A Review: Design and Optimization Approaches of the Darrieus Water Turbine
Abstract
:1. Background and Characteristics of Darrieus Turbine
2. Parameters of Evaluation in Optimization
2.1. Power Coefficient and Tip Speed Ratio
2.2. Instantaneous Power Coefficient or Torque
3. Research Methods
3.1. Numerical Methods
3.2. Experimental Methods
4. Geometric Parameters
4.1. Height-Diameter Ratio
4.2. Solidity
4.3. Torsion
4.4. Airfoil
5. Methods to Improve Performance
5.1. Coupling with Savonius Turbines
5.2. Blade Pitching
5.3. Multi-Turbine Arrangement
5.4. Additional Devices
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nachtane, M.; Tarfaoui, M.; Goda, I.; Rouway, M. A review on the technologies, design considerations and numerical models of tidal current turbines. Renew. Energy 2020, 157, 1274–1288. [Google Scholar] [CrossRef]
- Singal, R.K. Floating type micro hydro power plants. Electr. India 1984, 24, 21–25. [Google Scholar]
- Hand, B.; Cashman, A. A review on the historical development of the lift-type vertical axis wind turbine: From onshore to offshore floating application. Sustain. Energy Technol. Assess. 2020, 38, 100646. [Google Scholar] [CrossRef]
- Lei, H.; Su, J.; Bao, Y.; Chen, Y.; Han, Z.; Zhou, D. Investigation of wake characteristics for the offshore floating vertical axis wind turbines in pitch and surge motions of platforms. Energy 2018, 166, 471–489. [Google Scholar] [CrossRef]
- Thomson, K.D. Power generation from the east australian current by use of arrays of submerged darrieus vertical axis turbines. In Proceedings of the 7th Australasian Conference on Hydraulics and Fluid Mechanics, Brisbane, QLD, Australia, 18–22 August 1980; Preprints of Papers. pp. 35–38. [Google Scholar]
- Furukawa, A.; Gajanayake, P.A.; Okuma, K.; Tagaki, A. Basic Study of Low Head Water Power Utilization by Using Darrieus-Type Turbine; Memoirs of the Kyushu University, Faculty of Engineering: Fukuoka, Japan, 1998; Volume 58, pp. 39–53. [Google Scholar]
- Furukawa, A.; Seo, N.; Okuma, K.; Takamatsu, Y. Operating Characteristics of Darrieus-Type Cross-Flow Water Turbine and Numerical Simulations for Self-Starting Process. Trans. Jpn. Soc. Mech. Eng. Ser. B 1994, 60, 2466–2471. [Google Scholar] [CrossRef]
- Khan, M.; Bhuyan, G.; Iqbal, M.; Quaicoe, J. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Appl. Energy 2009, 86, 1823–1835. [Google Scholar] [CrossRef]
- Zheng, J.; Dai, P.; Zhang, J. Tidal stream energy in China. Procedia Eng. 2015, 116, 880–887. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.N.; Wang, F.; Zhang, L.L. Construction and operation of a deep-sea scientific observation network in the western pacific. Oceanol. Limnol. Sin. 2017, 48, 1471–1479. [Google Scholar]
- Li, Y.; Calisal, S.M. Modeling of twin-turbine systems with vertical axis tidal current turbine: Part II—Torque fluctuation. Ocean Eng. 2011, 38, 550–558. [Google Scholar] [CrossRef]
- Han, S.-H.; Park, J.-S.; Lee, K.-S.; Park, W.-S.; Yi, J.-H. Evaluation of vertical axis turbine characteristics for tidal current power plant based on in situ experiment. Ocean Eng. 2013, 65, 83–89. [Google Scholar] [CrossRef]
- Sun, C.; Lam, W.-H.; Lam, S.S.; Dai, M.; Hamill, G. Temporal Evolution of Seabed Scour Induced by Darrieus-Type Tidal Current Turbine. Water 2019, 11, 896. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Lam, W.H.; Cui, Y.; Zhang, T.; Jiang, J.; Guo, J.; Ma, Y.; Wang, S.; Tan, T.H.; Chuah, J.H.; et al. Empirical model for Darrieus-type tidal current turbine induced seabed scour. Energy Convers. Manag. 2018, 171, 478–490. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, A.; Takamatsu, Y.; Okuma, K.; Takenouchi, K. Optimum Design of the Darrieus-Type Cross Flow Water Turbine for Low Head Water Power. Renew. Energy Technol. Environ. 1992, 2824–2828. [Google Scholar] [CrossRef]
- Torresi, M.; Fortunato, B.; Camporeale, S.M. Numerical Investigation of a Darrieus Rotor for Low-head Hydropower Generation. Procedia Comput. Sci. 2013, 19, 728–735. [Google Scholar] [CrossRef] [Green Version]
- Antheaume, S.; Maître, T.; Achard, J.-L. Hydraulic Darrieus turbines efficiency for free fluid flow conditions versus power farms conditions. Renew. Energy 2008, 33, 2186–2198. [Google Scholar] [CrossRef]
- Agus, M.; Titik, N. Simulation model of darrieus turbine using software CFD (Computating Fluid Dinamyc) in Bedono Village of Demak District. J. Phys. Conf. Ser. 2018, 1025, 012018. [Google Scholar]
- Zhao, Y.; Cao, Y.; Wang, S.; Ge, L.; Liu, Z. Failure analysis on darrieus type cross-flow water turbines under environment load on sea. In Proceedings of the 29th International Ocean and Polar Engineering Conference, ISOPE 2019, Honolulu, HI, USA, 16–21 June 2019; Volume 1, pp. 202–208. [Google Scholar]
- Aumelas, V.; Pellone, C.; Maître, T. Cavitating behaviour analysis of Darrieus-type cross flow water turbines. IOP Conf. Series: Earth Environ. Sci. 2010, 12, 012077. [Google Scholar] [CrossRef]
- Maldar, N.R.; Ng, C.Y.; Oguz, E. A review of the optimization studies for Savonius turbine considering hydrokinetic applications. Energy Convers. Manag. 2020, 226, 113495. [Google Scholar] [CrossRef]
- Kirke, B. Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines. Renew. Energy 2011, 36, 3013–3022. [Google Scholar] [CrossRef]
- Derakhshan, S.; Ashoori, M.; Salemi, A. Experimental and numerical study of a vertical axis tidal turbine performance. Ocean Eng. 2017, 137, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Qian, P.; Feng, B.; Liu, H.; Tian, X.; Si, Y.; Zhang, D. Review on configuration and control methods of tidal current turbines. Renew. Sustain. Energy Rev. 2019, 108, 125–139. [Google Scholar] [CrossRef]
