4.1.5. Valley Floor Width-to-Height Index (Vf)
4.1.6. Mountain Front Sinuosity Index (Smf)
4.2. Relative Seismic Activity Assessment
5. Conclusions
- Through the study of this deformed zone, the paper demonstrates the usefulness of significant geological neo-tectonic studies with morphotectonic analysis. It is also proven that the morphometric indices applied generally in vertical motion faults (Af, Vf, and Smf) can be successfully applied to suture structures.
- The quantitative morphometric indices provide a very important series of geomorphic characteristics that define the study zone into different active tectonic levels that are distributed over the entire study suture zone. Additionally, these powerful indices provide the keys to processing and analyzing using remote sensing data and geospatial analysis over a vast region as an effective tool to recognize different tectonic geomorphology anomalies possible due to the behavior of seismic activity. This is particularly useful in the coastal eastern Red Sea around Mecca and Jeddah for which few studies on tectonic geomorphology based on morphometric analysis are available. The combination of results from Smf and Vf was performed to preliminary examine the mountain fronts of the Fatima suture zone.
- Every single morphometric index was classified arbitrarily into a number of activity classes; therefore, we applied an averaged index (RSA) that integrates all indices and classifies the studied landscape into four distinct levels of relative seismic activity. The lowest level of relative seismic activity, RSA (class 4), was observed only for one basin in the southern part of the study region, while the remaining 40 basins were distributed over the FSZ region has and have moderate, high, and very high seismic activity levels. The very high seismic activity class was recorded mainly along the thrust faults bounding the Fatima suture in the middle part of the study region. It also covers a vast area in the southern part of the study region. The high seismic activity class was observed in the eastern, western, and southern parts of the study region. The paper suggests that the southern part of the study region could provide seismic signatures rather than the northern zones. Thus, further detailed studies on quaternary chronology are required along the Fatima suture zone.
- Finally, this paper demonstrates that morphological analysis is a very effective method for evaluating deformed structures; despite the fact that they do not produce significant topography, it provides a control on the evolution of the landscape at various scales.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Owen, L.A. Tectonic Geomorphology: A Perspective. In Treatise on Geomorphology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–12. [Google Scholar] [CrossRef]
