Development of an Algorithm for Textile Waste Arrangement
Abstract
:1. Introduction
2. Literature Methodology
3. Material and Methods
4. Results and Discussion
- While this research focuses on upholstery production waste, efforts can be made to adapt the algorithm for other aspects of textile waste management. This could involve exploring additional waste streams, such as garment manufacturing, textile recycling, or consumer textile waste, and developing specific modules or adaptations to address the unique challenges in these areas.
- To enhance the algorithm’s effectiveness and applicability, it can be integrated with emerging technologies. For example, artificial intelligence techniques can be leveraged to improve the accuracy and efficiency of waste classification or prediction. Virtual reality or simulation tools can be used to create immersive experiences or virtual environments for waste management planning and decision making. Collaborating with experts in these fields can help identify specific opportunities and facilitate the incorporation of elements that can enhance the algorithm’s capabilities.
- The algorithm can be designed to be flexible and customizable, allowing users to adapt it to their specific contexts. This could involve developing a modular architecture that can be easily modified or extended to accommodate different waste management scenarios. Providing a user-friendly interface or API (Application Programming Interface) that allows users to configure parameters, select relevant features, or incorporate domain-specific knowledge could increase the algorithm’s adaptability and usefulness across different applications.
- The algorithm can be regularly updated and improved based on feedback and real-world validation. Discussions with industry stakeholders, waste management professionals, and researchers could be useful to gather insights, validate the algorithm’s performance, and incorporate lessons learned into future iterations. This iterative approach would ensure that the algorithm remains relevant and effective as new challenges and technologies emerge in the field of textile waste management.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- List of the software in GNU Octave
1 | 2 | 3 |
tic clc, clear all, close all pkg load image d1=dir(‘*.png’); a=numel(d1) a1=(1:a).’; n=sqrt(size(a1,1)) if n==round(n) n = round(sqrt(size(a1,1))) n1=n else n=round(sqrt(size(a1,1))) n1=n+1 endif figure hold on for b=1:a subplot(n,n1,b) imshow(d1(b).name) end print -djpg figure1.jpg hold off i=imread(‘figure1.jpg’) i1=im2bw(i,0.95) i2=imcomplement(i1) i2=bwareaopen (i2, 100) figure imshow(i2) ss=regionprops(i2) for j=1:a c(j,1:2)=ss(j).Centroid end x=c(:,2); y=c(:,1) figure hold on imshow(i) voronoi(y,x) axis equal hold off figure hold on x1=round(x);y1=round(y) col=impixel (i, y1, x1) col1=(col/255) [v1,c1]=voronoin ([x,y],{“Qbb”}); for d = 1:a patch(v1(c1{d},1),v1(c1{d},2),col1(d,:)) end hold off axis equal | %Creating Lab Wheel rgb=col numcolors=a num_rects=numcolors rect_colors = rgb/255 rgb1=rgb j=0 for l=1:length(rgb(:,1)) j=j+1 mn=min(rgb(j,1),rgb(j,2)) Iw(j)=min(mn,rgb(j,3)) mn1=min(1-rgb(j,1),1-rgb(j,2)) Ib(j)=min(mn1,1-rgb(j,3)) end Iw=transpose(Iw);Ib=transpose(Ib) Iw=[Iw, Iw, Iw] Ib=[Ib, Ib, Ib] rgb2=rgb1; map1=rgb1/255 lab=rgb2lab(map1) figure title(‘RGB Values of the colors’) m=0 for i=1:num_rects rectangle(‘Position’, [0,i+m,10,num_rects], ‘FaceColor’, rect_colors(i,:)); rectangle(‘Position’, [.5,i+m,2.5,num_rects], ‘FaceColor’, ‘w’); ylim([0 num_rects^2+num_rects]) axis off str1=num2str(rgb1(i,:)) str2=num2str(i) text(1,i+m+num_rects/2,[str2 ‘@ ‘ str1]) m=m+num_rects end figure title(‘Colors by Hue (Lab) angle’) hold on t=360/pi nn=0 for bn=1:length(map1(:,1)) nn=nn+1 if lab(nn,1)<0&&lab(nn,3)<0 degr(nn)=atan(lab(nn,3)/lab(nn,2))*t end if lab(nn,1)==0 degr(nn)=(pi/4)*t end if lab(nn,1)>0&&lab(nn,3)>0 degr(nn)=(pi/2)-atan(lab(nn,3)/lab(nn,2))*t end end | degr=transpose(degr) r=rgb2(:,1); g=rgb2(:,2); b=rgb2(:,3) rx=sqrt(lab(:,2).