- Liu, K.; Yu, M.; Zhu, W. Performance analysis of vertical axis water turbines under single-phase water and two-phase open channel flow conditions. Ocean Eng. 2021, 238, 109769. [Google Scholar] [CrossRef]
- Le Hocine, A.E.B.; Poncet, S.; Lacey, J. Numerical Modeling of a Darrieus Horizontal Axis Shallow-Water Turbine. J. Energy Eng. 2020, 146, 04020050. [Google Scholar] [CrossRef]
- Fleisinger, M.; Vesenjak, M.; Hriberek, M. Flow driven analysis of a darrieus water turbine. Stroj. Vestn./J. Mech. Eng. 2014, 60, 769–776. [Google Scholar] [CrossRef]
- Le Hocine, A.E.B.; Lacey, R.J.; Poncet, S. Multiphase modeling of the free surface flow through a Darrieus horizontal axis shallow-water turbine. Renew. Energy 2019, 143, 1890–1901. [Google Scholar] [CrossRef]
- Mosbahi, M.; Ayadi, A.; Chouaibi, Y.; Driss, Z.; Tucciarelli, T. Performance improvement of a novel combined water turbine. Energy Convers. Manag. 2020, 205, 112473. [Google Scholar] [CrossRef]
- Gorlov, A.M. Extracting energy from ocean waves and currents using the helical turbine. In Proceedings of the 1998 17th International Conference on Offshore Mechanics and Arctic Engineering, OMAE, Lisbon, Portugal, 5–9 July 1998; p. 8. [Google Scholar]
- Khan, M.J.; Iqbal, M.T.; Quaicoe, J.E. A technology review and simulation based performance analysis of river current turbine systems. In Proceedings of the 2006 Canadian Conference on Electrical and Computer Engineering, CCECE’06, Ottawa, ON, Canada, 7–10 May 2006; pp. 2288–2293. [Google Scholar]
- Kirke, B. Hydrokinetic turbines for moderate sized rivers. Energy Sustain. Dev. 2020, 58, 182–195. [Google Scholar] [CrossRef]
- Takamatsu, Y.; Furukawa, A.; Okuma, K.; Shimogawa, Y. Study on Hydrodynamic Performance of Darrieus-type Cross-flow Water Turbine. Bull. JSME 1985, 28, 1119–1127. [Google Scholar] [CrossRef]
- Shiono, M.; Suzuki, K.; Kiho, S. Experiments on the characteristics of darrieus turbine for the tidal power generation. In Proceedings of the International Offshore and Polar Engineering Conference, Brest, France, 30 May–4 June 1999; Volume 1, pp. 123–128. [Google Scholar]
- Clary, V.; Oudart, T.; Larroudé, P.; Sommeria, J.; Maître, T. An optimally-controlled RANS Actuator force model for efficient computations of tidal turbine arrays. Ocean Eng. 2020, 212, 107677. [Google Scholar] [CrossRef]
- Li, Y.; Calisal, S.M. Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine. Renew. Energy 2010, 35, 2325–2334. [Google Scholar] [CrossRef]
- Zanforlin, S.; Burchi, F.; Bitossi, N. Hydrodynamic Interactions Between Three Closely-spaced Vertical Axis Tidal Turbines. Energy Procedia 2016, 101, 520–527. [Google Scholar] [CrossRef]
- Zhen, L.; Hengliang, Q.; Hongda, S. Numerical study on self-starting performance of darrieus vertical axis turbine for tidal stream energy conversion. Energies 2016, 9, 789. [Google Scholar]
- Li, Y.; Çalial, S.M. Numerical analysis of the characteristics of vertical axis tidal current turbines. Renew. Energy 2010, 35, 435–442. [Google Scholar] [CrossRef]
- Guillaud, N.; Balarac, G.; Goncalvès, E.; Zanette, J. Large Eddy Simulations on Vertical Axis Hydrokinetic Turbines—Power coefficient analysis for various solidities. Renew. Energy 2019, 147, 473–486. [Google Scholar] [CrossRef] [Green Version]
- Takamatsu, Y.; Furukawa, A.; Takenouchi, K.; Okuma, K. Experimental Considerations in an Approximate Method for Estimating the Blade Performance of Darrieus-Type Cross-Flow Water Turbines. JSME Int. J. Ser. B 1993, 36, 135–142. [Google Scholar] [CrossRef]
- Furukawa, A.; Takamatsu, Y.; Takenouchi, K. Theoretical considerations in an approximate method for estimating the blade performance of a Darrieus-type cross-flow water turbine. Trans. Jpn. Soc. Mech. Eng. Ser. B 1987, 53, 2507–2513. [Google Scholar] [CrossRef]
- Takamatsu, Y.; Furukawa, A.; Okuma, K.; Takenouchi, K. Experimental studies on a preferable blade profile for high efficiency and the blade characteristics of darrieus-type cross-flow water turbines. JSME Int. J. Ser. 2 Fluids Eng. Heat Transf. Power Combust. Thermophys. Prop. 1991, 34, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Amet, E.; Maître, T.; Pellone, C.; Achard, J.-L. 2D Numerical Simulations of Blade-Vortex Interaction in a Darrieus Turbine. J. Fluids Eng. 2009, 131, 111103. [Google Scholar] [CrossRef]
- Suzuki, Y.; Katayama, Y.; Watanabe, S.; Tsuda, S.; Furukawa, A. A study on performance prediction of Darrieus-type hydroturbine operated in open channels using CFD with actuator disk method. IOP Conf. Ser. Earth Environ. Sci. 2019, 240, 042020. [Google Scholar] [CrossRef]
- Santiago, L.; Pablo, C.; Omar, D.L. Numerical simulation of the flow around a straight blade darrieus water turbine. Energies 2020, 13, 1137. [Google Scholar]
- Mailvaganam, D.; Roy, S. A three-dimensional cfd study of naca 0018 darrieus hydrokinetic turbine through unsteady rans simulations. J. Phys. Conf. Ser. 2021, 2051, 012068. [Google Scholar] [CrossRef]
- Castelli, M.R.; Benini, E. Numerical Simulation of a Straight-Bladed Vertical-Axis Water Turbine Operating in a 2 m/s Current. Appl. Mech. Mater. 2013, 325–326, 162–166. [Google Scholar] [CrossRef]
- Dominguez, F.; Achard, J.-L.; Zanette, J.; Corre, C. Fast power output prediction for a single row of ducted cross-flow water turbines using a BEM-RANS approach. Renew. Energy 2016, 89, 658–670. [Google Scholar] [CrossRef]
- Sansone, E.; Pellone, C.; Maitre, T. Modeling the Unsteady Cavitating Flow in a Cross-Flow Water Turbine. J. Fluids Eng. 2010, 132, 071302. [Google Scholar] [CrossRef]