- Mahmood, S.A.; Gloaguen, R. Appraisal of Active Tectonics in Hindu Kush: Insights from DEM Derived Geomorphic Indices and Drainage Analysis. Geosci. Front. 2012, 3, 407–428. [Google Scholar] [CrossRef]
- Khalifa, A.; Çakir, Z.; Owen, L.A.; Kaya, Ş. Morphotectonic Analysis of the East Anatolian Fault, Turkey. Turkish J. Earth Sci. 2018, 27, 110–126. [Google Scholar] [CrossRef]
- Khalifa, A.; Çakır, Z.; Kaya, Ş.; Gabr, S. ASTER Spectral Band Ratios for Lithological Mapping: A Case Study for Measuring Geological Offset along the Erkenek Segment of the East Anatolian Fault Zone, Turkey. Arab. J. Geosci. 2020, 13, 832. [Google Scholar] [CrossRef]
- Owen, L.A. 5.2 Tectonic Geomorphology: A Perspective. In Treatise on Geomorphology; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Pedrera, A.; Pérez-Peña, J.V.; Galindo-Zaldívar, J.; Azañón, J.M.; Azor, A. Testing the Sensitivity of Geomorphic Indices in Areas of Low-Rate Active Folding (Eastern Betic Cordillera, Spain). Geomorphology 2009, 105, 218–231. [Google Scholar] [CrossRef]
- Andermann, C.; Gloaguen, R. Estimation of Erosion in Tectonically Active Orogenies. Example from the Bhotekoshi Catchment, Himalaya (Nepal). Int. J. Remote Sens. 2009, 30, 3075–3096. [Google Scholar] [CrossRef]
- Pérez-Peña, J.V.; Azañón, J.M.; Azor, A.; Delgado, J.; González-Lodeiro, F. Spatial Analysis of Stream Power Using GIS: SLk Anomaly Maps. Earth Surf. Process. Landf. 2009, 34, 16–25. [Google Scholar] [CrossRef]
- El Hamdouni, R.; Irigaray, C.; Fernández, T.; Chacón, J.; Keller, E.A. Assessment of Relative Active Tectonics, Southwest Border of the Sierra Nevada (Southern Spain). Geomorphology 2008, 96, 150–173. [Google Scholar] [CrossRef]
- Cox, R.T. Analysis of Drainage-Basin Symmetry as a Rapid Technique to Identify Areas of Possible Quaternary Tilt-Block Tectonics: An Example from the Mississippi Embayment. Geol. Soc. Am. Bull. 1994, 106, 571–581. [Google Scholar] [CrossRef]
- Cox, R.T.; Van Arsdale, R.B.; Harris, J.B. Identification of Possible Quaternary Deformation in the Northeastern Mississippi Embayment Using Quantitative Geomorphic Analysis of Drainage-Basin Asymmetry. Bull. Geol. Soc. Am. 2001, 113, 615–624. [Google Scholar] [CrossRef]
- Keller, E.A.; Pinter, N. Active Tectonics: Earthquakes, Uplift and Landscape, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Chen, Y.C.; Sung, Q.; Cheng, K.Y. Along-Strike Variations of Morphotectonic Features in the Western Foothills of Taiwan: Tectonic Implications Based on Stream-Gradient and Hypsometric Analysis. Geomorphology 2003, 56, 109–137. [Google Scholar] [CrossRef]
- Wells, S.G.; Bullard, T.F.; Menges, C.M.; Drake, P.G.; Karas, P.A.; Kelson, K.I.; Ritter, J.B.; Wesling, J.R. Regional Variations in Tectonic Geomorphology along a Segmented Convergent Plate Boundary, Pacific Coast of Costa Rica. Geomorphology 1988, 1, 239–265. [Google Scholar] [CrossRef]
