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Abstract: This study aims to assess the characteristics of humic acids (HAs) in floodplain soils. HAs
were isolated from the Fluvisols located out of the embankment in the riparian forest (unflooded
riparian forest) and within the embankment (inter-embankment), in the area periodically flooded.
HAs from these soils were examined for quantity, structure, and humification degree using extraction
methods as well as elemental analysis, UV-Vis, FTIR, EPR, and 1HNMR spectroscopies. In the soils
after drainage, a significant decrease in HAs has been observed compared to the periodically flooded
areas. Obtained results showed that organic matter from periodically flooded soils is more humified
and contains HAs with a more aromatic, lignin-like structure compared to the humus matter from
unflooded Fluvisols. Humic acids from periodically flooded soil contained a lower amount of C and
H compared to those isolated from unflooded soils located out of the embankment, which resulted
in a less aliphatic or more aromatic character of their molecules. A higher H/C ratio of HAs from
the Fluvisols after drainage exhibits more condensed aromatic ring or substituted ring structures
in the molecules. Soils with organic matter with a higher humification index contained HAs with
lower radical concentration values in comparison to soils with less humified organic matter. Results
obtained show that in flooded areas with periodically reductive conditions, humic acids do not lose as
many -OCH3 groups as in better oxidized soils and therefore exhibit a lignin-like aromatic structure.
It has been proven that the formation and dynamics of HA transformation may vary due to the water
regime in soils.

Keywords: humic substances; spectroscopic analysis; E4/E6 ratio; FTIR analysis; 1H NMR spectra;
anthropogenic impact on soil

1. Introduction

Soil organic matter (SOM) is particularly important since it forms one of the largest
reservoirs of organic C in ecosystems [1]. Therefore, any change in the turnover rate of
soil C, size, and quality may potentially alter the atmospheric CO2 concentration and
affect the global climate. Pedogenic processes, plant cover, and soil water regime affect
organic matter decomposition rates in soils and the global biogeochemical cycle [2–5].
Most of the organic carbon, over 70%, occurs as highly reactive and recalcitrant humic
substances [6,7]. Humic acids (HA) and fulvic acids (FA) are fractions recognized as the
most reactive within soil components, which maintain soil fertility and affect the physical,
chemical, and biological status of the soil [8–13]. Lately, growing attention has been paid
to humin, which is considered a significant SOM component and plays an important role
in carbon sequestration or binding pollutants [14–16]. However, it is difficult to discuss
the role of humic substances in the environment without knowing their chemical structure.
Transformation of organic matter under the influence of external factors, e.g., land use,
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changes in pH, changes in soil water regime, fertilization, etc., results in a change in the
molecular characteristics of HS, affecting soil properties and the whole ecosystem [17].

Humification of organic matter usually involves variability in the elemental composi-
tion of HS molecules, as manifested by changes in the composition of C, H, N, and O, as
well as changes in functional groups that are extremely valuable (mainly carboxylic and
phenolic). More humified organic matter is characterized by an increase in the aromaticity
of the molecules, an increase in carbon and decrease in hydrogen content, as well as an in-
crease in the content of carboxyl and methoxy groups compared to less humified matter [18].
Advanced instrumental techniques such as FTIR, 13C CP MAS NMR/1H NMR, or EPR
spectroscopy can help in describing the detailed chemical properties of humic substances
as well as following the direction of humification [19–21]. Decreasing in SOM, particularly
HAs (a very stable humus fraction), contributes to an increase in compactness of the soil,
diminishing soil aeration, and the appearance of reductive chemical conditions [22], as well
as reducing the stability of soil aggregates.

In river valleys, soils enriched with organic matter occur very often [23]. Floodplain
organic carbon accumulation as well as soil development depend on coastal flooding and
sedimentation [24]. The deposited sediments show clear variation both vertically and
spatially [25,26]. This variability is visible both within the alluvia of the same river and
between the sediments of different watercourses. Conditions of periodic high moisture
result in a large accumulation of organic matter in the surface horizons. At the same
time, human activities that use agrotechnical treatments to transform riverside forest
areas into agricultural land have caused the surface organic layer to mix with the mineral
substrate, causing a significant deepening of arable horizons and consequently changing
the resources of organic matter. The physicochemical properties of soils formed under
the influence of the above-mentioned factors may determine the formation of various
organo-mineral complexes.