^2+lab(:,3).^2) ri=rgb2(:,1) gi=rgb2(:,2) bi=rgb2(:,3) delta=sqrt(ri.^2+gi.^2+bi.^2) a=200;b=200;r=max(rx);t=pi/180 fi3=0:10:360 x3=a+r*cos(fi3*t) y3=b+r*sin(fi3*t) plot(x3,y3,‘r’,‘linewidth’,2) x3=transpose(x3) y3=transpose(y3) a1=repmat(a,length(x3),1) for i=1:length(a1) x4(i,:)=[a1(i),x3(i)] y4(i,:)=[a1(i),y3(i)] end plot(x4’,y4’,‘b’) fi3=0:60:360 x3=a+r*cos(fi3*t) y3=b+r*sin(fi3*t) x3=transpose(x3) y3=transpose(y3) a1=repmat(a,length(x3),1) for i=1:length(a1) x5(i,:)=[a1(i),x3(i)] y5(i,:)=[a1(i),y3(i)] end plot(x5’,y5’,‘r’,‘linewidth’,2) r=rx fi=transpose(degr) for i=1:num_rects x(i)=a+r(i)*cos(fi(i)*t) y(i)=b+r(i)*sin(fi(i)*t) x=transpose(x) y=transpose(y) fi4=0:360 r1=5 x6=x(i)+r1*cos(fi4*t) y6=y(i)+r1*sin(fi4*t) fill(x6,y6,map1(i,:)) %circles(x(i),y(i),wh,‘facecolor’,map1(i,:)) str2=num2str(i) text(x(i),y(i),str2) axis equal grid on end toc |
References
- Global Waste Generation—Statistics & Facts. Available online: https://www.statista.com/topics/4983/waste-generation-worldwide/#topicOverview (accessed on 19 June 2023).
- Bungau, S.; Bungau, C.; Tit, D.M. Studies on the Last Stage of Product Lifecycle Management for a Pharmaceutical Product. J. Environ. Prot. Ecol. 2015, 16, 56–62. [Google Scholar]
- Bungau, S.G.; Suciu, R.N.; Bumbu, A.G.; Cioca, G.; Tit, D.M. Study on Hospital Waste Management in Medical Rehabilitation Clinical Hospital, Baile Felix. J. Environ. Prot. Ecol. 2015, 16, 980–987. [Google Scholar]
- The Impact of Textile Production and Waste on the Environment. Available online: https://www.europarl.europa.eu/news/en/headlines/society/20201208STO93327/the-impact-of-textile-production-and-waste-on-the-environment-infographics (accessed on 10 January 2023).
- Tit, D.M.; Bungau, S.G.; Nistor-Cseppento, D.C.; Copolovici, D.M.; Buhas, C.L. Disposal of Unused Medicines Resulting from Home Treatment in Romania. J. Environ. Prot. Ecol. 2016, 17, 1425–1433. [Google Scholar]
- Bungau, S.; Tit, D.M.; Fodor, K.; Cioca, G.; Agop, M.; Iovan, C.; Cseppento, D.C.; Bumbu, A.; Bustea, C. Aspects Regarding the Pharmaceutical Waste Management in Romania. Sustainability 2018, 10, 2788. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, T.; Khan, S. Textile Industry: Pollution Health Risks and Toxicity. In Textile Wastewater Treatment; Muthu, S.S., Khadir, A., Eds.; Springer Nature Singapore: Singapore, 2022; pp. 1–28. ISBN 978-981-19-2832-1. [Google Scholar]
- Filipoiu, D.C.; Bungau, S.G.; Endres, L.; Negru, P.A.; Bungau, A.F.; Pasca, B.; Radu, A.F.; Tarce, A.G.; Bogdan, M.A.; Behl, T.; et al. Characterization of the Toxicological Impact of Heavy Metals on Human Health in Conjunction with Modern Analytical Methods. Toxics 2022, 10, 716. [Google Scholar] [CrossRef]
- Niinimäki, K.; Peters, G.; Dahlbo, H.; Perry, P.; Rissanen, T.; Gwilt, A. The Environmental Price of Fast Fashion. Nat. Rev. Earth Environ. 2020, 1, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Aus, R.; Moora, H.; Vihma, M.; Unt, R.; Kiisa, M.; Kapur, S. Designing for Circular Fashion: Integrating Upcycling into Conventional Garment Manufacturing Processes. Fash. Text. 2021, 8, 34. [Google Scholar] [CrossRef]