- Rahmani, H.; Biglari, M.; Valipour, M.S.; Lari, K. Assessment of the numerical and experimental performance of screw tidal turbines. Proc. Inst. Mech. Eng. Part A J. Power Energy 2018, 232, 912–925. [Google Scholar] [CrossRef]
- Khalid, S.S.; Liang, Z. Comprehensive study on variable pitch vertical axis tidal turbine. In Proceedings of the 4th International Conference on Mechanical and Electrical Technology, ICMET 2012, Kuala Lumpur, Malaysia, 24–26 July 2012; Volume 229–231, pp. 778–782. [Google Scholar]
- Benzerdjeb, A.; Hamidou, M.K.; Abed, B.; Bordjane, M.; Achache, H.; Gorlov, A.M. Numerical study on the performance of darrieus turbine by K-ε standard and K-ε EARSM turbulence models. In Proceedings of the 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, USA, 5–8 November 2017; pp. 528–533. [Google Scholar] [CrossRef]
- Maître, T.; Amet, E.; Pellone, C. Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments. Renew. Energy 2013, 51, 497–512. [Google Scholar] [CrossRef]
- Abed, B.; Benzerdjeb, A.; Benmansour, A.; Achache, H.; Ferhat, R.; Debz, A.; Gorlov, A.M. An efficient hydrodynamic method for cross-flow turbines performance evaluation and comparison with the experiment. Renew. Energy 2021, 180, 993–1003. [Google Scholar] [CrossRef]
- Ikoma, T.; Masuda, K.; Fujio, S.; Nakada, H.; Maeda, H.; Rheem, C.K. Characteristics of hydrodynamic forces and torque on darrieus type water turbines for current power generation systems with CFD computations. In Proceedings of the OCEANS’08 MTS/IEEE Kobe-Techno-Ocean’08-Voyage toward the Future, OTO’08, Kobe, Japan, 9–11 April 2008. [Google Scholar]
- Mejia, O.D.L.; Quinones, J.J.; Lain, S. RANS and hybrid RANS-LES simulations of an H-type darrieus vertical axiswater turbine. Energies 2018, 11, 2348. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Huang, Z.; Tan, L.; Wang, Y.; Wang, E. Energy Performance and Radial Force of Vertical Axis Darrieus Turbine for Ocean Energy. Energies 2020, 13, 5412. [Google Scholar] [CrossRef]
- Paillard, B.; Astolfi, J.-A.; Hauville, F. CFD simulation and experimental validation of a vertical axis turbine: Toward variable pitch cross-flow marine turbine for maximizing hydropower extraction, the shiva project. In Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2011, Rotterdam, The Netherlands, 19–24 June 2011; Volume 5, pp. 619–627. [Google Scholar]
- López, O.; Meneses, D.; Quintero, B.; Laín, S. Computational study of transient flow around Darrieus type cross flow water turbines. J. Renew. Sustain. Energy 2016, 8, 014501. [Google Scholar] [CrossRef]
- Lain, S.; Quintero, B.; Trujillo, D.; Ulianov, Y. Simulation of vertical axis water turbines. In Proceedings of the 2012 IEEE International Symposium on Alternative Energies and Energy Quality, SIFAE 2012, Barranquilla, Colombia, 25–26 October 2012. [Google Scholar]
- Yagmur, S.; Kose, F.; Dogan, S. A study on performance and flow characteristics of single and double H-type Darrieus turbine for a hydro farm application. Energy Convers. Manag. 2021, 245, 114599. [Google Scholar] [CrossRef]
- Lopez, O.D.; Meneses, D.P.; Lain, S. Computational study of the interaction between hydrodynamics and rigid body dynamics of a darrieus type H turbine. In CFD for Wind and Tidal Offshore Turbines; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Gorle, J.; Chatellier, L.; Pons, F.; Ba, M. Sensitivity analysis of the performance of a Darrieus hydrokinetic turbine in uncertain operating conditions. Sustain. Energy Technol. Assess. 2021, 46, 101247. [Google Scholar] [CrossRef]
- Wang, K.; Moan, T.; Hansen, M.O.L. Stochastic dynamic response analysis of a floating vertical-axis wind turbine with a semi-submersible floater. Wind. Energy 2016, 19, 1853–1870. [Google Scholar] [CrossRef]
- Faure, T.D.; Pratte, B.D.; Swan, D. Darrieus hydraulic turbine—Model and field experiments. In Proceedings of the Fourth International Symposium on Hydro Power Fluid Machinery: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, ASME, Anaheim, CA, USA, 7–12 December 1986; Volume 43, pp. 123–129. [Google Scholar]
- Yang, B.; Shu, X. Hydrofoil optimization and experimental validation in helical vertical axis turbine for power generation from marine current. Ocean Eng. 2012, 42, 35–46. [Google Scholar] [CrossRef]
- Rolland, S.; Thatcher, M.; Ellis, R.; Gaurier, B.; Croft, T.; Cross, M. Performance assessment of a vertical axis turbine in a marine current flume tank and CFD modelling. Int. J. Mar. Energy 2015, 12, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Gorle, J.; Chatellier, L.; Pons, F.; Ba, M. Flow and performance analysis of H-Darrieus hydroturbine in a confined flow: A computational and experimental study. J. Fluids Struct. 2016, 66, 382–402. [Google Scholar] [CrossRef]
- Saini, G.; Saini, R. Comparative investigations for performance and self-starting characteristics of hybrid and single Darrieus hydrokinetic turbine. Energy Rep. 2020, 6, 96–100. [Google Scholar] [CrossRef]
- Bianchini, A.; Balduzzi, F.; Bachant, P.; Ferrara, G.; Ferrari, L. Effectiveness of two-dimensional CFD simulations for Darrieus VAWTs: A combined numerical and experimental assessment. Energy Convers. Manag. 2017, 136, 318–328. [Google Scholar] [CrossRef]
- Álvarez-Álvarez, E.; Rico-Secades, M.; Fernández-Jiménez, A.; Espina-Valdés, R.; Corominas, E.L.; Calleja-Rodríguez, A.J. Hydrodynamic water tunnel for characterization of hydrokinetic microturbines designs. Clean Technol. Environ. Policy 2020, 22, 1843–1854. [Google Scholar] [CrossRef]
- Somoano, M.; Huera-Huarte, F. Flow dynamics inside the rotor of a three straight bladed cross-flow turbine. Appl. Ocean Res. 2017, 69, 138–147. [Google Scholar] [CrossRef]