- Cox, R.; Garrote, J.; Swann, C.T.; Ellis, M. Tectonic Geomorphology of the Southeastern Mississippi Embayment in Northern Mississippi, USA. Geol. Soc. Am. Bull. 2006, 2006, b25721. [Google Scholar] [CrossRef]
- Lifton, N.A.; Chase, C.; Tectonic, G. Climatic and Lithologic Influences on Landscape Fractal Dimension and Hypsometry: Implications for Landscape Evolution in the San Gabriel Mountains, California. Geomorphology 1992, 5, 77–114. [Google Scholar] [CrossRef]
- Cyr, A.J.; Granger, D.E.; Olivetti, V.; Molin, P. Quantifying Rock Uplift Rates Using Channel Steepness and Cosmogenic Nuclide-Determined Erosion Rates: Examples from Northern and Southern Italy. Lithosphere 2010, 2, 188–198. [Google Scholar] [CrossRef] [Green Version]
- Peters, G.; van Balen, R.T. Tectonic Geomorphology of the Northern Upper Rhine Graben, Germany. Glob. Planet. Chang. 2007, 58, 301–334. [Google Scholar] [CrossRef]
- Khalifa, A.; Çakir, Z.; Owen, L.; Kaya, A. Evaluation of the Relative Tectonic Activity of the Adıyaman Fault within the Arabian-Anatolian Plate Boundary (Eastern Turkey). Geol. Acta 2019, 17, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Sağlam Selçuk, A. Evaluation of the Relative Tectonic Activity in the Eastern Lake Van Basin, East Turkey. Geomorphology 2016, 270, 9–21. [Google Scholar] [CrossRef]
- Tsodoulos, I.M.; Koukouvelas, I.K.; Pavlides, S. Tectonic Geomorphology of the Easternmost Extension of the Gulf of Corinth (Beotia, Central Greece). Tectonophysics 2008, 453, 211–232. [Google Scholar] [CrossRef]
- Khalifa, A.; Bashir, B.; Alsalman, A.; Öğretmen, N. Morpho-Tectonic Assessment of the Abu-Dabbab Area, Eastern Desert, Egypt: Insights from Remote Sensing and Geospatial Analysis. ISPRS Int. J. Geo-Inf. 2021, 11, 784. [Google Scholar] [CrossRef]
- Partabian, A.; Nourbakhsh, A.; Ameri, S. GIS-Based Evaluation of Geomorphic Response to Tectonic Activity in Makran Mountain Range, SE of Iran. Geosci. J. 2016, 20, 921–934. [Google Scholar] [CrossRef]
- Alipoor, R.; Poorkermani, M.; Zare, M. Geomorphology Active Tectonic Assessment around Rudbar Lorestan Dam Site, High Zagros Belt (SW of Iran). Geomorphology 2011, 128, 1–14. [Google Scholar] [CrossRef]
- Elnobi, M.; Bashir, B.; Alsalman, A.; Bachir, H. Geospatial Analytics for Preliminarily Landscape Active Tectonic Assessment of the Wadi Araba Basin, Western Gulf of Suez, Egypt. Appl. Sci. 2022, 12, 12152. [Google Scholar] [CrossRef]
- Bashir, B.; Alsalman, A.; Bachir, H.; Elnobi, M. GIS-Analysis for Active Tectonics Assessment of Wadi Al-Arish, Egypt. Appl. Sci. 2023, 13, 2659. [Google Scholar] [CrossRef]
- Le Béon, M.; Klinger, Y.; Mériaux, A.S.; Al-Qaryouti, M.; Finkel, R.C.; Mayyas, O.; Tapponnier, P. Quaternary Morphotectonic Mapping of the Wadi Araba and Implications for the Tectonic Activity of the Southern Dead Sea Fault. Tectonics 2012, 31, 12. [Google Scholar] [CrossRef] [Green Version]