The channelization of the Odra River, the second largest river in Poland, performed in
the 19th century and the construction of flood embankments at the beginning of the 20th
century initiated the large-scale regulation of the Odra valley and resulted in far-reaching
changes in the natural conditions in the valley [27–29]. A significant part of the riparian
forests was separated from the river by hydrotechnical facilities (flood embankments),
which effectively prevented their flooding and initiated the changes in vegetation known
as transformation into oak-hornbeam communities. Principles of flood protection in the
so-called inter-embankment zone involved the removal of trees in this zone, which resulted
in favoring its use first as meadows and then for agricultural purposes. On the other hand,
the commissioning of the hydroelectric power plant in Brzeg Dolny (1958) resulted in a
lowering of the Odras’ bottom level and caused the lowering of the groundwater table in
alluvial soils in the areas downstream the dam [30,31]. Lowering of the groundwater causes
drying of the soil and, consequently, brings about changes in its properties, like changes
in sediment volume or liquid limit [32]. These changes persist even after the soil has been
rewetted and the effects of the drying persist. The lowering of the groundwater table
enables deeper penetration of the soil by plant roots, microorganisms, and soil fauna [33],
but at the same time affects the direction of organic matter humification and often causes
an increase in decomposition rate. However, there are not many studies describing the
humification rate and quality of organic matter under conditions of flood elimination and
change of soil water regime in alluvial soils of temperate climates.

Organic C stocks in floodplain soils have been well described in the literature [23,24,34–36], but
still little is known about the quality of organic matter, including the molecular charac-
teristics of humic substances, in these areas. River valleys are a mosaic of terrestrial and
aquatic environments. Most of the natural habitats found in these areas are associated
with regular flooding, and the frequency and length of these floods are the most important
ecological factors determining their existence [25,37,38]. Fluctuations in the water level of
the river combined with river flooding affect the water regime of alluvial soils, including
the level and mobility of groundwater, enabling naturally formed river valleys to retain
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relatively high soil moisture even in periods of drought [39]. Fluvial processes occur on
all continents and in all climatic zones [40]. Alluvial terraces are characterized by strongly
developed relief with oxbow lakes, periodic river channels, and gutter depressions, which,
if they are subject to terrestrialization, are still slightly lower and therefore preferentially
hold water in them. Vast areas of alluvial soils on the flooding terraces were covered with
riparian forests [41,42], whose high fertility was conducive to human activities aimed at
transforming riverside forest areas into agricultural land. At the same time, numerous
floods causing significant material and social losses prompted various attempts to tame the
river [43,44].

This study aims to assess the properties of the HAs molecules using spectroscopic
instrumental techniques as well as to describe and determine the humification rate and
indexes in floodplain soils affected by drainage. The obtained results may contribute to the
development of good practices to ensure high quality organic matter and the stability of
ecosystems based on floodplain soils.

2. Materials and Methods
2.1. Site Location, Soil Characteristics and Sampling

The research was carried out in the low valley of the Odra River, SW Poland, in its
middle course downstream from Wrocław (Figure 1). The Pleistocene terraces of the Odra
river, shaped by the fluvioglacial water of the Weichselian glaciation, are mainly built of
sands and gravels, while the Holocene terraces often contain fine-textured interbedding.
The surface layers of floodplains are typically built of loamy or silty soil materials [33,45,46].
As a result of riverbed regulation and the construction of levees, in particular the weirs
in Brzeg Dolny and Malczyce, a decrease in groundwater level has been documented.
Studies conducted in the period 1970–1990 showed a groundwater level decrease of 44 cm
(compared to the previous state) at a distance of 550 m from the Odra River and of 65 cm at
a distance of 120 m. As a result, for a considerable part of the year, the groundwater level is
recorded beyond the conventional lower limit profiles of the soil [47–49].
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The study included soil profiles within two transects, which were located on the lowest
terraces (former floodplain). According to the WRB 2015 [50], they are classified as Fluvic
Cambisols (Rp1a–Rp3a and Mw7a–Mw8a soil profiles) and Fluvic Phaeozems (Mw6a soil
profile). The first transect was located out of the embankment in the riparian forest and
the oak-hornbeam forest (unflooded riparian forest within different distances from the
river: 900 m, Rp1a; 950 m, Rp2a; 1050 m, Rp3a). Another transect was located within the
embankment (inter-embankment), in the area periodically flooded and used as grassland
(within different distances from the riverbed: 120 m for Mw6a, 150 m for Mw7a, and 200 m
for Mw8a). Samples were taken from July to September, so groundwater was not recorded
in any of the profiles to a depth of 150 cm. Soil morphology was described according to
FAO guidelines [51]. The bulk soil sample was a sample of three singleout, taken from
0–0.1 m depth.