- Chatellier, L.; Gorle, J.M.R.; Pons, F.; Ba, M. Towing tank testing of a controlled-circulation darrieus turbine, CRC Press/Balkema. In Proceedings of the 3rd International Conference on Renewable Energies Offshore, RENEW 2018, Lisbon, Portugal, 8–10 October 2018; pp. 195–201. [Google Scholar]
- Peng, H.; Lam, H.; Liu, H. Power performance assessment of H-rotor vertical axis wind turbines with different aspect ratios in turbulent flows via experiments. Energy 2019, 173, 121–132. [Google Scholar] [CrossRef]
- Sengupta, A.; Biswas, A.; Gupta, R. Studies of some high solidity symmetrical and unsymmetrical blade H-Darrieus rotors with respect to starting characteristics, dynamic performances and flow physics in low wind streams. Renew. Energy 2016, 93, 536–547. [Google Scholar] [CrossRef]
- Sengupta, A.; Biswas, A.; Gupta, R. Comparison of low wind speed aerodynamics of unsymmetrical blade H-Darrieus rotors-blade camber and curvature signatures for performance improvement. Renew. Energy 2019, 139, 1412–1427. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.; Zhu, B.; Zhang, H.; Huang, D. Effect of blade vortex interaction on performance of Darrieus-type cross flow marine current turbine. Renew. Energy 2016, 86, 316–323. [Google Scholar] [CrossRef]
- Hilton, D.J. Performance of a darrieus water turbine at various solidities. In Proceedings of the 8th Australasian Fluid Mechanics Conference, Newcastle, Australia, 28 November–2 December 1983; Volume 1, pp. 4C. 1–4C. 5. [Google Scholar]
- Singh, M.; Biswas, A.; Misra, R. Investigation of self-starting and high rotor solidity on the performance of a three S1210 blade H-type Darrieus rotor. Renew. Energy 2015, 76, 381–387. [Google Scholar] [CrossRef]
- Patel, V.; Eldho, T.; Prabhu, S. Experimental investigations on Darrieus straight blade turbine for tidal current application and parametric optimization for hydro farm arrangement. Int. J. Mar. Energy 2017, 17, 110–135. [Google Scholar] [CrossRef]
- Wenlong, T.; Baowei, S.; Zhaoyong, M. Conceptual design and numerical simulations of a vertical axis water turbine used for underwater mooring platforms. Int. J. Nav. Arch. Ocean Eng. 2013, 5, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Miyake, Y.; Tsugawa, T.; Murata, S. Analysis of high-speed cross-flow water turbine with infinite blade numbers. Technol. Rep. Osaka Univ. 1982, 32, 381–390. [Google Scholar]
- Pongduang, S.; Kayankannavee, C.; Tiaple, Y. Experimental Investigation of Helical Tidal Turbine Characteristics with Different Twists. Energy Procedia 2015, 79, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Brusca, S.; Cucinotta, F.; Galvagno, A.; Lanzafame, R.; Mauro, S.; Messina, M. Oscillating Water Column Wave Energy Converter by Means of Straight-bladed Darrieus Turbine. Energy Procedia 2015, 82, 766–773. [Google Scholar] [CrossRef]
- Permatasari, R.; Hidayat, L.F.; Permana, F.M. Performance testing of Darrieus turbine in hydrokinetic power plant model. IOP Conf. Ser. Earth Environ. Sci. 2021, 737, 012009. [Google Scholar] [CrossRef]
- Shiono, M.; Suzuki, K.; Kiho, S. Experimental study of the characteristics of a darrieus turbine for tidal power generation. Electr. Eng. Jpn. 2000, 132, 38–47. [Google Scholar] [CrossRef]
- Khan, M.J.; Iqbal, M.T.; Quaicoe, J.E. Design Considerations of a Straight Bladed Darrieus Rotor for River Current Turbines. In Proceedings of the 2006 IEEE International Symposium on Industrial Electronics, Montreal, QC, Canada, 9–13 July 2006; pp. 1750–1755. [Google Scholar] [CrossRef]
- Zeiner-Gundersen, D.H. A novel flexible foil vertical axis turbine for river, ocean, and tidal applications. Appl. Energy 2015, 151, 60–66. [Google Scholar] [CrossRef]
- Yosry, A.G.; Fernández-Jiménez, A.; Álvarez, E.Á.; Marigorta, E.B. Design and characterization of a vertical-axis micro tidal turbine for low velocity scenarios. Energy Convers. Manag. 2021, 237, 114144. [Google Scholar] [CrossRef]
- Dy, N.V.; Saeed, F.; Paraschivoiu, I. Dynamic response analysis of darrieus-type vertical axis water turbines. In Proceedings of the 23rd International Offshore and Polar Engineering Conference, ISOPE 2013, Anchorage, AK, USA, 30 June–5 July 2013; pp. 597–604. [Google Scholar]
- Kirke, B.; Lazauskas, L. Variable pitch darrieus water turbines. J. Fluid Sci. Technol. 2008, 3, 430–438. [Google Scholar] [CrossRef] [Green Version]
- Jayaram, V.; Bavanish, B. A brief review on the Gorlov helical turbine and its possible impact on power generation in India. Mater. Today Proc. 2020, 37, 3343–3351. [Google Scholar] [CrossRef]
- McAdam, R.A.; Houlsby, G.T.; Oldfield, M.L.G. Experimental measurements of the hydrodynamic performance and structural loading of the transverse horizontal axis water turbine: Part 1. Renew. Energy 2013, 59, 105–114. [Google Scholar] [CrossRef]
- McAdam, R.; Houlsby, G.; Oldfield, M.L.G. Experimental measurements of the hydrodynamic performance and structural loading of the transverse horizontal axis water turbine: Part 2. Renew. Energy 2013, 59, 141–149. [Google Scholar] [CrossRef]
- McAdam, R.A.; Houlsby, G.T.; Oldfield, M.L.G. Experimental measurements of the hydrodynamic performance and structural loading of the transverse horizontal axis water turbine: Part 3. Renew. Energy 2013, 59, 82–91. [Google Scholar] [CrossRef]
- Paraschivoiu, I.; Dy, N.V. A numerical study of darrieus water turbine, International Society of Offshore and Polar Engineers. In Proceedings of the 22nd International Offshore and Polar Engineering Conference, ISOPE-2012, Rhodes, Greece, 17–22 June 2012; pp. 738–744. [Google Scholar]
