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Abstract: Energy demand forecasting is crucial for planning and optimizing the use of energy resources
in building facilities. However, integrating digital solutions and learning techniques into legacy
buildings presents significant challenges due to limited or outdated resources, hampering predictive
analytics in these buildings and their circuits. To fill this gap, this article proposes an innovative demand
forecasting strategy using an AIoT retrofit architecture based on the SmartLVGrid metamodel. This
architecture allows remote monitoring of legacy building circuits, facilitating the collection, processing
and storage of data in the cloud. We use several learning algorithms, including linear regression,
support vector regressor, random forest regressor, XGBoost regressor, and long short-term memory
(LSTM) neural network, to predict energy demand 15 min ahead, identifying potential overruns of
contracted demand in accordance with Brazilian regulations. After Bayesian optimization, the LSTM
neural network outperformed other models for most of the selected datasets and detected 32 out of
38 demand overruns on the test set. XGBoost and random forest followed closely, detecting 30 demand
overruns. Overall, our cost-effective solution optimizes energy usage and efficiently mitigates potential
demand exceedances in building installations. This is achieved through a step-by-step approach to
upgrading existing aging facilities, which promotes energy efficiency and sustainability.

Keywords: demand forecast; retrofit; SmartLVGrid; AIoT; machine learning; real-time energy
monitoring; energy efficiency; sustainability; smart buildings

1. Introduction

Digital paradigms, including internet of things (IoT), and smart buildings and cities,
are enabling the efficient use of resources essential for daily activities, such as electricity and
water. In addition, they help in better decision making regarding the management of these
resources, promoting scalability, flexibility, and dynamism characterized by the so-called
data-driven approach [1,2]. However, the digital transformation of legacy systems still
presents challenges such as a lack of support and updates, incompatibilities, and insufficient
resources to interact with current systems. Alternatively, updating these systems can occur
through a process of gradual and less costly technological transformation compared to the
complete replacement of legacy systems [3–5]. Thus, using strategies that promote the
digital transformation of legacy infrastructures can be a viable alternative for acquiring
data and information for data-driven management of legacy systems.

Despite maintaining a significant portion of its legacy resources, the electricity sector is
essential for the development of numerous socioeconomic activities. This can be observed by

Sustainability 2023, 15, 11161. https://doi.org/10.3390/su151411161 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su151411161
https://doi.org/10.3390/su151411161
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-2974-069X
https://orcid.org/0000-0001-6195-4914
https://orcid.org/0000-0002-2396-5804
https://orcid.org/0000-0002-7378-8893
https://orcid.org/0000-0002-3208-4734
https://orcid.org/0000-0002-0528-0641
https://orcid.org/0000-0002-4702-8823
https://orcid.org/0000-0002-1267-1878
https://orcid.org/0000-0001-9363-0156
https://doi.org/10.3390/su151411161
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su151411161?type=check_update&version=1


Sustainability 2023, 15, 11161 2 of 37

the correlation between the increase in energy demand and the modernization of society [6,7].
Energy demand is a fundamental parameter for issues such as sustainability and energy
efficiency, as it subsidizes the dimensioning of energy resources to meet society’s needs.
However, most legacy systems do not have resources for monitoring or forecasting demand
in real time, making it impossible to take actions to reduce or optimize energy demand.
Additionally, the lack of these resources makes it impossible to forecast exceedances of the
contracted demand of companies and industries with energy concessionaires, which may
result in fines or increases in the energy tariff of building installations. Thus, the use of digital
solutions to monitor and forecast energy demand represents an opportunity to upgrade and
optimize legacy resources.

Artificial intelligence of things (AIoT) can enable the management of electricity in
terms of decentralized remote monitoring and computational resources for demand fore-
casting or energy consumption prediction [8,9]. Nevertheless, the literature lacks demand
forecasting strategies based on energy parameters of legacy systems, which in many cases
require interoperability resources and real-time monitoring. Without these, accessing the
accurate demand profile of existing facilities and their circuits becomes a challenge for
forecasting tasks using statistical methods or learning models.

In this context, retrofitting can be a strategy to update existing systems with digital solu-
tions, preserving their resources and infrastructure [10,11]. However, to perform retrofitting
systematically, allowing flexibility, scalability, and standardized integration with legacy
systems, a reference model with well-defined protocols and interfaces is required. The
SmartLVGrid metamodel enables the digital convergence of electrical systems to the smart
grids paradigm [3,12]. In the literature, this metamodel has been used to achieve smart
building convergence in legacy buildings to promote energy efficiency through resources
for managing energy demand and electrical parameters in building installations [4,5].

However, there is a gap in the state of the art regarding the use of statistical techniques
and artificial intelligence to predict energy demand in legacy building circuits. In this sense,
we propose a legacy circuit retrofitting architecture based on a reference model to monitor
electrical circuits and generate a monitoring database that can be used to implement energy
demand forecast models for the installation and its circuits. This allows for a systematic and
non-abrupt strategy for modernizing existing resources, allowing demand management
and forecasting in the operations of building facilities. Furthermore, this proposal may
enable the implementation of the strategy in other cases and systems.

In this article, we proposed a demand forecasting strategy in legacy building systems
based on the retrofitting of these facilities. In our proposal, we presented a retrofit archi-
tecture to integrate hardware devices into a building power distribution panel capable of
collecting and transmitting real-time data to the cloud. These data were further processed
using supervised learning techniques to predict the energy demand of both the facility
and its circuits. We used the SmartLVGrid metamodel at the physical and architectural
levels as a basis to retrofit the legacy installation, ensuring the necessary interfaces and
interoperability between monitoring devices and the cloud application created for data
storage and processing.

With the data acquired by the proposed monitoring system, we conducted an ex-
ploratory analysis of the consumption and demand data from the installation and its
circuits to mitigate the potential exceedance of the contracted demand in the legacy build-
ing installation of this study, following the regulatory standards for energy supply and
distribution in Brazil, where the proposal was validated. Consequently, we performed
short-term demand forecasting for the next 15 min. As learning models, we employed the
random forest regressor (RFR), support vector regression (SVR), XGBoost regressor (XGBR),
and a long short-term memory (LSTM)-based neural network architecture. Additionally,
we used the performance results of the linear regression (LR) model as a baseline for eval-
uating and comparing the performance metrics (root mean squared error—RMSE, mean
absolute error—MAE, and R-squared score—R²) obtained for the mentioned models.

Therefore, we highlight the following contributions of this work:
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(1) Developing an AIoT solution for energy demand forecasting in legacy buildings and
their circuits based on a retrofit strategy;

(2) Implementing and comparing the performance of demand forecasting models in
legacy electrical circuits using different learning models;

(3) Implementing a new real-time monitoring system for energy demand in legacy electri-
cal circuits based on the SmartLVGrid metamodel;

(4) Proposing a systematic method for creating databases through the monitoring of
pre-existing circuits;

(5) Developing an alternative for detecting exceedances of the contracted demand with
energy utility companies in legacy building installations using learning models.

To present our proposal, we divide the paper as follows: Section 2 provides a survey
of the state of the art related to the topic. In Section 3, we highlight the research gaps in the
literature concerning the theme of this work. Section 4 provides the theoretical framework
of the SmartLVGrid metamodel. Section 5 presents our proposal for energy monitoring
based on retrofitting low-voltage legacy circuits of a power distribution panel. In Section 6,
we define our strategy and methodology to enable demand forecasting in the building
installation and its legacy circuits. Section 7 presents the obtained results. In Section 8, we
discuss the results, followed by the conclusions and proposals for future work in Section 9.

2. Related Work

The forecasting of energy demand is constantly researched in the literature, as well
as the prediction of energy consumption. Among the approaches used in this context,
statistical methods, machine learning, or deep learning models can be mentioned, employed
based on pre-established databases. The most commonly used statistical methods are based
on autoregressive techniques, with the most common ones being autoregressive integrated
moving average (ARIMA) and seasonal ARIMA (SARIMA) methods. In [13], the SARIMA
method was used by the authors to predict energy consumption in Poland on a quarterly,
monthly, and weekly scale, using data from 2015 to 2021. In [14], the authors used the
ARIMA method to estimate energy demand in Brazil from 2021 to 2025 and evaluated the
predictability of the model using real data from the period 2014 to 2015. The authors of [15]
also employed the SARIMA method to forecast short-term energy consumption for the
Brazilian industrial sector. These statistical methods have also been used in the literature
to make predictions using time series by rearranging the data present in the datasets to
enable the forecasting of future energy demand based on past demand values. In the
works [16,17], the authors used the sliding window method and autoregressive models to
enable predictions of short-term future demands.

Although statistical methods have shown significant results in time series forecasting,
they are well-suited when the dataset exhibits well-defined seasonality and trend patterns.
When the time series exhibits more complex and even nonlinear patterns, machine learning
methods can provide better results compared to statistical methods [18]. In [19], the authors
proposed models for predicting electricity consumption in Slovakia using artificial neural
networks. The authors of [20] used the support vector regression (SVR) and generalized
regression neural network (GRNN) models to predict energy consumption in Indonesia.
In the work [21], the authors applied random forest regression (RFR) and SVR to predict
medium-term electricity demand using a Canadian database. In [22], the authors applied two
ensemble learning methods, the XGBoost regressor and RFR, to forecast demand for the next
day during the pandemic period. In the work [23], the authors employed machine learning
methods, including linear regression (LR), multivariate polynomial regression, SVR, gradient
boosting regressor (GBR), RFR, and K-neighbors regressor, to predict energy demand in New
South Wales, Australia. In [24], the authors developed a clustering-based method for electricity
prediction that was evaluated using a dataset with data from 105 substations. In the work [25],
the authors presented a summary of the works developed in the IEEE demand forecasting
competition, which included anomalous consumption data from a metropolitan region during
the COVID-19 pandemic period. Various data preprocessing and demand prediction methods
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using machine learning were presented. In an analysis of the cited works, it is mentioned
that in cases of large data volume, nonlinear relationships among the characteristics present
in the database, the presence of noise, and non-stationary behaviors, deep neural networks
can be an alternative to machine learning. However, it is emphasized that deep networks
require more computational resources and are more complex compared to supervised machine
learning models. It is also mentioned that authors commonly use recurrent neural networks in
this scenario, especially LSTM networks, combined with sliding window techniques [26–31].
Tables 1 and 2 summarize the previously presented works.

Table 1. Studies employing statistical methods for demand and energy consumption prediction.

