Benchmarking Biologically-Inspired Automatic Machine Learning for Economic Tasks
Abstract
:1. Introduction
2. Related Work
2.1. Biologically Inspired Algorithms
2.2. Automatic Machine Learning
3. Methods and Materials
3.1. Datasets
3.2. Models
3.3. Evaluation Process
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ML | Machine learning |
AI | Artificial intelligence |
AutoML | Automatic machine learning |
References
- Coglianese, C. Optimizing Regulation for an Optimizing Economy; Institute for Law and Economics, University of Pennsylvania: Philadelphia, PA, USA, 2018; pp. 18–35. [Google Scholar]
- Lee, D.; Saez, E. Optimal minimum wage policy in competitive labor markets. J. Public Econ. 2012, 96, 739–749. [Google Scholar] [CrossRef] [Green Version]
- Brannlund, R.; Nordstrom, J. Carbon tax simulations using a household demand model. Eur. Econ. Rev. 2004, 48, 211–233. [Google Scholar] [CrossRef]
- Shrestha, R.M.; Marpaung, C.O.P. Supply- and demand-side effects of carbon tax in the Indonesian power sector: An integrated resource planning analysis. Energy Policy 1999, 27, 185–194. [Google Scholar] [CrossRef]
- Shrestha, R.M.; Shrestha, R.; Bhattacharya, S.C. Environmental and electricity planning implications of carbon tax and technological constraints in a developing country. Energy Policy 1998, 26, 527–533. [Google Scholar] [CrossRef]
- Cohen, N.; Klenk, T.; Davidovitz, M.; Cardaun, S. Varieties of welfare markets from a street-level perspective: Comparing long-term care services in Germany and Israel. Public Adm. Rev. 2023, 83, 419–428. [Google Scholar] [CrossRef]
- Willenborg, M. Empirical Analysis of the Economic Demand for Auditing in the Initial Public Offerings Market. J. Account. Res. 1999, 37, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Arrow, K.J. Statistics and Economic Policy. Econometrica 1957, 25, 523–531. [Google Scholar] [CrossRef]
- Shami, L.; Cohen, G.; Akirav, O.; Herscovici, A.; Yehuda, L.; Barel-Shaked, S. Informal Self-Employment within the Non-Observed Economy of Israel. Int. J. Entrep. Small Bus. 2021; forthcoming. [Google Scholar]
- Dybka, P.; Kowalczuk, M.; Olesiński, B.; Torój, A.; Rozkrut, M. Currency demand and MIMIC models: Towards a structured hybrid method of measuring the shadow economy. Int. Tax Public Financ. 2019, 26, 4–40. [Google Scholar] [CrossRef] [Green Version]
- Ha, L.T.; Dung, H.P.; Thanh, T.T. Economic complexity and shadow economy: A multi-dimensional analysis. Econ. Anal. Policy 2021, 72, 408–422. [Google Scholar] [CrossRef]
- Guinee, J.B.; Heijungs, R.; Huppes, G. Economic allocation: Examples and derived decision tree. Int. J. Life Cycle Assess. 2004, 9, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Drabiková, E.; Škrabulakova, E.F. Decision trees—A powerful tool in mathematical and economic modeling. In Proceedings of the 2017 18th International Carpathian Control Conference (ICCC), Sinaia, Romania, 28–31 May 2017; pp. 34–39. [Google Scholar]
- Molnau, W.E.; Montgomery, D.C.; Runger, G.C. Statistically constrained economic design of the multivariate exponentially weighted moving average control chart. Qual. Reliab. Eng. Int. 2001, 17, 39–49. [Google Scholar] [CrossRef]
- Lin, S.N.; Chou, C.Y.; Wang, S.L.; Liu, H.R. Economic design of autoregressive moving average control chart using genetic algorithms. Expert Syst. Appl. 2012, 39, 1793–1798. [Google Scholar] [CrossRef]