- Marsh, P.; Ranmuthugala, D.; Penesis, I.; Thomas, G. Numerical investigation of the influence of blade helicity on the performance characteristics of vertical axis tidal turbines. Renew. Energy 2015, 81, 926–935. [Google Scholar] [CrossRef] [Green Version]
- Khanjanpour, M.H.; Javadi, A.A. Optimization of the hydrodynamic performance of a vertical Axis tidal (VAT) turbine using CFD-Taguchi approach. Energy Convers. Manag. 2020, 222, 113235. [Google Scholar] [CrossRef]
- Shiono, M.; Suzuki, K.; Kiho, S. Output characteristics of darrieus water turbine with helical blades for tidal current generations. In Proceedings of the Twelfth (2002) International Offshore and Polar Engineering Conference, Kitakyushu, Japan, 26–31 May 2002; Volume 12, pp. 859–864. [Google Scholar]
- Mcadam, R.A.; Houlsby, G.T.; Oldfield, M.L.G.; Mcculloch, M.D. Experimental Testing of the Transverse Horizontal Axis Water Turbine. IET Renew. Power Gener. 2010, 4, 510–518. [Google Scholar] [CrossRef] [Green Version]
- Gauvin-Tremblay, O.; Dumas, G. Two-way interaction between river and deployed cross-flow hydrokinetic turbines. J. Renew. Sustain. Energy 2020, 12, 034501. [Google Scholar] [CrossRef]
- El-Sawy, M.; Shehata, A.S.; Elbatran, A.A.; Tawfiq, A. Numerical simulation of flow in hydrokinetic turbine channel to improve its efficiency by using first and second-law efficiency analysis. Ocean Eng. 2021, 244, 110400. [Google Scholar] [CrossRef]
- Cacciali, L.; Battisti, L.; Dell’Anna, S.; Soraperra, G. Case study of a cross-flow hydrokinetic turbine in a narrow prismatic canal. Ocean. Eng. 2021, 234, 109281. [Google Scholar] [CrossRef]
- Mohamed, M. Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy 2012, 47, 522–530. [Google Scholar] [CrossRef]
- Priegue, L.; Stoesser, T. The influence of blade roughness on the performance of a vertical axis tidal turbine. Int. J. Mar. Energy 2017, 17, 136–146. [Google Scholar] [CrossRef]
- Balduzzi, F.; Melani, P.F.; Soraperra, G.; Brighenti, A.; Battisti, L.; Bianchini, A. Some design guidelines to adapt a Darrieus vertical axis turbine for use in hydrokinetic applications. E3S Web Conf. 2021, 312, 08017. [Google Scholar] [CrossRef]
- Maldar, N.R.; Ng, C.Y.; Oguz, E. A review of the hybrid darrieus-savonius turbine for hydrokinetic applications. In Proceedings of the 3rd International Sustainability and Resilience Conference: Climate Change, ISRC 2021, Virtual, Online, 15–17 November 2021; pp. 424–431. [Google Scholar]
- Hamouda, A.M.; Abutaleb, A.S.; Rofail, S.S.; Shehata, A.S.; Elbatran, A.H. Comparative analysis of different current turbine designs based on relevant conditions of the nile river of Egypt. In Proceedings of the 20th Commemorative Annual General Assembly of the International Association of Maritime Universities, IAMUC 2019, Tokyo, Japan, 30 October–1 November 2019; pp. 365–379. [Google Scholar]
- Ferroudji, F.; Khelifi, C.; Meguellati, F.; Koussa, K. Design and static structural analysis of a 2.5 kw combined darrieus-savonius wind turbine. Int. J. Eng. Res. Afr. 2017, 30, 94–99. [Google Scholar] [CrossRef]
- Alam, M.J.; Iqbal, M.T. Design and development of hybrid vertical axis turbine. In Proceedings of the 2009 Canadian Conference on Electrical and Computer Engineering, CCECE ’09, St. Johns, NL, Canada, 3–6 May 2009; pp. 1178–1183. [Google Scholar]
- Saini, G.; Saini, R. A numerical analysis to study the effect of radius ratio and attachment angle on hybrid hydrokinetic turbine performance. Energy Sustain. Dev. 2018, 47, 94–106. [Google Scholar] [CrossRef]
- Fertahi, S.E.-D.; Bouhal, T.; Rajad, O.; Kousksou, T.; Arid, A.; El Rhafiki, T.; Jamil, A.; Benbassou, A. CFD performance enhancement of a low cut-in speed current Vertical Tidal Turbine through the nested hybridization of Savonius and Darrieus. Energy Convers. Manag. 2018, 169, 266–278. [Google Scholar] [CrossRef]
- Sahim, K.; Ihtisan, K.; Santoso, D.; Sipahutar, R. Experimental Study of Darrieus-Savonius Water Turbine with Deflector: Effect of Deflector on the Performance. Int. J. Rotating Mach. 2014, 2014, 203108. [Google Scholar] [CrossRef] [Green Version]
- Sahim, K.; Santoso, D.; Radentan, A. Performance of Combined Water Turbine with Semielliptic Section of the Savonius Rotor. Int. J. Rotating Mach. 2013, 2013, 985943. [Google Scholar] [CrossRef] [Green Version]
- Kyozuka, Y.; Akira, H.; Duan, D.; Urakata, Y. An experimental study on the darrieus-savonius turbine for the tidal current power generation. In Proceedings of the 19th (2009) International Offshore and Polar Engineering Conference, Osaka, Japan, 21–26 June 2009; pp. 349–355. [Google Scholar]
- Saini, G.; Saini, R. A computational investigation to analyze the effects of different rotor parameters on hybrid hydrokinetic turbine performance. Ocean Eng. 2020, 199, 107019. [Google Scholar] [CrossRef]
- Yang, Y.; Jenet, F.; Xu, B.; Garza, J.C.; Tamayo, B.; Chavez, Y.; Reyes, O.; Fuentes, S. Experimental Study of a Lift-Type Wave Energy Converter Rotor in a Freewheeling Mode. J. Energy Resour. Technol. 2019, 142, 031201. [Google Scholar] [CrossRef]
- Matsushita, D.; Moriyama, R.; Nakashima, K.; Watanabe, S.; Okuma, K.; Furukawa, A. Tentative Study on Performance of Darriues-Type Hydroturbine Operated in Small Open Water Channel. IOP Conf. Ser. Earth Environ. Sci. 2014, 22, 62007. [Google Scholar] [CrossRef]
- Takamatsu, Y.; Furukawa, A.; Okuma, K.; Takenouchi, K. Effects of Geometrical Attitude of Blade on Hydrodynamic Performance of Darrieus-type Cross-flow Water Turbine. Bull. JSME 1985, 28, 1092–1096. [Google Scholar] [CrossRef]
- Somoano, M.; Huera-Huarte, F. The effect of blade pitch on the flow dynamics inside the rotor of a three-straight-bladed cross-flow turbine. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2019, 233, 868–878. [Google Scholar] [CrossRef]