Work Year Application Methods or Models Dataset Origin

[13] 2021 Prediction of electricity consumption in Poland on a
quarterly, monthly, and semi-annual scale.

XGBoost, GRNN, SARIMA,
ETS, NNETAR Cire.pl

[14] 2022 Forecast of Brazilian monthly energy demand. RS, ES, ARIMA ONS Brazil

[15] 2022 Prediction of monthly consumption of industrial
electricity in the Brazilian energy system.

HW, SARIMA, TBATS, DLM,
NNAR, MLP Central Bank of Brazil

[16] 2022 Out-of-sample, monthly, weekly, and hourly forecast
for Nord Pool electricity demand. AR, FAR, FARX Nord Pool

[17] 2022 Short-term forecast of hourly energy demand of
different energy districts. SLFN, ARIMA, SVR, LSTM Arpae, ARPA Lombardia

The abbreviations are presented in the list of abbreviations.

Table 2. Machine and deep learning studies for demand and energy consumption prediction.

Work Year Application Methods or Models Dataset Origin

[19] 2022 Development of electricity forecasting
models in Slovakia. Gray Models, ANN Damas (SEPS)

[20] 2022 Electricity prediction in Bali Island, located in
Indonesia, using electricity and weather data. SVR, GRNN East Java Province, domestic

generators, ERA5-ECMWF

[21] 2021 Use of machine and deep learning models for
medium-term prediction in Canada. LSTM, SVR, NARX, RFR IESO (Canada), Gov. of Canada

[22] 2022 Forecast for the next day of energy demand in
Germany in COVID-19 pandemic period. Ensemble-based models OPSD

[23] 2022 Prediction of energy demand in
New South Wales, Australia.

LR, MPR, SVR, ENR, GBR, DTR,
RFR, KNNR AEMO, Gov. of Australia

[24] 2022 Energy prediction based on cluster
optimization method. Greedy clustering Ausgrid

[25] 2022
Demand prediction works in a metropolitan region

using machine learning, statistical methods, and
hybrid models.

Ensemble methods, AR, LR BluWave-ai

[26] 2022 Short-term energy forecast using learning models. ARIMA, LSTM, Prophet,
Hybrid models Elia grid

[27] 2020 Long-term demand prediction in Florida with
regression models.

MRM, CNN variants,
RFR, LSTM

EIA (U.S.), FCC,
Census Bureau (U.S.),

Bureau of Labor Statistics (U.S.)

[28] 2022 Prediction of energy consumption in Spain using
LSTM networks. LSTM variants Spain Electricity Consumption

[29] 2021 Use of LSTM and convolutional networks for
short-term demand forecasting in France and Korea. LSTM and CNN variants UCI repository, local

Korean dataset

[30] 2023 Forecasting energy consumption demand using TFT,
which outperformed other deep learning models. LSTM variants, TCN, TFT London DataStore

[31] 2022
Energy consumption forecasting on smart grids with

N-BEATS, outperforming other deep
learning methods.

LSTM and GRU variants,
TCN, N-BEATS London DataStore

The abbreviations are presented in the list of abbreviations.
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The previously cited works contribute to the state of the art in demand forecasting and
energy consumption. However, these works focus on predictions and forecasts relevant
to energy companies, regional, or national contexts, rather than being directly related to
building and industrial facilities. Additionally, the datasets employed were not produced
through wireless sensor networks (WSNs) developed and configured by the authors, which
would allow for the investigation of specific details or aspects, such as the use of predictive
models for energy demand control, for example.

Thus, we sought literature that investigates the building context and applications of
demand forecasting specifically tailored to building installations. In [32], demand and
generation prediction of renewable energy sources, specifically photovoltaic and wind en-
ergy, were conducted in five smart residences using LSTM networks as prediction models,
with approximately 11 months of collected data. In [33], an energy management strategy
based on demand classification and prediction was presented. In addition to predicting the
demand for a commercial building in Singapore, the authors developed neural network
algorithms for decision making regarding energy excess treatment, application of photo-
voltaic energy, and energy storage conditions in the battery bank. In [34], the authors used
a FFANN model for demand forecasting in the next 24 h for residential, educational, and
mixed-use buildings. The authors of [35] predicted energy consumption in a food company
based on data obtained from the factory’s energy management system using the SVR and
multilayer perceptron (MLP) methods. The work in [36] presents a study to assist managers
and technicians with long-term energy predictions for a building at Teesside University
(UK) using different machine learning techniques such as SVR and neural networks. In [37],
the authors performed demand prediction using LSTM networks applied to the context of
smart buildings. In [38], energy consumption data from smart meters installed in building
substations, which recorded the consumption of the entire building at 15-mi intervals,
were utilized. Based on this data, the authors analyzed the integration of methods for
consumption forecasting to improve energy efficiency in building installations. Table 3
presents the works cited in this paragraph on demand forecasting and energy consumption
in building and industrial infrastructures.

Table 3. Research on forecasting demand and consumption of electricity in building and industrial
infrastructures.

Work Year Application Methods or Models Dataset Origin

[32] 2021 Energy prediction and for renewable sources in
smart buildings. LSTM variants HUE dataset (Havard dataverse)

[33] 2020 Prediction and classification of energy demand for
decision making in smart buildings.

MLP, RNN, LSTM, GRU,
EM-GMM, BGM, K-means Own data

[34] 2019 Use of the FFANN model to forecast demand for the
next 24 h of buildings. FFANN Buildings of Finland

[35] 2023 Energy prediction in a food company using machine
learning models. MLP and SVR variants Own data, KEPCO, KMA

[36] 2021 Long-term energy prediction
in a university building. PR, SVR, ANN Own data

[37] 2022 Prediction of energy demand in smart buildings. ARIMA, LSTM Mendeley data

[38] 2022 Forecasting of energy consumption in smart
buildings with different drift detection methods. RFR, XGBoost CNN, TCN Own data

The abbreviations are presented in the list of abbreviations.

Additionally, we selected some works that incorporate the concept of AIoT for electri-
cal energy analysis. In [39], the authors developed a hardware device to monitor human
presence and energy consumption. By using a decision tree model on a cloud-stored
database, they determined energy waste in residential consumer units. Using the same
decision tree algorithm, the authors of [40] created an energy control system based on
hardware with wifi communication, relays, current sensors, and cloud storage. In the



Sustainability 2023, 15, 11161 6 of 37

work [41], neural networks were employed to predict energy consumption based on data
collected from sensors in a residential system. The authors utilized these predictions to
turn off one or more devices to reduce monthly energy consumption. The authors of [42]
addressed the challenges of thermal management in electric vehicle batteries and proposed
an AIoT-based preventive diagnostic system to improve safe driving, efficient maintenance,
and product lifecycle management, aiming to optimize efficiency and battery life. Table 4
summarizes the selected AIoT works.

Table 4. Literature works on AIoT implementation in energy applications.

Work Year Application Methods or Models Dataset Origin

[39] 2022 IoT solution to control consumption and energy
waste in homes. Decision tree Own data

[40] 2021 AIoT solution for controlling energy consumption in
smart homes. Decision tree Own data

[41] 2022
Use of neural networks to control energy

consumption in homes from wireless
sensor networks (WSNs).

ANN Own data

[42] 2023 AIoT system for preventive diagnosis of thermal
challenges in electric vehicle batteries. ANN Own data

The abbreviations are presented in the list of abbreviations.

3. Research Gap

Previous studies on demand and energy consumption forecasting have shown the
potential to enhance energy efficiency in building and industrial infrastructures within
their respective contexts. However, there are several gaps in the current state of the art
regarding demand or energy consumption forecasting in building facilities:

• Most existing studies rely on databases generated by third parties, without real-time
AIoT solutions specifically designed to construct databases that capture patterns or
characteristics of not only the overall electrical installation but also individual circuits
and sectors within it. This presents an opportunity to leverage demand or consumption
forecasting algorithms to optimize operations for specific installations of interest;

• The studies have not explored the forecasting of energy consumption and demand at
the circuit level within building installations, which would enable individual analysis
of high-consumption loads within the facility. This limitation stems from the lack of
digital monitoring solutions that can collect individual demand data from building
circuits, in addition to capturing the overall energy demand of the facility;

• The existing works do not provide AIoT solutions that enable the forecasting or detec-
tion of demand exceedances in legacy building systems, hindering digital convergence
in pre-existing environments. A sustainable technological alternative is needed to
promote energy efficiency in these installations. Retrofit strategies could be employed
to introduce computational resources and update legacy infrastructures, leveraging
existing resources to extract consumption and energy demand data for specific studies
focused on legacy installations;

• The studies do not utilize retrofit strategies or metamodels with generic architectures
and protocol stacks to enable systematic data collection through digital solutions
that incorporate control, monitoring, distributed processing, and communication
capabilities within data networks. Such approaches would benefit various cases and
applications in the domain of energy forecasting.

Therefore, this study proposes to address these gaps by developing and implementing
digital solutions using retrofit techniques and the SmartLVGrid metamodel for accurate
demand forecasting in legacy installations.
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4. SmartLVGrid

A smart low-voltage grid, or SmartLVGrid, is a metamodel that enables the techno-
logical convergence of legacy power distribution systems into the smart grid paradigm
through retrofit strategies and systems engineering concepts. Its proposal involves adding
electronic and computational resources for the control and monitoring of legacy systems
using supervisory systems hosted on a local network or even in the cloud. These function-
alities are described in the platform as operational primitives (OPs), which were previously
performed by field operators and later, with the implementation of the metamodel, taken
over by the added technological resources. This metamodel consists of protocol stacks
described in two layers: middleware and interoperability, as shown in Figure 1.

Figure 1. The SmartLVGrid stack [4].

As illustrated in Figure 1, the retrofitting of the existing infrastructure (legacy layer) is
carried out through points of interface (PoIs) that interact with the middleware layer through
the coupling and interaction node (CIN). Through this interface, the metamodel defines one
of its operational primitives (OPs) called the domain retrofitting function (DRF), which is
responsible for performing control and monitoring functions in the legacy layer. On the other
hand, the service nodes (SNs) enable the middleware layer to interact with the interoperability
layer through predefined communication standards and protocols. Thus, communication
processes are performed by the interdomain support functions (ISFs). It should be noted that
in the middleware layer, computational support functions (CSFs) are implemented to provide
processing and storage services. In the following paragraphs and Sections 4.1 and 4.2, more
details about the middleware and interoperability layers will be provided.