- Wang, P.; Fan, E.; Wang, P. Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognit. Lett. 2021, 141, 61–67. [Google Scholar] [CrossRef]
- Tanwar, S.; Bhatia, Q.; Patel, P.; Kumari, A.; Singh, P.K.; Hong, W.C. Machine Learning Adoption in Blockchain-Based Smart Applications: The Challenges, and a Way Forward. IEEE Access 2020, 8, 474–488. [Google Scholar] [CrossRef]
- Rana, R.; Staron, M.; Hansson, J.; Nilsson, M.; Meding, W. A framework for adoption of machine learning in industry for software defect prediction. In Proceedings of the 2014 9th International Conference on Software Engineering and Applications (ICSOFT-EA), Vienna, Austria, 29–31 August 2014; pp. 383–392. [Google Scholar]
- Simon-Keren, L.; Liberzon, A.; Lazebnik, T. A computational framework for physics-informed symbolic regression with straightforward integration of domain knowledge. Sci. Rep. 2023, 13, 1249. [Google Scholar] [CrossRef]
- Rokach, L. Decision forest: Twenty years of research. Inf. Fusion 2016, 27, 111–125. [Google Scholar] [CrossRef]
- Lazebnik, T.; Bahouth, Z.; Bunimovich-Mendrazitsky, S.; Halachmi, S. Predicting acute kidney injury following open partial nephrectomy treatment using SAT-pruned explainable machine learning model. BMC Med. Inform. Decis. Mak. 2022, 22, 133. [Google Scholar] [CrossRef]
- Gogas, P.; Papadimitriou, T.; Sofianos, E. Forecasting unemployment in the Euro area with machine learning. J. Forecast. 2022, 41, 551–566. [Google Scholar] [CrossRef]
- Rosenfeld, A.; Cohen, M.; Taylor, M.E.; Kraus, S. Leveraging human knowledge in tabular reinforcement learning: A study of human subjects. Knowl. Eng. Rev. 2018, 33, e14. [Google Scholar] [CrossRef] [Green Version]
- Athey, S.; Imbens, G.W. Machine Learning Methods That Economists Should Know About. Annu. Rev. Econ. 2019, 11, 685–725. [Google Scholar] [CrossRef]
- Yoon, J. Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach. Comput. Econ. 2021, 57, 247–265. [Google Scholar] [CrossRef]
- Nosratabadi, S.; Mosavi, A.; Duan, P.; Ghamisi, P.; Filip, F.; Band, S.S.; Reuter, U.; Gama, J.; Gandomi, A. Data Science in Economics: Comprehensive Review of Advanced Machine Learning and Deep Learning Methods. Mathematics 2020, 8, 1799. [Google Scholar] [CrossRef]
- Litleskare, S.; Wuyts, W. Planning Reclamation, Diagnosis and Reuse in Norwegian Timber Construction with Circular Economy Investment and Operating Costs for Information. Sustainability 2023, 15, 10225. [Google Scholar] [CrossRef]
- Kairiss, A.; Geipele, I.; Olevska-Kairisa, I. Sustainability of Cultural Heritage-Related Projects: Use of Socio-Economic Indicators in Latvia. Sustainability 2023, 15, 10109. [Google Scholar] [CrossRef]
- He, X.; Zhao, K.; Chu, X. AutoML: A Survey of the State-of-the-Art. Knowl.-Based Syst. 2021, 212, 106622. [Google Scholar] [CrossRef]
- Chen, Y.W.; Song, Q.; Hu, X. Techniques for automated machine learning. ACM SIGKDD Explor. Newsl. 2021, 22, 35–50. [Google Scholar] [CrossRef]
- Real, E.; Liang, C.; So, D.; Le, Q. Automl-zero: Evolving machine learning algorithms from scratch. In Proceedings of the International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 8007–8019. [Google Scholar]
- Wang, W.; Xu, W.; Yao, X.; Wang, H. Application of Data-driven Method for Automatic Machine Learning in Economic Research. In Proceedings of the 2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), Chizhou, China, 14–18 October 2022; pp. 42–45. [Google Scholar]