- Kirke, B.; Lazauskas, L. Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch. Renew. Energy 2011, 36, 893–897. [Google Scholar] [CrossRef]
- Schönborn, A.; Chantzidakis, M. Development of a hydraulic control mechanism for cyclic pitch marine current turbines. Renew. Energy 2007, 32, 662–679. [Google Scholar] [CrossRef]
- Furukawa, A.; Watanabe, S.; Matsushita, D.; Okuma, K. Development of ducted Darrieus turbine for low head hydropower utilization. Curr. Appl. Phys. 2010, 10, S128–S132. [Google Scholar] [CrossRef]
- Benzerdjeb, A.; Abed, B.; Achache, H.; Hamidou, M.K.; Gorlov, A.M. Experimental study on blade pitch angle effect on the performance of a threebladed verticalxis darrieus hydro turbine. Int. J. Energy Res. 2019, 43, 2123–2134. [Google Scholar] [CrossRef]
- Chen, B.; Su, S.; Viola, I.M.; Greated, C.A. Numerical investigation of vertical-axis tidal turbines with sinusoidal pitching blades. Ocean Eng. 2018, 155, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Nagata, S.; Murakami, T.; Ning, D. Improvement of sinusoidal pitch for vertical-axis hydrokinetic turbines and influence of rotational inertia. Ocean Eng. 2019, 179, 273–284. [Google Scholar] [CrossRef]
- Paillard, B.; Astolfi, J.; Hauville, F. URANSE simulation of an active variable-pitch cross-flow Darrieus tidal turbine: Sinusoidal pitch function investigation. Int. J. Mar. Energy 2015, 11, 9–26. [Google Scholar] [CrossRef] [Green Version]
- Melani, P.F.; Balduzzi, F.; Ferrara, G.; Bianchini, A. Development of a desmodromic variable pitch system for hydrokinetic turbines. Energy Convers. Manag. 2021, 250, 114890. [Google Scholar] [CrossRef]
- Zhang, X.-W.; Wang, S.-Q.; Wang, F.; Zhang, L.; Sheng, Q.-H. The Hydrodynamic Characteristics of Free Variable-Pitch Vertical Axis Tidal Turbine. J. Hydrodyn. 2012, 24, 834–839. [Google Scholar] [CrossRef]
- Cellini, F.; Pounds, J.; Peterson, S.D.; Porfiri, M. Underwater energy harvesting from a turbine hosting ionic polymer metal composites. Smart Mater. Struct. 2014, 23, 85023. [Google Scholar] [CrossRef]
- Zeiner-Gundersen, D.H. A vertical axis hydrodynamic turbine with flexible foils, passive pitching, and low tip speed ratio achieves near constant rpm. Energy 2014, 77, 297–304. [Google Scholar] [CrossRef]
- Hoerner, S.; Abbaszadeh, S.; Maître, T.; Cleynen, O.; Thévenin, D. Characteristics of the fluid–structure interaction within Darrieus water turbines with highly flexible blades. J. Fluids Struct. 2019, 88, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Ikoma, T.; Fujio, S.; Masuda, K.; Rheem, C.-K.; Maeda, H. Improvement of Torque Performance of a Vertical Axis Type Marine Turbine for a Water Current Generation System. In Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, 6–11 June 2010; pp. 455–463. [Google Scholar] [CrossRef]
- Paillard, B.; Hauville, F.; Astolfi, J. Simulating variable pitch crossflow water turbines: A coupled unsteady ONERA-EDLIN model and streamtube model. Renew. Energy 2013, 52, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Wang, Y.; Chen, J.; Jensen, G.; Zhang, H. Performance Analysis of Multi-Sectional Cycloidal Hydrokinetic Turbines. In Proceedings of the ASME 2021 Fluids Engineering Division Summer Meeting, Virtual, Online, 10–12 August 2021. [Google Scholar] [CrossRef]
- Ma, Y.; Lam, W.H.; Cui, Y.; Zhang, T.; Jiang, J.; Sun, C.; Guo, J.; Wang, S.; Lam, S.S.; Hamill, G. Theoretical vertical-axis tidal-currentturbine wake model using axial momentum theory with CFD corrections. Appl. Ocean. Res. 2018, 79, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Calal, S.M. Modeling of twin-turbine systems with vertical axis tidal current turbines: Part I power output. Ocean Eng. 2010, 37, 627–637. [Google Scholar] [CrossRef]
- Crooks, J.M.; Hewlin, R.L.; Williams, W.B. Computational Design Analysis of a Hydrokinetic Horizontal Parallel Stream Direct Drive Counter-Rotating Darrieus Turbine System: A Phase One Design Analysis Study. Energies 2022, 15, 8942. [Google Scholar] [CrossRef]
- Zanforlin, S. Advantages of vertical axis tidal turbines set in close proximity: A comparative CFD investigation in the English Channel. Ocean Eng. 2018, 156, 358–372. [Google Scholar] [CrossRef]
- Janon, A. Torque coefficient analysis of a novel direct-drive parallel-stream counter-rotating darrieus turbine system. Renew. Energy 2020, 147, 110–117. [Google Scholar] [CrossRef]
- Hiraki, K.; Wakita, R.; Kanemeoto, T.; Yagami, R.; Takao, M. Demonstrative power generation by twin-runner darrieus turbine in kanmon strait. In Proceedings of the 22nd International Offshore and Polar Engineering Conference, ISOPE-2012, Rhodes, Greece, 17–22 June 2012; pp. 725–729. [Google Scholar]
- Davis, B.V. Low head tidal power—A major source of energy from the world’s oceans. In Proceedings of the 1997 32nd Intersociety Energy Conversion Engineering Conference, Honolulu, HI, USA, 27 July–1 August 1997; Volume 3–4, pp. 1982–1989. [Google Scholar]
- Shimokawa, K.; Furukawa, A.; Okuma, K.; Matsushita, D.; Watanabe, S. Experimental study on simplification of Darrieus-type hydro turbine with inlet nozzle for extra-low head hydropower utilization. Renew. Energy 2012, 41, 376–382. [Google Scholar] [CrossRef]
- Hamasaki, Y.; Sugimoto, T.; Kawaguchi, K.; Kase, A.; Shirakawa, H. Performance Improvement of Darrieus Type Water Turbine by Combination of Inside Guide and Outside Guide. Proc. Conf. Hokuriku-Shinetsu Branch 2017, 54, C042. [Google Scholar] [CrossRef]