4.1. Middleware Layer

The middleware layer, which interacts directly with the legacy layer, is implemented
through retrofitting solutions. Typically, these solutions encompass hardware devices
with embedded processing, including sensor and actuator elements compatible with the
DRFs to be executed. Alternatively, the middleware layer is described as the automation
and communication unit (ACU), as shown in Figure 1. The ACU has “In/Out” ports
that perform the communication processes, “Get” and “Run”, responsible for monitoring
functionalities and controlling the legacy system, respectively. It should be noted that the
CSFs are executed through the storage and processing resources of the ACU.



Sustainability 2023, 15, 11161 8 of 37

4.2. Interoperability Layer

The interoperability layer enables communication between ACUs through a data
network. Additionally, the communication protocols and device hierarchies modeled
through the SmartLVGrid metamodel are established within the interoperability layer.
In this context, the ACUs that supervise and collect data from other ACUs, as well as
execute DRFs when applicable, are hierarchically referred to as ACU coordinators. On
the other hand, the supervised ACUs that execute DRFs in the legacy layer are called
ACU operators. In cases of expanding the legacy system, it may be necessary to increase
the computational capacity of the ACU coordinator. In the metamodel, it is possible to
define sub-coordinators for each cluster of ACU operators, as described in [4]. Thus,
sub-coordinators are associated with a single ACU coordinator, which transfers system
information to and from the supervisory center. It is important to emphasize that, due to
the local processing capability of each ACU, actions and directives can be performed by the
ACU itself at the local level, enabling distributed and decentralized processing.

5. Methodology for Implementing the Energy Monitoring System

In previous works, we utilized wifi network infrastructures for communication with
the supervisory centers [3–5]. However, in this study, we explore a different alternative for
communication between our monitoring proposal and the supervisory center, as well as for
the physical interface of the retrofit modules with the legacy building circuits, considering
the specific characteristics of the monitored consumer unit. Specifically, we focus on a
wifi router assembly factory where the main power distribution panel does not have
sufficient space for installing retrofit modules, as shown in [5]. In this scenario, it is a
factory regulation not to use wifi networks within its facilities to reduce interference issues
and IP node conflicts during router testing and validation processes. Therefore, we employ
a different retrofit approach compared to previous state-of-the-art works in terms of both
physical and logical interfaces. Figure 2 illustrates the proposed retrofit strategy for the
power distribution panel in the industry under study. Subsequently, Figure 3 presents an
architecture diagram of the devices used in accordance with the SmartLVGrid metamodel,
highlighting the adopted communication standards as well as the physical and logical
interfaces of our monitoring proposal.

Figure 2. Retrofit strategy.

As depicted in Figure 2, the new strategy involves the integration of more compact
retrofit modules compared to the modules developed in [5]. Still referred to as ACU-
BREAKERs, in this study, the retrofit modules were powered by connecting them to
the breakers of the main power distribution panel, enabling the monitoring of electrical
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parameters for each circuit. This made individual circuit monitoring more independent
as we utilized non-shared power sources for each retrofit module. On the other hand, the
proposed approach included an ACU coordinator with the capability to: (i) communicate
with the ACU-BREAKERs and the supervisory and control center (SCC); (ii) provide
backup power through batteries; and (iii) monitor the electrical parameters of the main
panel breaker. This device was named ACU-MAIN. It is worth noting that the current
measurement of both ACU-BREAKER and ACU-MAIN were performed non-invasively
using current transformers, and voltage was measured through direct contact with the
terminals of the breaker and the main power bus.

In this study, we employed a technological update approach based on the protocol
stack of the SmartLVGrid metamodel, and we conceptualized the physical and logical
interfaces of the devices as presented in Figure 3. In this figure, we illustrate the peer-
to-peer communication between the operator modules, the ACU-BREAKERs, and the
coordinator module, ACU-MAIN, to forward the acquired data from the monitored circuits
and the main panel breaker to a local server. It is important to highlight that the monitoring
of the main breaker was not performed in [5], a feature that enables the detection of power
supply interruptions in other monitored circuits of the installation.

Figure 3. Proposed SmartLVGrid architecture.

To avoid the use of a wifi infrastructure network for communication between the ACU
operators and the ACU-MAIN in the mentioned industrial environment, we employed
the ESP-NOW ad hoc low-level network, which enables multi-hop, lightweight, secure,
self-organized wireless communication. ESP-NOW operates in the 2.4 GHz ISM band
and can coexist with other standards such as Bluetooth and wifi [43,44]. Studies have
shown that ESP-NOW exhibits lower latency and longer range compared to Bluetooth
and wifi [45]. Additionally, unlike Bluetooth low energy, ESP-NOW does not limit the
number of connected nodes, which justified its selection as the network protocol for
peer-to-peer interconnection [46]. On the other hand, the logical interface between the
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ACU-MAIN and the supervisory center was established through wired communication
with a local server, adopting the MQTT protocol over ethernet. This allowed us to establish
a connection with the cloud-hosted SCC. In summary, some benefits related to the hardware
and communication architecture of our retrofit proposal include:

• Utilization of a peer-to-peer communication architecture among the wireless nodes,
ACU-BREAKER (operator), and ACU-MAIN (coordinator), through the ESP-NOW ad
hoc network, enabling communication flexibility and reducing the number of IP nodes;

• Adaptation of the monitoring modules, ACU-BREAKER, with a specific and compact
design for installation in small-sized power distribution panels, reducing the space
requirements and visual clutter of the industrial distribution panel;

• Development of retrofit modules that allow easy and intuitive installation in power dis-
tribution panels, thanks to the agile coupling features and reduced physical dimensions;

• Preservation of the existing resources in the installation, including the infrastructure,
breakers, cables, connections, and the main distribution panel itself.

In this way, we enable the monitoring of the electrical panel and the forwarding of
data to a local server for subsequent transmission to the cloud, where the supervisory and
control center (SCC) is located. In the SCC, we built a dataset containing the obtained data
from each circuit to be used in the demand prediction algorithms. Expanding its original
proposal, the SCC now contributes not only with resources for storing and visualizing
past information but also with predictive analysis resources for each circuit of the building
installation through demand forecasting. The retrofit proposal tests were carried out by
integrating and validating the physical integration and communication of the monitoring
system with the cloud application, which receives the electrical parameters obtained from
each circuit.

Subsequently, we present the modeling of the ACUs, compatible with the assumptions
of the SmartLVGrid metamodel. The presented modeling will provide a detailed under-
standing of the conceived and developed physical and logical interfaces at the hardware
and/or software level for the retrofit modules in the energy monitoring system.

5.1. ACU-BREAKER Conception and Modeling

Figure 4 presents the improved ACU-BREAKER (operator) developed during this
work. The main differentiators of this ACU operator are its physical connection to the
legacy circuits of the power distribution panel and the use of the ESP-NOW ad hoc protocol
for communication between the ACU operators and the coordinator. As shown in the
figure, it has metallic terminations that fit into the breakers and current transformers
embedded in its structure. Therefore, the installation of the ACU-BREAKER is facilitated
by inserting and screwing the connection cables of transformers/breakers onto the metallic
terminations of the ACU-BREAKER. It is worth noting that the hardware and firmware
resources and functionalities of the ACU-BREAKER are similar to those described in [5].
Thus, this ACU provides the DRF of electrical parameter monitoring through its Get port,
performs ISFs of request and response through its In/Out port, and utilizes the ESP-NOW
protocol for communication, along with CSFs related to network connection management,
device configuration, and data storage. In terms of hardware, this device includes the
same electronic surge protection devices, voltage and current channel conditioning, and
ADE7758 for digitalization of acquired electrical parameters [47–49]. It is important to
mention that the calibration procedures for the ACU-BREAKER, as described in [5], were
maintained during the development of this work.
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Figure 4. ACU-BREAKER architecture diagram and its physical perspective after development.

5.2. ACU-MAIN Conception and Modeling

The ACU-MAIN coordinator of the proposed system has similar DRFs, ISFs, and
CSFs as the ACU-BREAKER. Additionally, it has the function of managing the network
connection and communication with the other ACUs, including storing the identification
data of the connected ACUs. Furthermore, it has an ethernet communication interface to
communicate with the local server of the factory using the MQTT protocol [50–52]. The
service nodes (SNs) of the SmartLVGrid metamodel for both the ACU-MAIN and ACU-
BREAKER are established based on the credentials used in the ESP-NOW communication
protocol, which includes the MAC address of the ESP32 used in the ACU hardware.
It should be emphasized that the In/Out ports of this ACU are implemented through
the ethernet interface for MQTT communication and the 2.4 GHz radio for ESP-NOW
communication. The voltage and current parameters are monitored through the physical
connection to the main bus and current transformers, respectively [53]. Figure 5 illustrates
the ACU-MAIN developed in this work.

Figure 5. ACU-MAIN architecture diagram and its physical perspective after development.

5.3. Definition of the System Interoperability Layer

As mentioned earlier, the interoperability of the system occurs through two forms
of communication. First, within the power distribution panel, the ACU operators com-
municate with the ACU-MAIN using the ESP-NOW wireless communication protocol.
Second, the ACU-MAIN communicates with the local server of the factory through an
ethernet interface, using the MQTT protocol with QoS 0. It should be noted that the ethernet
interface was determined according to the company’s requirements and aligns with the
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retrofit concept of the SmartLVGrid metamodel, which aims to maximize the utilization
of the existing legacy system. Consequently, the local server forwards the messages to an
MQTT broker hosted on the DigitalOcean Droplet virtual server hosting service, also with
QoS 0, where the processing of energy data takes place. It is important to mention that
the request messages for electrical parameters are transmitted in JSON format and, upon
receipt at the SCC, they are stored in a MongoDB database.

The service nodes (SNs), illustrated in Figures 4 and 5, represent the credentials that
allow the ACUs to communicate in a wireless network. In this work, the SNs are imple-
mented through the credentials that enable the communication of devices using the ESP-NOW
protocol, including the MAC address of the ESP32 in each ACU in the proposed P2P interface.

Regarding the messages in our proposal, they are implemented using JSON format for
both the interface between ACU operators and the ACU-MAIN and the interface between
the ACU-MAIN and the local server. The same message protocol is also adopted for
communication between the local server and the SCC. The messages include request and
response messages for sending the monitored electrical parameters along with timestamps,
network communication parameter changes, inclusion of new devices, and ACU-BREAKER
calibration. Figure 6 illustrates the process adopted to enable the interoperability of our
proposal in a request of electrical parameter scenario as follows:

• The local server requests the electrical parameters from the ACU operators and the
ACU-MAIN every minute (1);

• The configuration of the service nodes (SNs) of the ACU-BREAKERs and the ACU-
MAIN is performed (2);

• The request for electrical parameters is sent from the ACU-MAIN to each ACU-
BREAKER using the ESP-NOW protocol (3);

• Upon receiving the request, the ACU-BREAKER performs ISFs to synchronize com-
munication and transmits the requested data to the ACU-MAIN (4);

• After collecting the information from the ACUs and the message timestamps, the local
server forwards the data to the cloud-hosted SCC (5).