- Chen, W.; Zhang, L. An automated machine learning approach for earthquake casualty rate and economic loss prediction. Reliab. Eng. Syst. Saf. 2022, 225, 108645. [Google Scholar] [CrossRef]
- Agrapetidou, A.; Charonyktakis, P.; Gogas, P.; Papadimitriou, T.; Tsamardinos, I. An AutoML application to forecasting bank failures. Appl. Econ. Lett. 2021, 28, 5–9. [Google Scholar] [CrossRef]
- Singpai, B.; Wu, D. Using a DEA–AutoML Approach to Track SDG Achievements. Sustainability 2020, 12, 10124. [Google Scholar] [CrossRef]
- Szekely, P.; Sheftel, H.; Mayo, A.; Alon, U. Evolutionary Tradeoffs between Economy and Effectiveness in Biological Homeostasis Systems. PLoS Comput. Biol. 2013, 9, e1003163. [Google Scholar] [CrossRef] [PubMed]
- Lacoste, D.; Rivoire, O.; Tourigny, D.S. Cell behavior in the face of uncertainty. arXiv 2023, arXiv:2304.13733. [Google Scholar]
- dos Santos Coelho, L.; Mariani, V.C. Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Syst. Appl. 2008, 34, 1905–1913. [Google Scholar] [CrossRef]
- Zheng, C.; Sicker, D.C. A Survey on Biologically Inspired Algorithms for Computer Networking. IEEE Commun. Surv. Tutor. 2013, 15, 1160–1191. [Google Scholar] [CrossRef]
- Ferri, G.; Caselli, E.; Mattoli, V.; Mondini, A.; Mazzolai, B.; Dario, P. SPIRAL: A novel biologically-inspired algorithm for gas/odor source localization in an indoor environment with no strong airflow. Robot. Auton. Syst. 2009, 57, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Hassanat, A.B.A.; Alkafaween, E. On Enhancing Genetic Algorithms Using New Crossovers. Int. J. Comput. Appl. Technol. 2017, 55, 202–212. [Google Scholar] [CrossRef]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- Dasgupta, D. Advances in artificial immune systems. IEEE Comput. Intell. Mag. 2006, 1, 40–49. [Google Scholar] [CrossRef]
- Tang, W.J.; Wu, Q.H. Biologically inspired optimization: A review. Trans. Inst. Meas. Control 2009, 31, 495–515. [Google Scholar] [CrossRef]
- Kobayashi, M.H. On a biologically inspired topology optimization method. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 787–802. [Google Scholar] [CrossRef]
- Li, Y.W.; Wüst, T.; Landau, D.P. Biologically Inspired Surface Physics: The HP Protein Model. In Nanophenomena at Surfaces: Fundamentals of Exotic Condensed Matter Properties; Michailov, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 169–183. [Google Scholar]
- Macy, M. Natural Selection and Social Learning in Prisoner’s Dilemma: Coadaptation with Genetic Algorithms and Artificial Neural Networks. Sociol. Methods Res. 1996, 25, 103–137. [Google Scholar] [CrossRef]
- Bellaachia, A.; Bari, A. Flock by Leader: A Novel Machine Learning Biologically Inspired Clustering Algorithm. In Advances in Swarm Intelligence; Tan, Y., Shi, Y., Ji, Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 117–126. [Google Scholar]
- Li, Z.; Liu, J. A multi-agent genetic algorithm for community detection in complex networks. Phys. A Stat. Mech. Its Appl. 2016, 449, 336–347. [Google Scholar] [CrossRef]
- Chung, H.; Shin, K.S. Genetic Algorithm-Optimized Long Short-Term Memory Network for Stock Market Prediction. Sustainability 2018, 10, 3765. [Google Scholar] [CrossRef] [Green Version]