- Kyozuka, Y.; Ogawa, K. Tidal Current Power Generation Making Use of a Bridge Pier. In Proceedings of the OCEANS 2006—Asia Pacific, Singapore, 16–19 May 2006; pp. 1–8. [Google Scholar] [CrossRef]
- Furukawa, A.; Takenouchi, K.; Gajanayake, P.A.; Okuma, K. Two-Dimensional Flow Analysis in a Darrieus-Type Water Turbine with Arbitrary-Shaped Duct. Trans. Jpn. Soc. Mech. Eng. Ser. B 1996, 62, 2144–2150. [Google Scholar] [CrossRef]
- Shimizu, S.; Fujii, M.; Sumida, T.; Sasa, K.; Kimura, Y.; Koga, E.; Motogi, H. Starting system for darrieus water turbine of tidal stream electricity generation. In Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2016, Busan, Republic of Korea, 19–24 June 2016; Volume 6. [Google Scholar]
- Kiho, S.; Suzuki, K.; Shiono, M. Study on the power generation from tidal currents by darrieus turbine. In Proceedings of the 1996 6th International Offshore and Polar Engineering Conference, Los Angeles, CA, USA, 26–31 May 1996; Part 1 (of 4). pp. 97–102. [Google Scholar]
- Naoi, K.; Shiono, M.; Suzuki, K. Optimization of Gear Ratio in the Tidal Current Generation System based on Generated Energy. IEEJ Trans. Power Energy 2011, 131, 222–230. [Google Scholar] [CrossRef]
- Kikugawa, H.; Kawano, Y.; Shuto, M.; Furukawa, A. Improvement of compact darrieus-type hydraulic turbine for extra low head by changing inlet shape. In Proceedings of the 18th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC 2020, Honolulu, HI, USA, 19–23 April 2020; Volume 1909. [Google Scholar]
- Kazuhiko, N.; Daisuke, M.; Satoshi, W.; Shin-Ichi, T.; Akinori, F. Effect of inlet nozzle shape on performance of darrieus-type hydro-turbine operated in small open water channel. In Proceedings of the ASME/JSME/KSME 2015 Joint Fluids Engineering Conference, AJKFluids 2015, Seoul, Republic of Korea, 26–31 July 2015; Volume 1A. [Google Scholar]
- Liu, Z.; Wang, Z.-M.; Shi, H.-D.; Qu, H.-L. Numerical study of a guide-vane-augmented vertical darrieus tidal-current-turbine. J. Hydrodyn. 2018, 31, 522–530. [Google Scholar] [CrossRef]
- Hirowatari, K.; Shimokawa, K.; Iwamoto, S.; Okuma, K.; Watanabe, S.; Matsusita, D.A. Furukawa, Experimental study on performance of darrieus-type open hydroturbine with inlet nozzle in low downstream water level conditions. In Proceedings of the ASME-JSME-KSME 2011 Joint Fluids Engineering Conference, AJK 2011, Hamamatsu, Japan, 24–29 July 2011; Volume 1, pp. 1851–1859. [Google Scholar]
- Sun, X.-J.; Huang, D.-G.; Wu, G.-Q. A study on a method to improve the hydrodynamic performance of a darrieus marine current turbine. J. Eng. Thermophys. 2011, 32, 2040–2043. [Google Scholar]
- Santiago, L.; Manuel, A.T.; Omar, D.L. Numerical study of the effect of winglets on the performance of a straight blade darrieus water turbine. Energies 2018, 11, 297. [Google Scholar]
- Malipeddi, A.; Chatterjee, D. Influence of duct geometry on the performance of Darrieus hydroturbine. Renew. Energy 2012, 43, 292–300. [Google Scholar] [CrossRef]
- Roa, A.M.; Aumelas, V.; Maître, T.; Pellone, C. Numerical and experimental analysis of a darrieus-type cross flow water turbine in bare and shrouded configurations. IOP Conf. Ser. Earth Environ. Sci. 2010, 12, 012113. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Álvarez-Álvarez, E.; López, M.; Fouz, M.; López, I.; Gharib-Yosry, A.; Claus, R.; Carballo, R. Power Performance Assessment of Vertical-Axis Tidal Turbines Using an Experimental Test Rig. Energies 2021, 14, 6686. [Google Scholar] [CrossRef]
Authors | Year | Methods | Turbine Design | Range | Optimized Solidity | Highest Cp |
---|---|---|---|---|---|---|
T. Wenlong et al. [82] | 2013 | numerical | NACA0012, NACA0014, NACA0015, 3 blades | c = 0.15 m, D = 1.6 m, D = 2 m (0.28125, 0.225); D = 2 m, c = 0.11 m, 0.13 m, 0.15 m (0.165, 0.195, 0.225) | 0.225 (D = 2 m, c = 0.15 m) | 0.1 |
N. Guillaud et al. [40] | 2020 | numerical | NACA0018, 3 blades | solidity: 0.11, 0.16, 0.34, 0.55, 1.03 | 0.16 | 0.35 |
V. Patel et al. [81] | 2017 | experimental | NACA0015, NACA0018, NACA4415, 3 blades | solidity: 0.258, 0.298, 0.382, 0.434 (3 blades); 0.344, 0.398, 0.509 (4 blades) | 0.382 (3 blades), 0.398 (4 blades) | 0.16 (3 blades), 0.13 (4 blades) |
B. K. Kirke [22] | 2011 | experimental | NACA0020, 3 blades | solidity: 0.3, 0.4, 0.5, 0.6, 0.84 | 0.3 | 0.4 |
S. Pongduang et al. [84] | 2015 | experimental | NACA0020, 3 blades, torsion 120°, 135°, 150° | solidity: 0.134, 0.111 | 0.134 | 0.28 |
S. Brusca et al. [85] | 2015 | experimental | NACA0012, 5 blades | solidity: 0.2, 0.3, 0.4, 0.5 | 0.3 | 0.42 |
R Permatasari et al. [86] | 2021 | experimental | NACA0018, 40 mm chord length | 2, 3, 4 blades | about 0.21 (2 blades) | 0.01 |
M Shiono et al. [87] | 2000 | experimental | NACA0018, 3 blades | solidity: 0.108 to 0.537 | 0.179 | 0.23 |
MJ Khan et al. [88] | 2006 | numerical | NACA0018, 3 blades | solidity: 0.15 to 0.45 | around 0.30 | 0.43 |
Authors | Year | Methods | Turbine Design | Range | Optimized Torsional Angle | Highest Cp |
---|---|---|---|---|---|---|
P. Marsh et al. [98] | 2015 | numerical | NACA634021, NACA0020 | torsional angle: 0°, 15°, 30°, 60°, 120° | 0° | 0.25 |
M. H. Khan et al. [99] | 2020 | numerical | optimized airfoil, 3 blades | torsional angle: 0°, 20°, 40°, 60°, 80°, 100°, 120° | 80° | 0.21 |
S. Pongduang et al. [84] | 2015 | experimental | NACA0020, 3 blades | torsional angle: 120°, 135°, 150° | 135° | 0.28 |
M Shiono et al. [100] | 2002 | experimental | direct blade 3 blades | inclination angle: 43.7 °, 50°, 60°, 90° | 90° | 0.33 |
Authors | Year | Methods | Turbine Design | Range | Optimized Value | Highest Cp |
---|---|---|---|---|---|---|