- Enes, E.; Kipöz, Ş. The Role of Fabric Usage for Minimization of Cut-and-Sew Waste within the Apparel Production Line: Case of a Summer Dress. J. Clean. Prod. 2020, 248, 119221. [Google Scholar] [CrossRef]
- Jacometti, V. Circular Economy and Waste in the Fashion Industry. Laws 2019, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.S.; Siddiqua, S.; Cherian, C. Sustainable Applications of Textile Waste Fiber in the Construction and Geotechnical Industries: A Retrospect. Clean. Eng. Technol. 2022, 6, 100420. [Google Scholar] [CrossRef]
- Sai, A.; Acquaye, R. Recycling Fabric Waste into Functional Interior Decoration Pieces. J. Art Des. 2022, 2, 15–32. [Google Scholar] [CrossRef]
- Cuc, S.; Bungau, C. Creating Competitive Advantage through Sustainable Value Chain: Insights on Automotive and Textile Industry. Management between Profit and Social Responsibility. In Proceedings of the Review of Management and Economic Engineering International Management Conference, Napoca, Romania, 18–20 September 2014; pp. 186–196. [Google Scholar]
- Cuc, S.; Tripa, S.; Bungau, C. Strategies for Increasing Competitiveness of the Romanian Textile and Clothing Industry. In Proceedings of the 5th Review of Management and Economic Engineering International Management Conference, Cluj Napoca, Romania, 22–23 September 2016; p. 100. [Google Scholar]
- Sandin, G.; Peters, G.M. Environmental Impact of Textile Reuse and Recycling—A Review. J. Clean. Prod. 2018, 184, 353–365. [Google Scholar] [CrossRef]
- Hussain, C.M.; Paulraj, M.S.; Nuzhat, S. Source Reduction and Waste Minimization—Concept, Context, and Its Benefits. In Source Reduction and Waste Minimization; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–22. ISBN 978-0-12-824320-6. [Google Scholar]
- Botsman, R.; Rogers, R. What’s Mine Is Yours: The Rise of Collaborative Consumption; Harper Collins: New York, NY, USA, 2010. [Google Scholar]
- Zandberga, A.; Kalnins, S.; Gusca, J. Decision-Making Algorithm for Waste Recovery Options. Review on Textile Waste Derived Products. Environ. Clim. Technol. 2023, 27, 137–149. [Google Scholar] [CrossRef]
- Prasad, N.H.; Rajyalakshmi, G.; Reddy, A.S. A Typical Manufacturing Plant Layout Design Using CRAFT Algorithm. Procedia Eng. 2014, 97, 1808–1814. [Google Scholar] [CrossRef] [Green Version]
- SpringerLink Database. Available online: https://link.springer.com/ (accessed on 17 May 2023).
- Zhang, W. Design for the Sustainment of Traditional Making Practices: A Research Study in Central China. Des. J. 2021, 24, 137–147. [Google Scholar] [CrossRef]
- Hussain, A. Colour Psychology in Art: How Colour Impacts Mood. Art Des. Rev. 2021, 09, 301–308. [Google Scholar] [CrossRef]
- Elliot, A.J. Color and Psychological Functioning: A Review of Theoretical and Empirical Work. Front. Psychol. 2015, 6, 368. [Google Scholar] [CrossRef] [Green Version]
- Garavaglia, J.; Markoski, M.M.; Oliveira, A.; Marcadenti, A. Grape Seed Oil Compounds: Biological and Chemical Actions for Health. Nutr. Metab. Insights 2016, 9, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Craiut, L.; Bungau, C.; Negru, P.A.; Bungau, T.; Radu, A.-F. Technology Transfer in the Context of Sustainable Development—A Bibliometric Analysis of Publications in the Field. Sustainability 2022, 14, 11973. [Google Scholar] [CrossRef]
- Craiut, L.; Bungau, C.; Bungau, T.; Grava, C.; Otrisal, P.; Radu, A.F. Technology Transfer, Sustainability, and Development, Worldwide and in Romania. Sustainability 2022, 14, 15728. [Google Scholar] [CrossRef]
- Jinlong, Y.; Yue, W.; Yanxiang, C.; Yuanyuan, Z.; Huiyi, W.; Yan, W. Research on Innovative Design of Patchwork Art Based on the Concept of Sustainable Development—Take the Creation of “HUI Yu Men Ting” as an Example. J. Phys. Conf. Ser. 2021, 1790, 12026. [Google Scholar] [CrossRef]