Figure 6. Communication process of the proposed system.
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5.4. Installation of the ACUs

Once assembled, tested, and calibrated, the ACUs were installed and configured to
operate in the existing power distribution panel of the router factory. Each ACU was
calibrated beforehand to match the nominal currents and voltages of the breakers in the
panel, with a maximum error of 1%, using a precision three-phase source and the internal
registers of the ADE7758, the integrated circuit used in the ACUs for electrical parameter
digitalization [54,55]. The panel operates with a phase-neutral voltage of 127 Vrms and has
22 circuits. Figure 7 illustrates the ACUs installed in the legacy power distribution panel.
As depicted, the first distribution breaker does not have an ACU-BREAKER installed, as it
was damaged during the evaluation period of the proposal.

Figure 7. ACUs installed on legacy power distribution board.

6. Proposed Demand Forecast Strategy

The literature presents applications of the SmartLVGrid metamodel used for the
management, control, and energy monitoring of power distribution systems and building
systems [3,4,12]. In [5], we presented a data-driven energy management strategy by
monitoring real-time energy demand in each circuit of a building installation based on
the aforementioned metamodel. In Brazil, where the proposed work was implemented,
medium- and high-voltage consumer units are categorized as “binomials”, being charged
based on both consumption and previously contracted energy demand from a local energy
distributor [56]. The demand is weighted every 15 min, and if it exceeds the stipulated
value in the established contract, the consumer unit is subject to fines according to the
Brazilian National Electric Energy Agency (ANEEL) in the normative resolution ANEEL
No. 1000/2021 [57]. To assist the participating managers in the conducted case study,
we also developed a visual interface with demand exceedance alarm indicators so that
managers could choose to develop demand control strategies or renegotiate the demand
contract with the energy distributor.
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Thus, we noticed that a tool for predictive analysis of energy demand could contribute
to anticipate potential exceedances and, if possible, act promptly to reduce costs associated
with consumer demand exceeding limits, also assisting in demand management. Therefore,
considering that each circuit in the legacy installation can be monitored through retrofit
modules, the forecasting of demand for the next 15 min of the installation and its circuits
could be performed at the supervision and control center (SCC), becoming an additional
data analytics functionality incorporated into audit processes to enhance energy efficiency.
Such a strategy would enable decision making for demand control or renegotiation of
demand limits with the utility company, if necessary.

In this study, after installing the ACU-MAIN and ACU-BREAKERs in the main power
distribution panel, we let the devices operate and collect individual data from each circuit,
including the main breaker. The data were collected based on the interoperability definitions
specified earlier in Section 5.3. The collected circuit parameters are detailed in Table 5.
Subsequently, Table 6 presents the identification and load connected to each circuit, along
with the monitoring system device that supervises the respective circuits.

Table 5. Data variable description.

Data Variable Description

Circuit identification Monitored circuit identification.
MAC address MAC address of installed ACU.

Timestamp Timestamp of samples (datetime format).
Power factor Power Factor of each circuit (%).

Active energy Active energy of each circuit (Wh).
RMS current RMS current of each circuit (A).
RMS voltage RMS voltage of each circuit (V).

Table 6. Circuit, load, and monitoring device description.

Circuit Identification Load Monitoring Device

Circuit 0 All Building Installation ACU-MAIN
Circuit 2 Production Line—02 ACU-BREAKER-1
Circuit 3 Production Line—03 ACU-BREAKER-2
Circuit 4 Production Line—04 ACU-BREAKER-3
Circuit 5 Reserve Circuit ACU-BREAKER-4
Circuit 6 Electrical Panel—Production ACU-BREAKER-5
Circuit 7 Reserve Circuit ACU-BREAKER-6
Circuit 8 Electrical Panel—Server 02 ACU-BREAKER-7
Circuit 9 Support Area—02 ACU-BREAKER-8
Circuit 10 Central Air Conditioning—01 ACU-BREAKER-9
Circuit 11 Support Area—03 ACU-BREAKER-10
Circuit 12 Administration ACU-BREAKER-11
Circuit 13 Central Air Conditioning—02 ACU-BREAKER-12
Circuit 14 Electrical Panel—Stock 01 ACU-BREAKER-13
Circuit 15 Support Area—01 ACU-BREAKER-14
Circuit 16 Central Air Conditioning—03 ACU-BREAKER-15
Circuit 17 Electrical Panel—Stock 02 ACU-BREAKER-16
Circuit 18 Support Area—04 ACU-BREAKER-17
Circuit 19 Electrical Panel—Server 01 ACU-BREAKER-18
Circuit 20 Reserve Circuit ACU-BREAKER-19
Circuit 21 Chamber ACU-BREAKER-20
Circuit 22 Reserve Circuit ACU-BREAKER-21

The proposed system transmits the collected data from minute to minute to the local
server and then to the cloud. Based on this, it was possible to create a database at the
SCC for conducting the study proposed in this work. The database used in this study was
generated from 15 January to 12 April 2023, and contains data from the main breaker and
21 circuits of the distribution panel that supply loads and other distribution panels within
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the building installation. Due to industrial confidentiality reasons, the obtained database
and other company data could not be published or made available to the public at the
moment, but we can make it available upon request and negotiations carried out directly
with us. For the forecasting task proposed, only the minute-to-minute active energy data
from each circuit will be used, which were subsequently processed to obtain the energy
demand. The other data are used by the industry in energy audit procedures. It is important
to mention that the building in question has a demand limit of 120 kW.

Throughout this section, we presented the exploratory analysis of the obtained data,
the preprocessing techniques used for training the learning models, and the performance
metrics for model evaluation. Hereafter, the concepts of the learning models used will be
presented, followed by the division of the training and validation datasets.

In summary, to prepare the data for use in time series forecasting, we used the sliding
window technique so that previous demand data could be used to predict future demand for
the next 15 min for circuits within the installation, following the ANEEL guidelines in [57].
These data were normalized using the min–max method. Based on the performance of other
works in the literature, we used machine learning regression techniques as learning models,
such as random forest regressor (RFR), support vector regression (SVR), and XGBoost
regressor (XGBR). Additionally, we used the linear regression (LR) method to obtain a
prediction baseline from the preprocessed data, and a recurrent neural network model,
specifically a long short-term memory (LSTM) network, as a deep learning alternative to
compare with the other obtained results.

6.1. Exploratory Data Analysis and Definition of the Circuits to Be Analyzed

Before preprocessing the obtained data, we analyzed the contribution of each circuit
to the energy consumption of the building installation. For this purpose, we performed
a Pareto analysis of the total energy consumption of the circuits in the installation from
15 January to 12 April 2023. In this analysis, the cumulative percentage consumption was
based on the ratio of the individual consumption of each circuit, monitored by the ACU
operators, to the total consumption of the installation measured by the ACU-BREAKER.
Circuit 0 represents the entire installation, which is monitored by the ACU-MAIN. The
other circuits, from 2 to 22, are monitored through the ACU-BREAKERs. The Pareto
diagram of the energy consumption of the circuits present in the installation is illustrated
in Figure 8. It should be noted that, due to damage to the ACU-BREAKER of circuit 1
during the installation process and the fact that other circuits have much lower energy
consumption compared to the rest, the total and percentage consumption of these circuits
are identified as “other circuits” in the diagram.

We noticed that circuits 13, 16, 10, 8, 6, 12, and 14 accounted for approximately 80%
of the total consumption of the installation. Since energy consumption is directly related
to energy demand, we chose to perform demand forecasting studies for these circuits
considering their contributions to the demand increase. In addition to these circuits, we
also used the demand data obtained from the ACU-MAIN. From the energy data monitored
every minute by the circuits, we extracted the 15-min energy demand for the mentioned
circuits. Table 7 presents the statistical and descriptive data for 15-min demand intervals
for the specified circuits. Here, ”count” represents the number of demand values for each
circuit’s dataset. Figure 9 illustrates box plots that detail the variation in the 15-min energy
demand for these circuits.

We observed from Table 7 and Figure 9 that the average values of the 15-min demand
are directly proportional to the cumulative percent of energy in Figure 8, justifying the
selection of circuits based on Pareto analysis for the demand forecasting study. According
to Table 7, the data count is the same for all samples collected from the selected circuits.
From Table 7 and Figure 9, with the exception of circuits 6 and 8, we noticed that the largest
deviations obtained are concentrated in the upper part of the graphs. We can observe
from Table 7 that the standard deviation of the energy demand is more significant in the
demand obtained from the monitored data of the main breaker of the distribution panel
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(circuit 0). Additionally, it can be observed in Figure 9 that the graph indicates possible
demand exceedances in the installation during the data collection period in this circuit,
with values exceeding the contracted demand of 120 kW, as illustrated by the red marking
in the figure. On the other hand, the outliers in the same figure are less frequent in the
circuits of the main panel monitored by the ACU-BREAKERs. The circuits that present the
most outliers are the demand data of circuits 8 and 12. We expect that the LSTM, SVR, RFR,
and XGBR models perform better than the linear regression model in datasets with higher
variability. The preprocessing techniques applied to the 15-min demand data, which are
subsequently used in the training and testing of the learning models, will be presented next.

Figure 8. Pareto diagram of the energy consumption of building circuits.

Table 7. Descriptive statistics of the 15-min demand data.

Statistics Circ. 0 Circ. 6 Circ. 8 Circ. 10 Circ. 12 Circ. 13 Circ. 14 Circ. 16

Count 6782 6782 6782 6782 6782 6782 6782 6782
Mean (kW) 62.18 6.27 8.86 9.13 5.90 13.92 5.27 10.90

Standard deviation (kW) 34.18 3.55 3.22 8.90 4.92 11.24 3.33 9.67
Lower value (kW) 9.25 0.54 0.09 0.11 0.66 0.46 0.45 0.11
First quartile (kW) 21.74 1.45 9.02 0.12 1.52 0.57 0.87 0.12

Median (kW) 72.35 8.57 9.79 5.49 3.76 20.14 6.51 11.11
Third quartile (kW) 89.60 8.79 10.44 19.52 9.80 24.33 8.13 22.30
Upper value (kW) 126.46 10.80 13.46 21.59 25.07 27.44 11.74 24.14
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Figure 9. 15-min demand variation of the building installation and monitored circuits, with the
contracted demand of the installation represented by a dashed red line.