- Bamousa, A.O.; Memesh, A.M.; Dini, S.M. Morphotectonic Development of Mesozoic Carbonates and Evaporites of Ath-Thumamah Depression in Central Arabia. Carbonates Evaporites 2014, 29, 65–72. [Google Scholar] [CrossRef]
- Stern, R.J. Arc Assembly and Continental Collision in the Neoproterozoic East African Orogen: Implications for the Consolidation of Gondwanaland. Annu. Rev. Earth Planet. Sci. 1994, 22, 319–351. [Google Scholar] [CrossRef]
- Harcourt-Bath, W. The Red Sea; Springer: Berlin/Heidelberg, Germany, 1939; Volume 177. [Google Scholar] [CrossRef]
- Bosworth, W. Geological Evolution of the Red Sea: Historical Background, Review, and Synthesis. Red Sea 2015, 3, 45–78. [Google Scholar] [CrossRef]
- Nofal, R.; Abboud, I.A. Geomorphological Evolution of Marine Heads on the Eastern Coast of Red Sea at Saudi Arabian Region, Using Remote Sensing Techniques. Arab. J. Geosci. 2016, 9, 163. [Google Scholar] [CrossRef]
- Willemann, R.J.; Storchak, D.A. Data Collection at the International Seismological Centre. Seismol. Res. Lett. 2001, 72, 440–453. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, N.C.; Stewart, I.C.F. The Modest Seismicity of the Northern Red Sea Rift. Geophys. J. Int. 2018, 214, 1507–1523. [Google Scholar] [CrossRef] [Green Version]
- El-Isa, Z.H.; Shanti, A.A. Seismicity and Tectonics of the Red Sea and Western Arabia. Geophys. J. Int. 1989, 97, 449–457. [Google Scholar] [CrossRef] [Green Version]
- Azor, A.; Keller, E.A.; Yeats, R.S. Geomorphic Indicators of Active Fold Growth: South Mountain-Oak Ridge Anticline, Ventura Basin, Southern California. Bull. Geol. Soc. Am. 2002, 114, 745–753. [Google Scholar] [CrossRef]
- Faghih, A.; Samani, B.; Kusky, T.; Khabazi, S.; Roshanak, R. Geomorphologic Assessment of Relative Tectonic Activity in the Maharlou Lake Basin, Zagros Mountains of Iran. Geol. J. 2012, 47, 30–40. [Google Scholar] [CrossRef]
- Rockwell, T.K.; Keller, E.A.; Johnson, D.L. Tectonic Geomorphology of Alluvial Fans and Mountain Fronts near Ventura, California. In Tectonic Geomorphology, Proceedings of the 15th Annual Geomorphology Symposium, Binghamton, NY, USA, 15 September 1985; Allen & Unwin: Boston, MA, USA, 1985; pp. 183–207. [Google Scholar]
- Yildirim, C. Relative Tectonic Activity Assessment of the Tuz Gölü Fault Zone Central Anatolia, Turkey. Tectonophysics 2014, 630, 183–192. [Google Scholar] [CrossRef]
- Bull, W.B.; McFadden, L.D. Tectonic Geomorphology North and South of the Garlock Fault, California. In Geomorphology in Arid Regions, Proceedings of the Eighth Annual Geomorphology Symposium, Binghamton, NY, USA, 23–24 September 1977; Doehring, D.O., Ed.; State University of New York: New York, NY, USA, 1977. [Google Scholar]