- Skolpadungket, P.; Dahal, K.; Harnpornchai, N. Portfolio optimization using multi-obj ective genetic algorithms. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 516–523. [Google Scholar]
- Hong, W.C.; Dong, Y.; Chen, L.Y.; Wei, S.Y. SVR with hybrid chaotic genetic algorithms for tourism demand forecasting. Appl. Soft Comput. 2011, 11, 1881–1890. [Google Scholar] [CrossRef]
- Kuo, R.J.; Chen, C.H.; Hwang, Y.C. An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network. Fuzzy Sets Syst. 2001, 118, 21–45. [Google Scholar] [CrossRef]
- Özdemir, D.; Dörterler, S.; Aydın, D. A new modified artificial bee colony algorithm for energy demand forecasting problem. Neural Comput. Appl. 2022, 34, 17455–17471. [Google Scholar] [CrossRef]
- Ghanbari, A.; Kazemi, S.M.R.; Mehmanpazir, F.; Nakhostin, M.M. A Cooperative Ant Colony Optimization-Genetic Algorithm approach for construction of energy demand forecasting knowledge-based expert systems. Knowl.-Based Syst. 2013, 39, 194–206. [Google Scholar] [CrossRef]
- Yao, Q.; Wang, M.; Chen, Y.; Dai, W.; Li, Y.F.; Tu, W.W.; Yang, Q.; Yu, Y. Taking Human out of Learning Applications: A Survey on Automated Machine Learning. arXiv 2019, arXiv:1810.13306. [Google Scholar]
- Shami, L.; Lazebnik, T. Implementing Machine Learning Methods in Estimating the Size of the Non-observed Economy. Computational Economy 2023. [Google Scholar] [CrossRef]
- Rakshit, S.; Clement, N.; Vajjhala, N.R. Exploratory Review of Applications of Machine Learning in Finance Sector. In Advances in Data Science and Management; Borah, S., Mishra, S.K., Mishra, B.K., Balas, V.E., Polkowski, Z., Eds.; Springer: Singapore, 2022. [Google Scholar]
- Warin, T.; Stojkov, A. Machine Learning in Finance: A Metadata-Based Systematic Review of the Literature. J. Risk Financ. Manag. 2021, 14, 302. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Feurer, M.; Klevin, A.; Eggensperger, K.; Springenberg, J.T.; Blum, M.; Hutter, F. Auto-sklearn: Efficient and Robust Automated Machine Learning. In Automated Machine Learning; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Feldman, D.; Schmidt, M.; Sohler, C. Turning big data into tiny data: Constant-size coresets for k-means, PCA, and projective clustering. SIAM J. Comput. 2020, 49, 601–657. [Google Scholar] [CrossRef]
- Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [Google Scholar] [CrossRef]
- Transtrum, M.K.; Sethna, J.P. Improvements to the Levenberg-Marquardt algorithm for nonlinear least-squares minimization. arXiv 2012, arXiv:1201.5885. [Google Scholar]
- Adrian, T.; Crump, R.K.; Moench, E. Pricing the term structure with linear regressions. J. Financ. Econ. 2013, 110, 110–138. [Google Scholar] [CrossRef] [Green Version]
- Panwar, B.; Dhuriya, G.; Johri, P.; Singh Yadav, S.; Gaur, N. Stock Market Prediction Using Linear Regression and SVM. In Proceedings of the 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 4–5 March 2021; pp. 629–631. [Google Scholar]
- Carrizosa, E.; Molero-Río, C.; Romero-Morales, D. Mathematical optimization in classification and regression trees. TOP 2021, 29, 5–33. [Google Scholar] [CrossRef]
- McTavish, H.; Zhong, C.; Achermann, R.; Karimalis, I.; Chen, J.; Rudin, C.; Seltzer, M. Fast Sparse Decision Tree Optimization via Reference Ensembles. In Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2022; pp. 9604–9613. [Google Scholar]