6.2. Data Preprocessing

In this section, we present the methods used for data preprocessing in our study,
which include the sliding window technique and min–max normalization. This crucial
step ensures that the data entered into the models are in a suitable and ideal format for
forecasting energy demand in the context of this work.

6.2.1. Sliding Window

The sliding window algorithm was used to generate the input data for the models by
selecting subsets of sequential samples. These subsets are called sliding windows, which
move with a predetermined temporal unit step according to each application [58]. This
technique is widely used in areas such as time series forecasting, signal processing, and
temporal data analysis. In this work, the temporal unit is defined as the energy demand
values obtained from each circuit over a 15-min period. Each sliding window, as illustrated
in Figure 10, is composed of past demand values (i.e., blue sets), which are used as input
to predict the energy demand for the next temporal unit (i.e., cubes). We determined the
optimal window size through empirical tests, where we established possible window values
and performed iterative loops using the learning models. Based on the results obtained
for each defined window, we have selected the best possible window size to predict the
demand for the selected circuits. The window size determined from the conducted tests
was 10 temporal units (samples) of 15 min of previous demands to predict the value of the
energy demand for the subsequent sample.

Figure 10. Sliding window technique.
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6.2.2. Min–Max Normalization

The min–max data normalization method scales a dataset so that its values are within a
specified range [a, b]. This technique is commonly used to preprocess data before applying
machine learning algorithms. When applying min–max normalization to a dataset, the
original values are transformed into new scaled values that fall within a specified range.
This transformation is performed using an adaptation of the standard linear transformation,
as shown in Equation (1). In this work, the range defined for data normalization was [0, 1].

xnorm =
x− xmin

xmax − xmin
(1)

6.3. Evaluation Metrics

In this section, we explain the critical metrics used to evaluate the performance of the
implemented learning models. These evaluation metrics provide quantitative information
about the performance of the models in forecasting energy demand.

6.3.1. Root Mean Squared Error—RMSE

Root mean squared error (RMSE) is a widely used metric for evaluating the perfor-
mance of regression models. This measure assesses the difference between the actual values
yi and the predicted values ŷi of a dependent variable by calculating the square root of the
mean of the squared errors, as shown in Equation (2).

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi) (2)

By examining the equation of RMSE, it can be seen that the metric resembles the
standard deviation. Thus, the RMSE value can be interpreted as a metric that indicates the
variability in errors in relation to the actual values of the dependent variable. Therefore,
it can be considered as an indicator of the model’s accuracy, with a lower RMSE value
indicating better performance. Additionally, the RMSE metric can be used as a quantitative
measure of the prediction quality of the model for comparative analysis between regression
techniques. It is worth noting the use of the square root, the RMSE can be interpreted in
terms of the dependent variable, which helps in understanding the magnitude of errors
generated by the evaluated model [59].

6.3.2. Mean Absolute Error—MAE

Mean absolute error (MAE) is an evaluation metric that provides the average magni-
tude of the n absolute differences between the predicted values yi and the expected values
ŷi. This metric is expressed in the same unit as the dependent variable and, therefore,
provides a straightforward understanding and interpretation of the achieved performance,
facilitating a direct comparison between different models [60]. The mathematical expression
for MAE can be seen in Equation (3).

MAE =
1
n

n

∑
i=1
|yi − ŷi| (3)

6.3.3. R-Squared Score—R²

The R-squared score (R2) is an evaluation metric that indicates the proportion of the
variance in the dependent/predicted variable y that is explained by the input/expected
variables. This metric takes values between 0 and 1, where 0 indicates that the model
does not explain any variability in the dependent variable, and 1 indicates that the model
explains all the variability in the dependent variable. Therefore, as the R2 value increases,
the model fits the data better and explains a higher proportion of the variance in the
dependent variable. On the other hand, an R2 value close to 0 indicates that the model is
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unable to explain the variation in the dependent variable [61]. This metric is expressed
in Equation (4).

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (4)

6.4. Learning Models

In this section, we delve into the specificities of the learning models used in this work,
which include linear regression, support vector regression, random forest regression (RFR),
XGBoost regression, and LSTM-type recurrent networks.

6.4.1. Linear Regression (LR)

The linear regression (LR) method aims to establish a linear relationship between
the response variable y and the predictor variables x1, x2, . . . , xl , which are called the
dependent and independent variables, respectively. In the context of demand prediction,
the independent variable is the sampled data allocated in the window, while the dependent
variable is the predicted demand. The linear relationship is obtained by estimating the
parameter vector θ and adding an additive disturbance or noise term η. Thus, considering
yn as the demand at time n, and applying the sliding window, it follows that:

yn = θ0 + θ1yn−1 + θ2yn−2 + . . . + θlyn−l + ηn (5)

and

ηn = yn − (θ0 + θ1yn−1 + θ2yn−2 + . . . + θlyn−l) (6)

Considering N observations and l = 10, we have:

S(θ) =
N

∑
n=l+1

(yn − θ1yn−1 − θ2yn−2 − . . .− θlyn−l)
2 (7)

S(θ) =
N

∑
n=l+1

η2
n (8)

or in vector form:

S(θ) =
N

∑
n=l+1

(yn − θT ỹn)
2 (9)

where

θ = (θ0, θ1, . . . , θl)
T (10)

and

ỹn = (1, yn−1, yn−2, . . . , yn−l)
T (11)

In this case, w = (w0, w1, . . . , wl)
T is the estimated vector of θ that minimizes S(θ). In

general terms, the LR model performs a prediction by calculating the weighted sum of the
input data and adding a constant term. This process determines the weights and biases
of the model. In its multiple form, it involves the use of two or more predictors, i.e., more
input variables for training. It is one of the most commonly used low-complexity models
when the response variable and predictor have a strong linear correlation [62].

6.4.2. Support Vector Regression (SVR)

The SVR (support vector regression) prediction technique aims to predict output
values by determining a hyperplane that closely resembles the input data. In this algorithm,
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the maximum number of instances possible is considered within a margin of ε, with the
aim of determining weights and biases, that provides the generalization for the model.
To achieve this, the objective is to minimize the error J(w, w0, ξ, ξ̂) given by Equation (12),
where ξn and ξ̂n are the slack variables corresponding to a deviation from the ε margin,
with the penalty control given by C, constrained by Equations (13)–(15).

J(w, w0, ξ, ξ̂) =
1
2
||w||2 + C

(
N

∑
n=1

ξn +
N

∑
n=1

ξ̂n

)
(12)

yn − wTxn − w0 ≤ ε + ξ̂n, n = 1, 2, . . . , N (13)

wTxn + w0 − yn ≤ ε + ξn, n = 1, 2, . . . , N (14)

ξ̂n ≥ 0, ξn ≥ 0, n = 1, 2, . . . , N (15)

In this way, contributions to the cost function from errors with an absolute value
less than or equal to ξ are set to zero. The optimizer’s objective is to estimate w and
w0 in a manner that the contribution of error values greater than ξ and smaller than ξ̂ is
minimized. Thus, this algorithm is interesting for initial testing in machine learning and has
the advantage of not being affected by local minima, unlike deep neural network algorithms.
However, as the amount of data increases, this algorithm tends to lose performance when
attempting to establish a linear response [63].

6.4.3. Random Forest Regression (RFR)

In a regression tree, the determination of the root node variable and subsequent nodes
is defined by maximizing the weighted averages in the child nodes or, equivalently, by
minimizing the weighted variance σ2

w of subsets Y1, Y2, . . . , Yn, with |Y1|, |Y2|, . . . , |Yn|
elements, as shown in Equation (16).

σ2
w(Y1, Y2, . . . , Yn) =

N

∑
n=1

|Yn|
|Y| σ2(Yn) (16)

In the RF method, which is an algorithm based on an ensemble of decision trees,
the bootstrap aggregating strategy is applied during the model learning phase. Bootstrap
aggregating aims to construct a series of trees by randomly sampling the original data, using
only a subset m of predictors from a complete set p of predictors. These samples are then
trained independently and in parallel with each other. Finally, the values are aggregated by
calculating the average of the results obtained from each individual regression tree [64].

Thus, by averaging multiple decision trees that are subjected to high variance, the
model exhibits better generalization performance and is less prone to overfitting. The RF
technique has been widely used to solve low-complexity regression problems due to its
high performance and robustness against overfitting.

6.4.4. XGBoost Regressor (XGBR)

The XGBoost regressor algorithm is based on making predictions using regression
decision trees. The method utilizes information aggregation, random forest for tree selection
during batch training, error minimization using gradient descent, and regularization of
weights and biases. Equations (17) and (18) present the weight function and the objective
function, respectively. In these equations, gi and hi are the first- and second-order gradients
of the loss function, λ and γ represent additional regularization terms, T represents the
number of nodes, q represents the tree structure, and Ij is the instances of a node j. In
addition to regularization, XGBoost uses an additional shrinkage technique to prevent
overfitting by scaling the weights obtained by a factor η, similar to a learning rate. This
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process reduces the influence of each individual tree and allows room for future trees to
improve the model.

wj = −
∑i∈Ij

gi

∑i∈Ij
hi + λ

(17)

J(q) = −1
2

T

∑
j=1

(∑i∈Ij
gi)

2

∑i∈Ij
hi + λ

+ γT (18)

This algorithm has shown promise in various prediction scenarios, including regres-
sion and classification problems. This is due to its high scalability, as the execution time of
this algorithm can be 10 times faster than others, and it can be scaled for numerous exam-
ples in distributed configurations or with limited processing memory due to implemented
optimizations and parallel processing capabilities [65].

6.4.5. Long Short-Term Memory (LSTM)

LSTM networks are a type of recurrent neural network that feature an internal memory
cell structure as their main characteristic. Through the logistic function and multiplier
weight matrices, these gates are implemented and referred to as the input gate (it), forget
gate ( ft), and output gate (ot). There is also the vector that represents the internal state (Ct)
of the LSTM cell and the candidate value (C̃t). The mathematical definitions of the gates,
cell state, and candidate value of the LSTM network are presented in Equations (19)–(23),
including the respective biases bC, bi, b f , and bo.

ft = σ(W f [ht−1, xt ] + b f ) (19)

it = σ(Wi[ht−1, xt ] + bi) (20)

ot = σ(Wo[ht−1, xt ] + bo) (21)

Ct = ft ◦ Ct−1 + it ◦ C̃t (22)

C̃t=̃ tanh(Wc[ht−1, xt ] + bC) (23)

The application of these networks is interesting for problems involving sequential
data and time series, such as the electrical demand curve, for example, [66]. While a fully
connected neural network has separate parameters for each input feature, recurrent neural
networks share the same weights across different time steps, establishing a strong temporal
relationship among the data.