M. H. Khan et al. [99] | 2020 | numerical | 3 blades, twisted | Camber position: 0.70, 0.45, 0.20; Maximum camber: 0.025, 0.050, 0.075; Chord/radius: 0.1, 0.2, 0.3 | Camber position: 0.20; Maximum camber: 0.050; Chord/radius: 0.2 | 0.202 |
V. Patel et al. [81] | 2017 | experimental | 3 blades | NACA0015, NACA0018, NACA4415 | NACA0018 | 0.16 |
B. Yang et al. [67] | 2012 | numerical and experimental | 2 blades, twisted | NACA0012- based | optimized airfoil | 0.412 |
Mohamed et al. [103] | 2022 | numerical | with Savonius, ducted | NACA-0012, NACA-0015, NACA-0018, NACA-0021, NACA-0024 | NACA-0015 | 0.114 |
Authors | Year | Methods | Turbine Design | Range | Optimized Value | Highest Cp of the Coupled Turbine |
---|---|---|---|---|---|---|
G. Saini et al. [112] | 2018 | numerical | NACA0015, 2 blades Darrieus and Savonius | radius ratio: 0.2, 0.25, 0.333; angle: 0°, 30°, 60°, 90° | 0.2, 60° | 0.34 |
G. Saini et al. [70] | 2020 | numerical | S1046, 3 blades Darrieus, 2 blades Savonius | radius ratio:0.2 0.8; angles: 60°, 90°, 120° | 0.6, 90° | 0.1276 |
S. Ed-Din Fertahi et al. [113] | 2018 | numerical and experimental | NACA0015, 4 blades Darrieus, 2 stage Savonius | identical direction, synchronous coupling; opposite direction, asynchronous coupling; identical direction, asynchronous coupling | identical direction, synchronous coupling | 0.4 |
Kaprawi Sahim et al. [114] | 2014 | experimental | NACA0015, 2 blades | radius ratio: 0.4, 0.633 | 0.4 | 0.211 |
K Sahim et al. [115] | 2013 | experimental | NACA0015, 3 blades | radius ratio: 0.36, 0.79, angle: 0°, 60° | 0.36, 60° | 0.15 |
Kyozuka et al. [116] | 2009 | experimental | NACA0018, 2 blades | angle: 0° to 135° | 45° | 0.17 |
Authors | Year | Methods | Turbine Design | Range | Optimized Value | Highest Cp |
---|---|---|---|---|---|---|
B. Chen et al. [126] | 2018 | numerical | NACA0018, 3 blades | active, max: 2.5°, 5°, 10°, 12°, 15° | 10° | 0.36 |
B. Chen et al. [127] | 2019 | numerical | NACA0018, 3 blades | active, min: −4°, −2°, 0°, 2°, 4°, 2°, 4°; max: 14°, 12°, 10°, 8°, 6°, 8°, 6° | min: 0°, max: 10° | 0.45 |
X.-w. Zhang et al. [130] | 2012 | numerical and experimental | NACA0018, 3 blades | passive, min: −10°; max: 0°, 5°, 10° | min: −10°, max: 0° | 0.32 |
D. H. ZeinerGundersen [132] | 2014 | numerical and experimental | flexible blade, 5 blades | flexible blades, solid blades | flexible blades | 0.37 |
S. Hoerner et al. [133] | 2019 | numerical and experimental | NACA0018- based flexible blade, 3 blades | thickness: 0.3 mm, 0.5 mm, 0.7 mm | 0.3 mm | 0.2 |
S Yagmur et al. [62] | 2021 | experimental | NACA0015, 4 blades | active, +5°~0°; +10°~−5° | range +10° −5° | 0.08 |
T Ikoma et al. [134] | 2010 | experimental | NACA0018, 3 blades | active, ±10°, ±5°, ±2°, 0° | ±10° | about 0.3 |
B Paillard et al. [135] | 2013 | numerical | NACA0012, 2 blades | active; sinusoidal; −2°~10° | 5° | 51% improvement |
Authors | Year | Methods | Turbine Design | Range | Optimized Arrangement | Highest Cp |
---|---|---|---|---|---|---|
Y. Li et al. [11] | 2011 | numerical and experimental | double turbine system | phase difference: 45° to 180°, distance: 1.5D to 5D direction: same, reversed | 45°, 3D, same direction | about 90% improvement |
S. Zanforlin et al. [37] | 2016 | numerical | NACA0018, 3 blades | arrangement: side by side, triangular | side by side | 0.45 |
V. Clary et al. [35] | 2020 | numerical | NACA0018, 3 blades | distance: 1.5D to 15D; arrangement: lateral spacing, axial spacing | Lateral, 1.5D | 0.3276 |
Yagmur et al. [62] | 2021 | numerical (LES) and experimental (PIV) | NACA 4418 | linear arrangement distance: 6D to 11D | 11 | 78% of the upstream turbine |
Hiraki et al. [142] | 2012 | numerical and experimental | NACA0018, 3 blades, 2 stages, double turbine | same rotational direction, type 1 (same direction with inlet at the outer place); type 2(different direction with inlet at the outer place) | type1 | highest Cp |
Authors | Year | Methods | Turbine Design | Range | Optimized Value | Highest Cp |
---|---|---|---|---|---|---|
H Kikugawa et al. [151] | 2021 | numerical | 5 blades, l/R0.5, NACA0018 | angle of inflow guide 70° to 80° | 75° | 0.115 |
Kazuhiko Nakashima et al. [152] | 2016 | numerical and experimental | 5 blades, inlet nozzle | circular nozzle and straight nozzle | straight nozzle | about 0.8 |
Zhen Liu et al. [153] | 2019 | numerical and experimental | NACA0018, 3 blades; guide vane diffuser | Blade number: 4 to 8, chord length of guide blade: 1.0 to 2.0 turbine chord length, gap 0.17 to 1 turbine chord length, guide blade angle −30° to 30° | 4 blades, guide blade chord 2 times turbine chord, gap 0.25 chord length, guide blade angle 0° | 0.38 |
K Hirowatari et al. [154] | 2012 | numerical and experimental | NAVA0018, 4 blades | inlet nozzle | inlet nozzle | about 0.36 |
XJ Sun et al. [155] | 2011 | numerical | NACA0018, 3 blades | single turbine, 6 boards | 6 boards | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Wu, G.; Tan, L.; Fan, H. A Review: Design and Optimization Approaches of the Darrieus Water Turbine. Sustainability 2023, 15, 11308. https://doi.org/10.3390/su151411308
Li G, Wu G, Tan L, Fan H. A Review: Design and Optimization Approaches of the Darrieus Water Turbine. Sustainability. 2023; 15(14):11308. https://doi.org/10.3390/su151411308
Chicago/Turabian StyleLi, Guanghao, Guoying Wu, Lei Tan, and Honggang Fan. 2023. "A Review: Design and Optimization Approaches of the Darrieus Water Turbine" Sustainability 15, no. 14: 11308. https://doi.org/10.3390/su151411308
APA StyleLi, G., Wu, G., Tan, L., & Fan, H. (2023). A Review: Design and Optimization Approaches of the Darrieus Water Turbine. Sustainability, 15(14), 11308. https://doi.org/10.3390/su151411308