- Abd-Allah, A.M.A.; Ahmed, A.H.; El-Fakharani, A.; El-Sawy, E.K.; Ali, K.A. Fatima Suture: A New Amalgamation Zone in the Western Arabian Shield, Saudi Arabia. Precambrian Res. 2014, 249, 57–78. [Google Scholar] [CrossRef]
- Baggazi, H.M.; Ali Abd-Allah, A.M.; Elfakharani, A.; Matsah, M. Stress-Strain Analysis and Its Tectonic Implications for the Fatima Suture Zone, Western Arabian Shield, Saudi Arabia. J. Afric. Earth Sci. 2019, 158, 103567. [Google Scholar] [CrossRef]
- Brown, G.F.; Jackson, R.O.; Bogue, R.G.; Maclean, W.H. Geologic Map of the Southern Hijaz Quadrangle, Kingdom of Saudi Arabia; US Geological Survey: Reston, VA, USA, 1963. [Google Scholar]
- Kassem, O.M.K.; Hamimi, Z. Finite Strain Analysis of the Wadi Fatima Shear Zone in Western Arabia, Saudi Arabia. Geotectonics 2018, 52, 251–265. [Google Scholar] [CrossRef]
- Johnson, P.R.; Kattan, F. Oblique Sinistral Transpression in the Arabian Shield: The Timing and Kinematics of a Neoproterozoic Suture Zone. Precambrian Res. 2001, 107, 117–138. [Google Scholar] [CrossRef]
- Baggazi, H.M. Paleostress Analysis of the Post-Amalgamation Fatima Basin, Western Arabian Shield, Saudi Arabia. Arab. J. Geosci. 2022, 15, 1165. [Google Scholar] [CrossRef]
- Hargrove, U.S.; Stern, R.J.; Kimura, J.-I.; Manton, W.I.; Johnson, P.R. How Juvenile Is the Arabian–Nubian Shield? Evidence from Nd Isotopes and Pre-Neoproterozoic Inherited Zircon in the Bi’r Umq Suture Zone, Saudi Arabia. Earth Planet. Sci. Lett. 2006, 252, 308–326. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative Geomorphology of Drainage Basins and Channel Networks. In Handbook of Applied Hydrology; Chow, V.T., Ed.; McGraw Hill B. Company: New York, NY, USA, 1964; pp. 4–11. [Google Scholar]
- Cardoso, M.; Da Silveira, A.S.; De Vargas, M.R.; De Oliveira, J.M.M.T.; Barbosa, D.V.E.; De Oliveira, L.F.B.; Fredere, A.C.; Lôndero, V. Geomorphic Expression of Shear Zones in Southern Brazilian and Uruguayan Shields. Geomorphology 2021, 382, 107678. [Google Scholar] [CrossRef]
- Baruah, M.P.; Bezbaruah, D.; Goswami, T.K. Active Tectonics Deduced from Geomorphic Indices and Its Implication on Economic Development of Water Resources in South-Eastern Part of Mikir Massif, Assam, India. Geol. Ecol. Landsc. 2020, 6, 99–112. [Google Scholar] [CrossRef]
- Selby, M.J. A Rock Mass Strength Classification for Geomorphic Purposes: With Tests from Antarctica and New Zealand. Z. Für Geomorphol. 1980, 24, 31–51. [Google Scholar] [CrossRef]
- Hack, J.T. Stream-Profile Analysis and Stream-Gradient Index. J. Res. U. S. Geol. 1973, 1, 421–429. [Google Scholar]
- Hare, P.W.; Gardner, T.W. Geomorphic Indicators of Vertical Neotectonism along Converging Plate Margins, Nicoya Peninsula, Costa Rica. Tecton. Geomorphol. 1985, 4, 123–134. [Google Scholar]
- Ramírez-Herrera, M. Geomorphic Assessment of Active Tectonics in the Acambay Graben, Mexican Volcanic Belt. Earth Surf. Process. Landforms 1998, 23, 317–332. [Google Scholar] [CrossRef]