6.5. Definition of Training and Test Sets

The demand data for the selected circuits consists of 6782 observations, as shown in
Table 7. To proceed, we normalized the dataset using the min–max technique, we divided it
into training and test subsets in order to implement and validate the learning models. Thus,
80% of the observations were used for training, and 20% were used for testing. Figure 11
illustrates the separated training and test sets for each circuit selected for the proposed
demand prediction study in this work. After dividing the data, we applied the sliding
window technique to prepare the input and output data subsets for training and testing
the learning models. As mentioned earlier, the sliding window size adopted was 10 past
values to predict a demand value for the next 15 min.
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Figure 11. Training and test sets of the selected circuits.

The training of the models was carried out on a local server from the data collected in
the SCC, where we evaluated the predictive models before transferring them back to the
cloud server. The server has a 2.3 GHz Intel Core i7-11800H processor, 16 GB RAM, 4 GB
GPU, and 500 GB SSD.

6.6. Software Libraries and Optimization of Learning Models

The experiments with the learning models were conducted on the Jupyter Lab platform of
the Anaconda distribution using the Python language. We utilized several libraries, including
TensorFlow, Pandas, NumPy, Matplotlib, Seaborn, XGBoost, and Scikit-learn. To enhance
the performance of the learning models on the established dataset, we used the Optuna
framework for Bayesian optimization of the hyperparameters of the machine learning models
and fine-tuning of the LSTM model. Bayesian optimization techniques have proven to be
more efficient in finding better hyperparameters and searching for the best parameters to be
used in neural networks and their variants. This is because they make use of prior information
about the behavior of the objective function to guide the search [67,68]. Optuna is an easy-
to-configure Bayesian optimization framework that is suitable for hyperparameter tuning
and determining the best parameters for supervised learning models for a given training and
testing set. With a define-by-run API, the search space for the best parameters is dynamically
defined by Optuna during the runtime of an objective function instantiated to test the desired
model under pre-established conditions [69]. Thus, Optuna was used to train and evaluate
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the models for each dataset of the selected circuits. The parameter K in the table represents
the number of trees used in the RFR and XGBR models.

6.7. Definition of Parameters and Architectures of Learning Models

To accomplish the task of energy demand forecasting in our proposal, we conducted
an investigation into various machine learning models to determine the most suitable
one(s) for predicting the energy demand of the researched circuits, which exhibit distinct
demand patterns. The architecture for evaluating the learning models is illustrated in
Figure 12a, and the implemented LSTM model architecture is represented in Figure 12b.
After conducting tests using the Optuna framework to evaluate the models, we were able to
select the best parameters for each learning model. The tests were conducted individually
for each model, considering the normalized datasets of circuits 0, 6, 8, 10, 12, 13, 14, and 16.
We conducted 500 trials per study in an effort to find the optimal parameters that enabled
the models to effectively capture the temporal demand characteristics. The mean squared
error (MSE) metric was used as the evaluation criterion for training all the machine learning
models. Table 8 showcases some of the hyperparameters discovered for the machine
learning models after the Bayesian optimization process, considering the selected datasets.

Figure 12. Learning models (a) and LSTM recurrent neural network model (b) used to evaluate
demand forecasting.

Table 8. Hyperparameters used in machine learning models after optimization process.

Dataset SVR RFR XGBR

Circ. 0 C: 115.495, ε: 0.011 K: 236 γ: 0.107, λ: 0.036,
η: 0.207, K: 645

Circ. 6 C: 119.050, ε: 0.034 K: 558 γ: 0.273, λ: 0.898,
η: 0.308, K: 530

Circ. 8 C: 53.516, ε: 0.011 K: 102 γ: 0.072, λ: 0.538,
η: 0.242, K: 684

Circ. 10 C: 108.645, ε: 0.028 K: 498 γ: 0.407, λ: 0.238,
η: 0.245, K: 505

Circ. 12 C: 51.044, ε: 0.014 K: 132 γ: 0.059, λ: 0.859,
η: 0.260, K: 500

Circ. 13 C: 119.953, ε: 0.031 K: 217 γ: 0.254, λ: 0.284,
η: 0.034, K: 555

Circ. 14 C: 108.214, ε: 0.018 K: 43 γ: 0.205, λ: 0.914,
η: 0.246, K: 549

Circ. 16 C: 117.43, ε: 0.055 K: 408 γ: 0.255, λ: 0.458,
η: 0.173, K: 569

K: number of trees.
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When implementing the SVR, RFR, and XGBR models, it is crucial to understand the
impact of the chosen parameters following the optimization process. In the case of SVR,
the parameters C and ε control the regularization and error tolerance, respectively. Higher
values of C can lead to overfitting, while very low values can result in underfitting. The
parameter ε determines the width of the tolerance margin around the regression hyperplane.
Therefore, the optimization process using the Optuna framework was crucial in selecting
appropriate parameters and improving the SVR’s performance. On the other hand, in
the RFR model, the number of estimators (trees) K, determined through the optimization
process, improves the model’s generalization capability and reduces both the training
and optimization times. The XGBR model also has several important parameters, such
as the learning rate (η) and the number of estimators (K). The learning rate controls the
contribution of each estimator in the update process. Lower values can lead to better
generalization, while higher values can cause overfitting. The number of estimators affects
the model’s generalization capability and training time.

We also implemented an LSTM neural network model to compare with the LR, SVR,
RFR, and XGBR models. In the implementation process of this model, we tested various
architectures, including bidirectional LSTM networks and hybrid LSTM and convolutional
networks. We also experimented with stacking LSTM layers to achieve better results.
However, the best performance for the test set was obtained using a single LSTM layer with
one artificial neuron in the output. We also utilized Optuna to optimize the parameters of
the proposed LSTM network. Each Optuna trial for the LSTM network consisted of 100
training epochs using the Adam optimizer [66]. We conducted 500 trials for this model in
the Optuna framework. The best parameters for this model are presented in Table 9. It is
important to note that the activation function used in the LSTM layer of the models was
the hyperbolic tangent (tanh).

Table 9. Best parameters for LSTM model on each dataset.

Dataset Learning Rate Units Batch Size

Circ. 0 3.209 × 10−2 38 70
Circ. 6 1.055 × 10−2 23 24
Circ. 8 3.085 × 10−2 20 23

Circ. 10 2.711 × 10−2 80 24
Circ. 12 2.521 × 10−2 80 70
Circ. 13 3.351 × 10−2 48 64
Circ. 14 2.101 × 10−2 28 36
Circ. 16 2.722 × 10−2 80 64

The learning rate determines the step size used by the Adam optimization algorithm
during the training of the LSTM. Low learning rates can result in slower convergence or
become trapped in local minima, while high learning rates can make the training unstable
and prevent the model from finding an optimal solution. The number of units determines
the model’s capacity to learn complex representations and capture patterns in the data.
Higher values increase the learning capacity but also increase the training time and the
need for more training data. The batch size determines the number of training samples
used in each weight update pass of the LSTM. A larger batch size can speed up training by
processing more samples in parallel. However, a larger batch size requires more memory,
and training may become more challenging to parallelize. The choice of batch size depends
on the available memory, the size of the training set, and the trade-off between training
speed and accuracy. Thus, finding the appropriate parameters is crucial for striking a
balance between training speed and the performance of the LSTM model.
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7. Results
7.1. Performance Evaluation of Learning Models

Initially, we assessed the LR model’s performance on the acquired datasets to establish
a baseline for the performance metrics, to be achieved by the other learning models. After
optimizing the learning models, we used the hyperparameters from Table 8 to evaluate
the performance of the SVR, RFR, and XGBR models, and the parameters from Table 9
to evaluate the performance of the LSTM model. The performance metrics obtained for
the learning models for the test subsets of each energy demand dataset are presented in
Table 10. It is important to mention that the results presented for the performance metrics
are not normalized, as the data were returned to their original scale after the models’
predictions.

Table 10. Result of learning models’ performance metrics for test sets of selected demands (non-
normalized values).

Demand RMSE (kW) MAE (kW) R² (%)

Dataset LR SVR RFR XGBR LSTM LR SVR RFR XGBR LSTM LR SVR RFR XGBR LSTM

Circ. 0 9.116 8.789 8.269 8.252 8.216 * 4.874 4.278 4.152 * 4.273 4.285 92.705 93.22 93.998 94.02 94.07 *
Circ. 6 0.957 0.936 0.875 0.868 0.865 * 0.312 0.321 0.267 0.272 0.251 * 91.94 92.29 93.26 93.37 93.52 *
Circ. 8 0.426 0.417 0.424 0.420 0.415 * 0.215 0.199 * 0.217 0.214 0.205 86.81 87.35 86.90 87.16 87.39 *
Circ. 10 2.987 2.948 2.753 2.701 * 2.723 1.278 1.298 1.140 1.120 * 1.171 89.07 89.35 90.71 91.06 * 90.93
Circ. 12 1.296 1.291 1.302 1.317 1.288 * 0.729 0.728 0.729 0.754 0.694 * 94.23 94.27 94.17 94.04 94.30 *
Circ. 13 3.192 3.116 3.007 3.021 3.003 * 1.353 1.437 1.241 1.313 1.238 * 91.14 91.55 92.13 92.06 92.15 *
Circ. 14 0.670 0.656 0.595 0.606 0.577 * 0.269 0.275 0.254 0.274 0.243 * 95.23 95.43 96.23 96.10 96.47 *
Circ. 16 4.825 4.461 4.011 3.875 * 3.978 2.912 2.240 2.161 2.154 2.202 * 75.82 79.33 83.29 84.40 * 83.56

Values in bold with an asterisk represent the best results.