- Olson, R.S.; Moore, J.H. TPOT: A tree-based pipeline optimization tool for automating machine learning. In Proceedings of the Workshop on Automatic Machine Learning, New York, NY, USA, 24 June 2016; pp. 66–74. [Google Scholar]
- Fortin, F.A.; De Rainville, F.M.; Gardner, M.A.; Parizeau, M.; Gagné, C. DEAP: Evolutionary Algorithms Made Easy. J. Mach. Learn. Res. 2012, 13, 2171–2175. [Google Scholar]
- Erickson, N.; Mueller, J.; Shirkov, A.; Zhang, H.; Larroy, P.; Li, M.; Smola, A. AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data. arXiv 2020, arXiv:2003.06505. [Google Scholar]
- Nagarajah, T.; Poravi, G. A Review on Automated Machine Learning (AutoML) Systems. In Proceedings of the 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), Pune, India, 29–31 March 2019; pp. 1–6. [Google Scholar]
- Karmaker, S.K.; Hassan, M.; Smith, M.J.; Xu, L.; Zhai, C.; Veeramachaneni, K. AutoML to Date and Beyond: Challenges and Opportunities. ACM Comput. Surv. 2021, 54, 1–36. [Google Scholar] [CrossRef]
- Lazebnik, T.; Somech, A.; Weinberg, A.I. SubStrat: A Subset-Based Optimization Strategy for Faster AutoML. Proc. VLDB Endow. 2022, 16, 772–780. [Google Scholar] [CrossRef]
- Srinath, K.R. Python—The Fastest Growing Programming Language. Int. Res. J. Eng. Technol. 2017, 4, 354–357. [Google Scholar]
- Vadyala, S.R.; Betgeri, S.N.; Matthews, J.C.; Matthews, E. A review of physics-based machine learning in civil engineering. Results Eng. 2022, 13, 100316. [Google Scholar] [CrossRef]
- Shehab, M.; Abualigah, L.; Shambour, Q.; Abu-Hashem, M.A.; Shambour, M.K.Y.; Alsalibi, A.I.; Gandomi, A.H. Machine learning in medical applications: A review of state-of-the-art methods. Comput. Biol. Med. 2022, 145, 105458. [Google Scholar] [CrossRef] [PubMed]
- Thai, H.T. Machine learning for structural engineering: A state-of-the-art review. Structures 2022, 38, 448–491. [Google Scholar] [CrossRef]
- Li, H.; Sun, J.; Wu, J. Predicting business failure using classification and regression tree: An empirical comparison with popular classical statistical methods and top classification mining methods. Expert Syst. Appl. 2010, 37, 5895–5904. [Google Scholar] [CrossRef]
Test Cohort | Algo-Group | R-MSE | R-MAE | |
---|---|---|---|---|
Fitting | Traditional | |||
BI-AutoML | 0.89 ± 0.07 | |||
AutoML | 0.95 ± 0.06 | 0.97 ± 0.08 | ||
Training | Traditional | |||
BI-AutoML | 0.84 ± 0.09 | 0.95 ± 0.09 | ||
AutoML | 0.87 ± 0.06 | |||
Testing | Traditional | |||
BI-AutoML | 0.95 ± 0.05 | 0.72 ± 0.28 | ||
AutoML | 0.93 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazebnik, T.; Fleischer, T.; Yaniv-Rosenfeld, A. Benchmarking Biologically-Inspired Automatic Machine Learning for Economic Tasks. Sustainability 2023, 15, 11232. https://doi.org/10.3390/su151411232
Lazebnik T, Fleischer T, Yaniv-Rosenfeld A. Benchmarking Biologically-Inspired Automatic Machine Learning for Economic Tasks. Sustainability. 2023; 15(14):11232. https://doi.org/10.3390/su151411232
Chicago/Turabian StyleLazebnik, Teddy, Tzach Fleischer, and Amit Yaniv-Rosenfeld. 2023. "Benchmarking Biologically-Inspired Automatic Machine Learning for Economic Tasks" Sustainability 15, no. 14: 11232. https://doi.org/10.3390/su151411232
APA StyleLazebnik, T., Fleischer, T., & Yaniv-Rosenfeld, A. (2023). Benchmarking Biologically-Inspired Automatic Machine Learning for Economic Tasks. Sustainability, 15(14), 11232. https://doi.org/10.3390/su151411232