- Azañón, J.M.; Pérez-Peña, J.V.; Giaconia, F.; Booth-Rea, G.; Martínez-Martínez, J.M.; Rodríguez-Peces, M.J. Active Tectonics in the Central and Eastern Betic Cordillera through Morphotectonic Analysis: The Case of Sierra Nevada and Sierra Alhamilla. J. Iber. Geol. 2012, 38, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Khalifa, A. Preliminary Active Tectonic Assessment of Wadi Ghoweiba Catchment, Gulf of Suez Rift, Egypt, Integration of Remote Sensing, Tectonic Geomorphology, and Gis Techniques. Al-Azhar Bull. Sci. 2020, 31, 35–42. [Google Scholar] [CrossRef]
- Buczek, K.; Górnik, M. Evaluation of Tectonic Activity Using Morphometric Indices: Case Study of the Tatra Mts. (Western Carpathians, Poland). Environ. Earth Sci. 2020, 79, 176. [Google Scholar] [CrossRef] [Green Version]
- Silva, P.G.; Goy, J.L.; Zazo, C.; Bardají, T. Faulth-Generated Mountain Fronts in Southeast Spain: Geomorphologic Assessment of Tectonic and Seismic Activity. Geomorphology 2003, 50, 203–225. [Google Scholar] [CrossRef]
Basins | Af | Af-50 | Class | Basins | Af | Af-50 | Class |
---|---|---|---|---|---|---|---|
1 | 72.023 | 22.023 | 1 | 22 | 47.953 | −2.046 | - |
2 | 62.766 | 12.766 | 2 | 23 | 29.407 | −20.952 | 1 |
3 | 54.703 | 4.703 | - | 24 | −16.786 | −33.213 | 1 |
4 | 57.145 | 7.145 | 3 | 25 | 62.230 | 12.230 | 2 |
5 | 84.291 | 34.291 | 1 | 26 | 44.444 | −5.555 | 3 |
6 | 42.553 | −7.446 | 3 | 27 | 55.977 | 5.977 | 3 |
7 | 43.710 | −6.289 | 3 | 28 | 38.305 | −11.694 | 2 |
8 | 77.134 | 27.134 | 1 | 29 | 55.865 | 5.865 | 3 |
9 | 56.427 | 15.427 | 1 | 30 | 58.464 | 8.464 | 3 |
10 | 39.909 | −10.090 | 2 | 31 | 59.917 | 9.917 | 3 |
11 | 71.469 | 21.469 | 1 | 32 | 60.794 | 10.794 | 2 |
12 | 43.835 | −6.164 | 3 | 33 | 72.083 | 22.083 | 1 |
13 | 75.270 | 25.270 | 1 | 34 | 64.013 | 14.013 | 2 |
14 | 55.501 | 5.501 | 3 | 35 | 67.248 | 17.248 | 1 |
15 | 20.477 | −29.522 | 1 | 36 | 48.207 | −1.972 | - |
16 | 50.791 | 0.791 | - | 37 | 40.714 | −9.285 | 3 |
17 | 61.935 | 11.935 | 2 | 38 | 57.811 | 7.811 | 3 |
18 | 37.906 | −12.093 | 2 | 39 | 52.899 | 2.899 | - |
19 | 55.054 | 5.054 | 3 | 40 | 52.964 | 2.964 | - |
20 | 61.198 | 11.198 | 2 | 41 | 62.363 | 12.363 | 2 |
21 | 93.379 | 43.379 | 1 |
Basins | Bl (m) | Bw (m) | Bs | Class | Basins | Bl (m) | Bw (m) | Bs | Class |
---|---|---|---|---|---|---|---|---|---|
1 | 50,700 | 57,200 | 0.88 | 3 | 22 | 81,010 | 23,340 | 2.50 | 2 |
2 | 23,300 | 39,000 | 0.59 | 3 | 23 | 44,230 | 78,600 | 5.62 | 1 |
3 | 33,800 | 26,100 | 1.29 | 2 | 24 | 66,700 | 20,550 | 0.32 | 3 |
4 | 20,700 | 33,000 | 0.61 | 3 | 25 | 58,080 | 24,580 | 2.36 | 2 |
5 | 31,600 | 8890 | 3.55 | 1 | 26 | 18,000 | 51,600 | 3.48 | 1 |
6 | 25,600 | 10,200 | 2.5 | 2 | 27 | 23,020 | 11,000 | 2.09 | 2 |
7 | 12,400 | 48,600 | 2.55 | 2 | 28 | 31,880 | 14,900 | 2.13 | 2 |