Comparatively, based on the results presented in Table 10, the LSTM recurrent neural
network model demonstrated superior performance compared to the other models for the
majority of the datasets. The LSTM showed good R² values, indicating that it can better
estimate the variability in demand patterns compared to the other models. Thus, we assert
that the ability of recurrent neural networks to handle temporal and sequential depen-
dencies was beneficial for the task of demand forecasting in the selected circuit datasets.
We emphasize that the optimization process conducted to select the best parameters for
this model, which are presented in Table 9, was crucial for the achieved performance. On
the other hand, the LR model performed the worst among the learning models. This can
be attributed to the simplicity of the linear model, which, in most cases, failed to capture
complex relationships in the demand data of the selected circuits. In all cases, the RMSE
performance followed the results of the R² metric. However, the MAE metric did not always
correlate with RMSE and R², as other models generated better results than the LSTM in this
evaluation metric.

Regarding the performance of the SVR, RFR, and XGBR models, we can observe in
Table 10 that they outperformed the baseline metrics of the LR model. Only in one case, the
dataset of circuit 12, did the LR model perform better than the RFR and XGBR models in
terms of RMSE, MAE, and R². Depending on the dataset and the selected parameters, at
least one of the machine learning models outperformed the others. For circuits 8 and 12,
the SVR model stood out among the three models. In circuits 13 and 14, the RFR model
performed better than the other two models. For circuits 0, 6, 10, and 16, the XGBR, being
more complex than SVR and RFR, achieved better performance. For the datasets of circuits
10 and 16, the XGBR outperformed the LSTM model, which performed better than all the
other models for the other datasets. In general, we can observe that the RFR and XGBR
models tend to have better performance when compared to SVR in terms of RMSE and
MAE in most cases, with XGBR standing out.

Considering the descriptive statistical data presented in Table 7 and Figure 9, we
can observe that the variability in average values, standard deviation, and data range of
demand influences the performance of the models. In the datasets of circuits 12 and 13,
for example, where there is a greater variation in the data range, the SVR and RFR models
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outperformed others due to their better handling of data dispersions in these datasets. For
the circuit 8 data, where abnormalities (outliers) are illustrated in Figure 9, it was observed,
through the R² metric in Table 10, that the learning models’ generalization ability was
significantly affected for this dataset. Additionally, in the circuit 0 dataset, which exhibits
greater variations as it represents the entire installation’s energy demand, we observed
the highest error values. This observation also justifies the performance of the LR models,
which are sensitive to outliers, variance, and complex relationships within the datasets.
In such cases, more complex and flexible models, such as LSTM, might be needed for
capturing demand patterns. It is important to highlight that, to enhance the performance
of the LSTM networks considering the high variance of the datasets exposed in Figure 9,
we observed that the Optuna optimizer sought to increase the number of LSTM units, as
presented in Table 9, so that the learning model could better capture the demand patterns.

Additionally, Table 11 presents the total optimization time for each model to search
for the best parameters with the Optuna framework. Subsequently, using the optimal
parameters, Table 12 illustrates the training and prediction times for each learning model.

Table 11. Total study time to optimize learning models.

Demand Total Study Time (s)

Dataset SVR RFR XGBR LSTM

Circ. 0 507.04 515.30 1512.57 55,554.55
Circ. 6 488.40 556.79 999.02 22,786.94
Circ. 8 505.96 563.52 1308.05 3995.51

Circ. 10 537.58 605.69 1113.27 24,081.63
Circ. 12 499.79 501.52 1231.30 20,654.27
Circ. 13 521.80 508.32 891.77 27,640.51
Circ. 14 488.50 453.44 1229.87 27,559.57
Circ. 16 555.51 562.22 1333.36 18,281.69

Table 12. Training time and prediction time of learning models.

Demand Training Time (ms) Prediction Time (ms)

Dataset LR SVR RFR XGBR LSTM LR SVR RFR XGBR LSTM

Circ. 0 35.06 228.90 117.07 3302.61 29,469.54 3.02 3.00 1.94 2.00 281.49
Circ. 6 2.00 126.98 209.68 1740.05 63,918.14 0.99 1.00 3.99 1.99 297.31
Circ. 8 1.01 106.73 31.67 2362.45 64,716.04 1.04 2.00 0.99 1.99 280.51

Circ. 10 2.10 218.34 245.26 1524.37 52,318.09 1.06 2.01 4.84 1.99 668.13
Circ. 12 0.99 61.58 53.69 1804.42 67,387.26 1.14 2.98 2.01 1.00 293.59
Circ. 13 1.99 193.57 105.97 965.42 23.293,50 1.01 3.00 1.05 1.00 269.96
Circ. 14 1.94 184.85 22.01 1186.26 44,027.02 0.99 1.00 0.99 1.51 272.30
Circ. 16 0.99 301.30 192.10 2015.23 24,600.22 1.01 2.01 5.01 2.00 295.66

Despite delivering the highest performance, the LSTM recurrent network model
demanded a greater computational time for optimization, training, and prediction processes.
As outlined previously in Section 6.7, the variables such as units, batch size, and learning
rate significantly influenced the training duration of the LSTM models. On the other
hand, the LR model demonstrated a shorter training and prediction timeframe. It is
worth noting that the optimization, training, and prediction durations directly correlate
with the parameters employed in the model implementation, which varied throughout
the hyperparameter tuning process and the learning models’ evaluation. For instance,
the training time for the RFR model increased for datasets where the tree count was
higher, similar to the XGBR model when comparing the results in Table 12 with the
hyperparameters displayed in Table 8. In the case of SVR, the regularization parameter C
directly impacted the training duration. The XGBR model occupied the second-longest
computational time in the training process, while the SVR and RFR models alternated
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between the measured durations during the analysis. Hence, for demand data where the
training parameters demanded a larger computational effort, the models’ training time
was extended, subsequently influencing the optimization time for the selected dataset. It
is crucial to underscore that, as per Section 6.4.4, although the XGBR model necessitated
more training time, its prediction duration was reduced, aligning it closely with simpler
models such as LR.

7.2. Evaluation of Our Proposal for Demand Forecast

Table 13 outlines the count of actual demand exceedances beyond 120 kW sourced
from the building installation’s test data subset (circuit 0), alongside the number of demand
exceedances forecasted by each learning model throughout the period from 25 March to 12
April 2023, representing the test set of demand data.

Table 13. Actual and predicted number of demand overruns by learning models.

Actual LR SVR RFR XGBR LSTM

38 22 24 30 30 32

As demonstrated, during the testing period for the implemented models, the LSTM
model, notwithstanding its higher computational cost for training, proved more effective
than other models in the forecasting task. This makes it ideal for use in the SCC to predict the
energy demand for the upcoming 15-min intervals in order to avoid demand exceedances.
In this context, the LR and SVR models fell short in detecting these exceedances, while
the RFR and XGBR models exhibited similar performance. Consequently, the metrics and
results elaborated in the prior section align with the comparison made in Table 13.

For comparison purposes, Figure 13 depicts the predictions made by the examined
models from 1:00 a.m. on 7 April to 8:00 a.m. on 8 April 2023. The figure highlights the pre-
cision with which the models forecast the demand, particularly during periods of minimal
variation. Generally speaking, it is observed that the LR, RFR, and SVR models tend to be
less precise during moments of variation in comparison to the XGBR and LSTM models.
However, during instances of high variation, such as shown for the data from circuit 16, the
models are prone to consistent errors that impair their performance in achieving forecasting
metrics. Additionally, Figure 14 showcases both actual and forecasted demands using
the LSTM neural network models for each circuit’s test sets during the period from 26
March to 4 April 2023. For the data from circuits 10, 13, and 16, we highlighted periods
of high variance in energy demand in yellow, where the LSTM model did not perform
adequately. This situation might be prevalent for loads with constant energy demand
variation, as in the case of the three air conditioning units in the installation. Under these
circumstances, the RMSE metric penalizes the performance of learning models sensitive
to these variations. Consequently, a similar outcome is reflected in the R² metric since
the model fails to accurately capture these variations. To mitigate these inaccuracies, we
could contemplate incorporating other correlated data or different forecasting techniques
to enhance the predictability of the forecasting models.

For the circuit 0 data, which represents the entire building installation, we marked
in dashed red lines the contracted demand of 120 kW, as shown in Figure 14. From April
1, we observed that the installation’s demand exceeded the contracted demand in certain
periods. These demand exceedance events are marked in dark red in the figure, both for
the installation data (circuit 0) and for the data from the other circuits. We also highlighted
in light red the periods in which the circuits had increased demand compared to the data
observed in previous periods. We noticed that the algorithm generated forecasts that closely
tracked the actual values over time. We suggest using these forecasts to guide the control
of the installation’s demand and avoid potential exceedances.
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Figure 13. Actual (black) and predicted demand by the LR (magenta), SVR (cyan), RFR (green), XGBR
(blue dashed), and LSTM (red dashed) models during the period 01:00 a.m. on 7 April 2023 until
08:00 a.m. of 8 April 2023.
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Figure 14. Contracted demand (dashed red), and actual (blue) and predicted values (dashed black)
for the 15-min power demand of the selected circuits using the respective proposed LSTM recurrent
network models in the period from 26 May to 4 April 2023.
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7.3. Discussion of the Results Obtained from the Monitoring Proposal

We implemented a cluster of sensor devices that communicate within a power distribu-
tion panel using an ad hoc wireless network. These devices transmit electrical parameters
from a building installation and its circuits to a local server, and subsequently to a supervi-
sion and control center (SCC). Our proposal’s development was based on SmartLVGrid
metamodel, which advocates technological updates through the retrofitting of existing
systems. To implement the middleware layer of this model, we designed two energy moni-
toring devices: the ACU-MAIN and the ACU-BREAKER. The ACU-MAIN is responsible
for monitoring the main power bus of the installation’s distribution panel and acts as a
concentrator for the ACU-BREAKER cluster, which monitors the energy consumption of
the remaining circuits in the panel.

During the implementation of the ACU-BREAKER and ACU-MAIN devices, we
took into account the physical space constraints available in the panel for installation.
Therefore, we proposed a novel approach for retrofitting breakers by updating the ACU-
BREAKER device compared to the work presented in [5]. This approach facilitates the
physical connection interface with the monitoring device, enabling the digital convergence
of legacy infrastructure to the smart buildings paradigm. Additionally, we implemented an
interoperability layer using request and response message exchanges that travel through
the physical layer of the IEEE 802.11 standard via the ESP-NOW protocol. This wireless
communication enables our retrofitting proposal without the need for additional wired
ethernet network points, following the directives of the factory in which our study took
place. Thus, we enable flexible retrofitting of the installation by leveraging pre-existing
resources and adding capabilities to enable energy management.