- Minda, Q. The Application of Patchwork Art in the Design of Decorative Art. Art Perform. Lett. 2022, 3, 63–67. [Google Scholar]
- Singh, E.; Pillay, N. A Study of Ant-Based Pheromone Spaces for Generation Constructive Hyper-Heuristics. Swarm Evol. Comput. 2022, 72, 101095. [Google Scholar] [CrossRef]
- Pasha, J.; Nwodu, A.L.; Fathollahi-Fard, A.M.; Tian, G.; Li, Z.; Wang, H.; Dulebenets, M.A. Exact and Metaheuristic Algorithms for the Vehicle Routing Problem with a Factory-in-a-Box in Multi-Objective Settings. Adv. Eng. Inform. 2022, 52, 101623. [Google Scholar] [CrossRef]
- Dulebenets, M.A. An Adaptive Polyploid Memetic Algorithm for Scheduling Trucks at a Cross-Docking Terminal. Inf. Sci. 2021, 565, 390–421. [Google Scholar] [CrossRef]
- Dulebenets, M.A. A Diffused Memetic Optimizer for Reactive Berth Allocation and Scheduling at Marine Container Terminals in Response to Disruptions. Swarm Evol. Comput. 2023, 80, 101334. [Google Scholar] [CrossRef]
- Ala, A.; Chen, F. Alternative Mathematical Formulation and Hybrid Meta-Heuristics for Patient Scheduling Problem in Health Care Clinics. Neural Comput. Appl. 2020, 32, 8993–9008. [Google Scholar] [CrossRef]
- Whelehan, D.F.; Conlon, K.C.; Ridgway, P.F. Medicine and Heuristics: Cognitive Biases and Medical Decision-Making. Ir. J. Med. Sci. 2020, 189, 1477–1484. [Google Scholar] [CrossRef]
- Chen, M.; Tan, Y. SF-FWA: A Self-Adaptive Fast Fireworks Algorithm for Effective Large-Scale Optimization. Swarm Evol. Comput. 2023, 80, 101314. [Google Scholar] [CrossRef]
- Gholizadeh, H.; Fazlollahtabar, H.; Fathollahi-Fard, A.M.; Dulebenets, M.A. Preventive Maintenance for the Flexible Flowshop Scheduling under Uncertainty: A Waste-to-Energy System. Environ. Sci. Pollut. Res. 2021, 1–20. [Google Scholar] [CrossRef]
CC TW | R | G | B | L | a | b | CC TW | R | G | B | L | a | b |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | 169 | 181 | 193 | 73.11 | −1.73 | −7.50 | T10 | 25 | 58 | 129 | 26.21 | 15.76 | −43.48 |
T2 | 134 | 126 | 115 | 53.20 | 1.03 | 7.08 | T11 | 151 | 158 | 168 | 64.85 | −0.46 | −6.05 |
T3 | 158 | 157 | 155 | 64.76 | −0.02 | 1.17 | T12 | 90 | 120 | 156 | 49.50 | −1.01 | −22.79 |
T4 | 138 | 124 | 85 | 52.37 | −0.67 | 23.27 | T13 | 143 | 126 | 96 | 53.61 | 1.76 | 18.75 |
T5 | 71 | 93 | 142 | 39.78 | 6.09 | −29.68 | T14 | 54 | 77 | 127 | 33.19 | 7.15 | −30.97 |
T6 | 127 | 153 | 188 | 62.44 | −0.67 | −21.08 | T15 | 160 | 161 | 163 | 66.22 | 0.03 | −1.16 |
T7 | 153 | 192 | 223 | 75.95 | −5.75 | −19.67 | T16 | 181 | 185 | 197 | 75.17 | 0.94 | −6.53 |
T8 | 168 | 154 | 119 | 63.97 | −0.41 | 20.28 | T17 | 139 | 78 | 83 | 40.51 | 26.21 | 8.34 |
T9 | 106 | 134 | 145 | 54.19 | −7.27 | −9.15 | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Indrie, L.; Ilieva, J.; Zlatev, Z.; Tripa, S.; Sturza, A. Development of an Algorithm for Textile Waste Arrangement. Sustainability 2023, 15, 11399. https://doi.org/10.3390/su151411399
Indrie L, Ilieva J, Zlatev Z, Tripa S, Sturza A. Development of an Algorithm for Textile Waste Arrangement. Sustainability. 2023; 15(14):11399. https://doi.org/10.3390/su151411399
Chicago/Turabian StyleIndrie, Liliana, Julieta Ilieva, Zlatin Zlatev, Simona Tripa, and Amalia Sturza. 2023. "Development of an Algorithm for Textile Waste Arrangement" Sustainability 15, no. 14: 11399. https://doi.org/10.3390/su151411399
APA StyleIndrie, L., Ilieva, J., Zlatev, Z., Tripa, S., & Sturza, A. (2023). Development of an Algorithm for Textile Waste Arrangement. Sustainability, 15(14), 11399. https://doi.org/10.3390/su151411399