8 | 11,000 | 14,700 | 0.74 | 3 | 29 | 25,610 | 26,250 | 0.97 | 3 |
9 | 11,300 | 86,500 | 1.30 | 2 | 30 | 38,990 | 24,490 | 1.59 | 2 |
10 | 39,700 | 14,300 | 2.77 | 2 | 31 | 34,030 | 17,720 | 1.92 | 2 |
11 | 15,510 | 58,400 | 2.65 | 2 | 32 | 35,500 | 38,450 | 0.92 | 3 |
12 | 38,660 | 14,080 | 2.74 | 2 | 33 | 43,070 | 23,380 | 1.84 | 2 |
13 | 34,000 | 12,530 | 2.71 | 2 | 34 | 41,590 | 16,670 | 2.49 | 2 |
14 | 22,050 | 55,700 | 3.95 | 1 | 35 | 53,710 | 17,500 | 3.06 | 1 |
15 | 27,500 | 10,660 | 2.57 | 2 | 36 | 16,460 | 22,980 | 0.71 | 3 |
16 | 16,060 | 17,930 | 0.89 | 3 | 37 | 30,610 | 14,860 | 2.05 | 2 |
17 | 36,100 | 16,220 | 2.22 | 2 | 38 | 19,220 | 26,240 | 0.73 | 3 |
18 | 76,990 | 23,630 | 3.25 | 1 | 39 | 38,930 | 25,020 | 1.55 | 2 |
19 | 49,060 | 78,800 | 6.22 | 1 | 40 | 63,310 | 48,320 | 1.31 | 2 |
20 | 43,200 | 86,800 | 4.97 | 1 | 41 | 86,740 | 18,520 | 4.61 | 1 |
21 | 29,920 | 11,700 | 2.55 | 2 |
Basins | Vf | Class | Basins | Vf | Class | Basins | Vf | Class |
---|---|---|---|---|---|---|---|---|
1 | 2.69 | 3 | 15 | 0.86 | 1 | 29 | 1.93 | 2 |
2 | 2.43 | 2 | 16 | 1.95 | 2 | 30 | 0.99 | 1 |
3 | 2.15 | 2 | 17 | 1.90 | 2 | 31 | 1.23 | 2 |
4 | 2.10 | 2 | 18 | 0.55 | 1 | 32 | 1.65 | 2 |
5 | 0.61 | 1 | 19 | 0.57 | 1 | 33 | 0.95 | 1 |
6 | 2.18 | 2 | 20 | 0.66 | 1 | 34 | 1.88 | 1 |
7 | 0.32 | 1 | 21 | 0.66 | 1 | 35 | 0.95 | 1 |
8 | 0.30 | 1 | 22 | 0.93 | 1 | 36 | 2.45 | 2 |
9 | 0.49 | 1 | 23 | 0.68 | 1 | 37 | 3.00 | 2 |
10 | 2.50 | 2 | 24 | 0.63 | 1 | 38 | 2.20 | 2 |
11 | 0.89 | 1 | 25 | 0.68 | 1 | 39 | 1.00 | 1 |
12 | 1.75 | 2 | 26 | 3.15 | 3 | 40 | 1.60 | 2 |
13 | 0.85 | 1 | 27 | 3.50 | 3 | 41 | 2.50 | 2 |
14 | 2.82 | 3 | 28 | 2.19 | 2 |
Segments | Smf | Vf | Segments | Smf | Vf | Segments | Smf | Vf |
---|---|---|---|---|---|---|---|---|
1 | 2.3 | 2.49 | 23 | 2.3 | 1.25 | 45 | 2.0 | 2.10 |
2 | 2.1 | 2.40 | 24 | 1.85 | 1.05 | 46 | 2.1 | 2.33 |
3 | 2.0 | 2.10 | 25 | 2.1 | 1.25 | 47 | 1.75 | 1.95 |
4 | 1.4 | 0.70 | 26 | 2.4 | 2.45 | 48 | 2.35 | 1.45 |
5 | 1.25 | 0.95 | 27 | 1.7 | 1.20 | 49 | 1.45 | 0.90 |
6 | 1.35 | 1.00 | 28 | 1.65 | 2.48 | 50 | 1.1 | 0.90 |
7 | 1.2 | 0.72 | 29 | 2.0 | 2.35 | 51 | 1.6 | 1.12 |
8 | 1.1 | 0.75 | 30 | 2.0 | 2.23 | 52 | 1.64 | 1.40 |
9 | 1.55 | 1.0 | 31 | 1.7 | 2.40 | 53 | 1.8 | 1.70 |
10 | 1.25 | 0.90 | 32 | 1.68 | 2.41 | 54 | 1.88 | 2.10 |
11 | 1.8 | 2.00 | 33 | 1.5 | 2.10 | 55 | 2.10 | 1.84 |
12 | 1.6 | 1.75 | 34 | 1.55 | 2.45 | 56 | 1.8 | 1.50 |
13 | 2.1 | 1.80 | 35 | 2.1 | 2.30 | 57 | 2.1 | 2.15 |
14 | 1.9 | 1.65 | 36 | 1.95 | 1.25 | 58 | 1.98 | 2.35 |
15 | 2.22 | 1.90 | 37 | 2.15 | 2.45 | 59 | 1.95 | 1.85 |
16 | 2.1 | 1.20 | 38 | 1.7 | 1.10 | 60 | 1.48 | 0.98 |
17 | 1.3 | 0.95 | 39 | 1.48 | 0.80 | 61 | 1.35 | 0.95 |
18 | 1.38 | 0.90 | 40 | 1.3 | 0.70 | 62 | 1.70 | 1.40 |
19 | 2.2 | 1.25 | 41 | 1.2 | 0.83 | 63 | 2.0 | 1.45 |