Our proposal has been operating continuously and uninterruptedly since the start of
data collection after its installation, validating our approach to building energy monitoring
retrofitting. As a result, we were able to build a database containing energy data from the
legacy installation for its managers, including power factor, active energy, current, and
voltage data for both the overall installation and individual circuits. This has enabled
data-driven energy management of the legacy installation, as the monitored data became
available in databases and dashboards at the supervision and control center (SCC).

7.4. Discussion of the Results Obtained for Forecasting Energy Demand in the Proposed Scenario

Based on the Brazilian regulatory resolution ANEEL n° 1000/2021 [57], the consumer
unit in question falls under the binomial tariff structure. In this case, it is charged based
on both consumption and a contracted limit demand, which is measured by the energy
utility every 15 min. Incidentally, during periods of high production, the factory exceeds
the contracted demand of 120 kW and consequently incurs penalties. With the collected
database, we conducted an analysis of the loads that contribute the most to the increase
in consumption and demand exceedances of the installation using Pareto analysis. We
identified seven loads that contribute to nearly 80% of the total installation consumption.
Based on this, we analyzed the variations in energy demand every 15 min for the loads
of these circuits. To perform our analysis, we applied the sliding window technique with
10 previous demand samples and min–max normalization as a processing step for demand
forecasting for the next 15 min. Subsequently, we employed various learning models,
namely, linear regression (LR), support vector regressor (SVR), random forest regressor
(RFR), XGBoost regressor (XGBR), and a long short-term memory (LSTM) recurrent neural
network model. We evaluated the performance of each model and, to ensure the best
possible performance, we utilized the optimization framework Optuna to search for the
best parameters for the demand data of each selected circuit.

We observed that the LSTM model performed the best, followed by the XGBR, RFR,
and SVR models, respectively. The LSTM model was able to capture the demand pattern of
the selected circuits most effectively, as shown in the metrics presented in Table 10, and it
predicted the highest number of demand exceedances for the test set, as shown in Table 13.
However, the LSTM model required the longest computation time for optimization, training,
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and making predictions (Tables 11 and 12). All the other models outperformed the baseline
LR metrics, with notable performance from the XGBR model, which outperformed LSTM
for two datasets (circuits 10 and 16). This opens up opportunities for future neural network
architectures that can surpass the metrics presented in Table 10. In Figure 14, we can
observe that the predictions made by the LSTM model performed well for the selected
circuit datasets. We noted that depending on the nature of the monitored loads, there may
be data variations that could affect the predictability of the forecasting algorithms. We
hope that by increasing the dataset size and incorporating other variables correlated with
demand and seasonality, we can improve the performance of the learning algorithms for
demand forecasting tasks. In our research, we have achieved the objective of demonstrating
the impact and relevance of monitoring and forecasting the energy demand of circuits in a
legacy building installation, aiming to detect possible breaches of contracted demand and
identify the circuits where action should be taken to rectify demand transgressions in line
with the regulatory framework of the Brazilian energy system.

8. Conclusions

In this work, we developed an AIoT strategy that performs energy demand forecasting
for a legacy building installation and its circuits for the next 15 min, based on the retrofit
of the pre-existing energy system and the premises of the SmartLVGrid metamodel. The
protocols of the SmartLVGrid metamodel enabled us to design an architecture that facilitates
the technological transformation of a legacy installation into the smart buildings paradigm,
making the most of the existing resources.

During the development of this study, we conceived a cluster of sensor devices called
ACU-BREAKERs that monitor the individual electrical parameters of each electrical circuit
and communicate through an ESP-NOW ad hoc network with a coordinating device
called ACU-MAIN. In our proposal, the ACU-MAIN device performs multiple functions,
including coordinating data requests from other ACUs, monitoring the main power bus of
the installation, and transmitting the collected data via ethernet to a locally available server
within the installation. The server, in turn, forwards the collected data to the cloud-hosted
SCC, where data analysis is conducted to improve the energy management processes.

Our proposal operated continuously from 15 January to 12 April 2023, and with the
data obtained we conducted statistical analyses to identify the loads that contributed the
most to the increase in consumption and energy demand of the installation. Based on
Brazilian regulations, we focused on forecasting for the next 15 min to detect possible
demand surpasses in the installation and identify the main loads causing this transgression.
In this way, we provided data-driven insights for decision making regarding possible
surpasses and where and when to act to control the load demand.

We employed preprocessing techniques such as sliding window for dividing the
training and testing datasets of each circuit, along with min–max normalization of the
data. As learning models, we used LR as the baseline for evaluating the machine learning
models SVR, RFR, XGBR, and an LSTM-based recurrent neural network model. The
hyperparameters of each learning model were optimized using the Optuna framework for
Bayesian optimization, in order to extract the best possible performance. Subsequently,
we evaluated the learning models, and the LSTM model outperformed the other learning
models, followed by XGBR, RFR, SVR, and LR. In this order, the models had longer training
and optimization times. We also evaluated which models successfully predicted the highest
number of demand surpasses, with a highlight on the LSTM and XGBR models.

It is important to emphasize that we evaluated a model for each dataset of each circuit.
For the construction of building electrical systems with more circuits and power boards, the
implementation of learning models for each dataset could become unfeasible. In addition,
for other cases and systems, the use of other learning models, preprocessing, and feature
selection methods and other retrofit strategies could be adopted to obtain better results for
the benefit of a more sustainable building ecosystem.



Sustainability 2023, 15, 11161 32 of 37

However, whether to optimize the use of energy inputs or to plan operations in
building facilities, in our proposal, the forecast and monitoring of energy demand allow
data-based management of pre-existing energy systems in legacy facilities. In precarious
scenarios, without infrastructure or resources to implement modern control and commu-
nication systems, our retrofit architecture facilitates a non-abrupt digital transformation
towards smart building convergence, leveraging AIoT concepts and predictive models
based on wireless network data. In addition, we digitized the installation’s circuits using
the assumptions of our retrofit architecture, which recommends taking advantage of ex-
isting resources through well-defined protocol stacks. We emphasize that the proposed
architecture represents an alternative for using electrical parameters from legacy circuits
to create databases for predictive analysis, such as the energy demand forecast presented
in this work. Thus, it is possible to guarantee the sustainability and improve the energy
efficiency of old building installations.

9. Future Perspectives

Once we make the electrical system observable and allocate resources for demand
forecasting, we enable the management of current and future energy resources from the
demand side. Therefore, for future work, we suggest allocating local intelligence resources
to implement new strategies that include demand control of the installation based on local
business rules. This can be achieved by controlling the loads present in the installation’s
circuits, as we know which loads will affect the installation during demand exceedances.
By also forecasting the demand of the installation’s loads, we suggest utilizing distributed
energy resources to inject the necessary energy to compensate for the energy demand
during peak moments, avoiding possible exceedances from the energy generation side. In
this way, renewable or non-renewable resources can be activated based on the proposed
predictive intelligence to partially or fully meet the installation’s energy demand.

Additionally, we suggest that this process may involve new dynamic energy markets,
where energy sources from free energy markets can be negotiated and utilized depending
on the predictability scenario of demand exceedances to reduce the costs associated with
possible exceedances. The prediction task can also analyze future energy costs, recom-
mending potential energy suppliers based on this dynamic analysis. Further work in this
field can explore other prediction resources based on other energy aspects of a building
installation, involving protection systems, energy consumption, or power quality. This
includes studies focused on optimizing energy utilization and mitigating harmonics in the
installation.

From the perspective of artificial intelligence models, we suggest evaluating the
proposed strategy for other learning model architectures and datasets, including variations
of the LSTM recurrent neural network model in the context of building electrical circuits in
smart buildings. We also recommend using other preprocessing techniques and different
sliding window sizes to assess the performance of the learning models in short, medium,
and long-term prediction contexts, depending on the study’s needs. For future work, we
suggest exploring knowledge transfer techniques to facilitate the training of other learning
models for circuits within the same cluster and for clusters located in other locations or
installations. In this work, we developed specialized demand forecasting models for each
circuit of the installation, which can make it costly to maintain the system in some cases.
Through knowledge transfer techniques, it is possible to generalize the demand pattern
capturing techniques for circuits in a building installation and scale this strategy to other
cases and systems, involving the same installation or other legacy installations.
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Damas Damas Energy information system
DLM Dynamic linear model
DRFs Domain retrofitting functions
DTR Decision tree regression
ECMWF European Centre for Medium-Range Weather Forecasts
EIA Energy Information Administration
EM-GMM Expectation maximization Gaussian mixture model
ENR Elastic net regression
ETS Smoothing state space model
ES Exponential smoothing
FAR Functional autoregressive model
FARX Fractional-order autoregressive model with exogenous variables
FCC Florida Climate Center
FFANN Feedforward artificial neural network
GBR Gradient boosting regression
GPU Graphics processing unit
GRNN General regression neural network
GRU Gated recurrent unit
HW Holt–Winters
IEEE Institute of Electrical and Electronics Engineers
IESO Independent electricity system operator
IoT Internet of things
ISFs Interdomain support functions
JSON JavaScript object notation
KEPCO Korea Electric Power Corporation
KMA Korea Meteorological Administration
KNNR K-nearest neighbor regression
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LAN Local area network
LR Linear regression
LSTM Long short-term memory
MAC Media access control
MAE Mean absolute error
MAN Metropolitan area network
MLP Multilayer perceptron
MPR Multivariate polynomial regression
MRM Multiple regression model
MQTT Message queue telemetry transport
NARX Non-linear autoregressive exogenous
N-BEATS Neural basis expansion analysis for interpretable time series
NNAR Autoregressive neural networks
NNETAR Neural network time series forecasts
ONS Operador Nacional do Sistema
OPs Operational primitives
OPSD Open power system data
P2P Peer-to-peer
PoI Points of interface
PR Polynomial regression
QoS Quality of service
R² R-squared score
RAM Random access memory
RFR Random forest regressor
RMS Root mean square
RMSE Root mean squared error
RNN Recurrent neural networks
RS Regression with seasonality
SARIMA Seasonal ARIMA
SCC Supervision and control center
SLFN Single-layer feedforward neural networks
SmartLVGrid Smart low-voltage grids
SN Service node
SoC System-on-a-chip
SSD Solid state drive
SVR Support vector regression
TBATS Trigonometric Box–Cox transform, ARMA errors, trend, and

seasonal components
TCN Temporal convolutional network
TCP Transmission control protocol
TFT Temporal fusion transformer
U.S. United States
W Watts
WSN Wireless sensor network
XGBoost Extreme gradient boosting
XGBR XGBoost regressor
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