20 | 2.0 | 1.45 | 42 | 1.1 | 0.95 | 64 | 2.3 | 1.95 |
21 | 1.95 | 2.00 | 43 | 1.83 | 1.50 | 65 | 1.62 | 1.30 |
22 | 1.75 | 2.40 | 44 | 1.60 | 1.75 |
Basins | SL Class | Af Class | Hi Class | Vf Class | Bs Class | Smf Class | CA | RSA Class |
---|---|---|---|---|---|---|---|---|
1 | 3 | 1 | 3 | 3 | 3 | 2 | 2.5 | 3 |
2 | 3 | 2 | 3 | 2 | 3 | 2 | 2.5 | 3 |
3 | 2 | - | 3 | 2 | 2 | 2 | 1.8 | 2 |
4 | 2 | 3 | 3 | 2 | 3 | 1 | 2.3 | 3 |
5 | 3 | 1 | 2 | 1 | 1 | 2 | 1.6 | 2 |
6 | 3 | 3 | 1 | 2 | 2 | 3 | 2.3 | 2 |
7 | 2 | 3 | 3 | 1 | 2 | 2 | 2.1 | 3 |
8 | 1 | 1 | 3 | 1 | 3 | 1 | 1.6 | 2 |
9 | 1 | 1 | 2 | 1 | 2 | 1 | 1.3 | 1 |
10 | 1 | 2 | 2 | 2 | 2 | 1 | 1.6 | 2 |
11 | 2 | 1 | 1 | 1 | 2 | 1 | 2.1 | 3 |
12 | 1 | 3 | 2 | 2 | 2 | 3 | 1.5 | 1 |
13 | 2 | 1 | 2 | 1 | 2 | 1 | 1.6 | 2 |
14 | 1 | 3 | 2 | 3 | 1 | - | 1.3 | 1 |
15 | 2 | 1 | 1 | 1 | 2 | 1 | 1.5 | 1 |
16 | 3 | - | 1 | 2 | 3 | - | 2 | 2 |
17 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
18 | 2 | 2 | 2 | 1 | 1 | - | 1.3 | 1 |
19 | 2 | 3 | 3 | 1 | 1 | - | 1.6 | 2 |
20 | 2 | 2 | 2 | 1 | 1 | - | 1.3 | 1 |
21 | 2 | 1 | 1 | 1 | 2 | - | 1.6 | 2 |
22 | 1 | - | 3 | 1 | 2 | 2 | 1.5 | 1 |
23 | 3 | 1 | 1 | 1 | 1 | - | 1.6 | 2 |
24 | 2 | 1 | 1 | 1 | 3 | - | 1.3 | 1 |
25 | 1 | 2 | 2 | 1 | 2 | 3 | 1.8 | 2 |
26 | 3 | 3 | 2 | 3 | 1 | - | 2 | 2 |
27 | 3 | 3 | 3 | 3 | 2 | - | 2.3 | 3 |
28 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
29 | 2 | 3 | 3 | 2 | 3 | 3 | 2.6 | 4 |
30 | 21 | 3 | 3 | 1 | 2 | 3 | 2.3 | 3 |
31 | 2 | 3 | 2 | 2 | 2 | 3 | 2.3 | 3 |
32 | 2 | 2 | 1 | 2 | 3 | 2 | 2 | 2 |
33 | 1 | 1 | 1 | 1 | 2 | 1 | 1.6 | 2 |
34 | 1 | 2 | 2 | 1 | 2 | 1 | 1.5 | 1 |
35 | 1 | 1 | 2 | 1 | 1 | 1 | 1.1 | 1 |
36 | 1 | - | 2 | 2 | 3 | 2 | 1.6 | 2 |
37 | 2 | 3 | 2 | 2 | 2 | 2 | 2.1 | 3 |
38 | 1 | 3 | 2 | 2 | 3 | 2 | 2.1 | 3 |
39 | 1 | - | 1 | 1 | 2 | 2 | 1.1 | 1 |
40 | 1 | - | 2 | 2 | 2 | 3 | 1.6 | 2 |
41 | 2 | 2 | 2 | 2 | 1 | - | 1.5 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashir, B.; Alsalman, A. Geospatial Analysis for Relative Seismic Activity Assessment: A Case Study of Fatima Suture Zone in Western Saudi Arabia. Sustainability 2023, 15, 11130. https://doi.org/10.3390/su151411130
Bashir B, Alsalman A. Geospatial Analysis for Relative Seismic Activity Assessment: A Case Study of Fatima Suture Zone in Western Saudi Arabia. Sustainability. 2023; 15(14):11130. https://doi.org/10.3390/su151411130
Chicago/Turabian StyleBashir, Bashar, and Abdullah Alsalman. 2023. "Geospatial Analysis for Relative Seismic Activity Assessment: A Case Study of Fatima Suture Zone in Western Saudi Arabia" Sustainability 15, no. 14: 11130. https://doi.org/10.3390/su151411130
APA StyleBashir, B., & Alsalman, A. (2023). Geospatial Analysis for Relative Seismic Activity Assessment: A Case Study of Fatima Suture Zone in Western Saudi Arabia. Sustainability, 15(14), 11130. https://doi.org/10.3390/su151411130