The basic parameters of the investigated soil horizons are presented in Table 1. The
results presented are the mean values of three replicates.

Table 1. Basic properties of the Fluvisols studied (depth of sampling 0–0.1 m).

Object
Distance

from River
(m)

pH 1M
KCl

TOC
g.kg−1

Nt
g.kg−1 C/N CEC

cmol(+).kg−1

Silt
Content

(%)

Clay
Content

(%)

Rp1a 900 4.5 39.7 2.9 14 24.33 52.7 0
Rp2a 950 4.9 26.0 3.7 7 25.41 67.2 20.7
Rp3a 1050 4.9 39.9 3.1 13 17.68 41.4 9.4

Mw6a 120 4.7 45.8 3.9 12 18.20 62.0 25
Mw7a 150 4.8 56.9 2.8 20 16.28 62.0 14
Mw8a 200 4.6 54.2 2.8 19 16.98 60.0 16

Explanations: Rp—riparian forest, Mw—grassland; TOC—total organic carbon, Nt—total content of nitrogen,
CEC—cation exchange capacity.

2.2. Content of Total Organic Carbon and C/N Ratio

Total organic carbon (TOC) was measured using a Ströhlein CS-mat 5500 analyzer
(Strohlein GmbH & Co., Kaarst, Germany; currently Bruker AXS Inc., Madison, WI, USA);
samples did not contain carbonates; thus, no pre-treatment was applied. The total nitrogen
content (Nt) was measured by the Kjeldahl method using a Büchi semi-automated analyzer.

2.3. Chemical Fractionation of the Humic Material

The extraction and chemical fractionation of the humic substances were accomplished
through the method suggested by the International Society of Humic Substances (IHSS),
described in Swift [52] with some modification. The first step in the procedure is decalcita-
tion of the soil sample to obtain a low-molecular-weight fulvic fraction (CAC), followed by
exhausting alkali extraction using 0.1 M NaOH until the supernatant is a light color. This
fraction, called total extractable carbon (TEC), consists of humic acids and fulvic acids.

Quantitative determination of humic fractions was performed using H2SO4 instead of
HCl [53] for decalcitation (CAC). The carbon of fulvic acids (CFA) fraction was calculated
from the difference between total extractable carbon (TEC) measured in alkali (NaOH)
extract and carbon of humic acids (CHA) fraction using sulfuric acid (H2SO4) to precip-
itate HA at about pH = 2 of the alkaline extract and separation of solid HA from the FA
by centrifugation.

Carbon of nonhydrolyzable humic substances (CR)–commonly named humin fraction
was calculated according to the formula:

CR = TOC − (CHA + CFA) (1)

To evaluate the humification degree some indexes were calculated [53–55]:

degree of humification HD = CHA + CFA (2)
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humification rate HR = (CHA + CFA)/TOC (3)

humification index HI = (CHA/TOC) × 100 (4)

humic acid to fulvic acid ratio CHA/CFA

2.4. Extraction and Purification Procedure of Humic Acids

Humic acids were extracted from the soil of the humus horizon (A) using the proce-
dure described by Swift [52], which was found satisfactory by the International Humic
Substances Society for most soil types. 1 g of the dried soil sample sieved by 2 mm was
decalcified with a few drops of 1 M HCl and then 0.1 M HCl was added to obtain a
sample-solution ratio of 1:10; the suspension was shaken, left for 1 h, and separated by
centrifugation. After neutralizing the soil with 1 M NaOH, 0.1 M NaOH was added (under
N2) to obtain the final 1:10 (soil: extractant). The alkaline suspension was collected by
centrifugation. The supernatant was acidified with 6 M HCl to pH 1. HA gel was separated
by centrifugation and purified with a 0.1 M HCl/0.3 M HF solution, left overnight, and
centrifuged; this procedure was repeated three times. The precipitate was transferred to
a Visking dialysis tube (Spectra/Por 7 MWCO 10,000, Spectrum Europe B.V., Breda, The
Netherlands) and dialyzed against distilled water until a Cl- test was negative. After that,
the HA were freeze-dried.

Elemental analysis of HA was performed with a Perkin-Elmer 2000 instrument (C, H,
and N). Oxygen was calculated from the mass balance. The ash content was determined
by combustion in a muffle furnace at 550 C. The degree of internal oxidation (ω) was
calculated according to the formula [56]:

ω = (2O + 3N-H)/C (5)

O, N, H, and C represent concentrations of elements in HA molecules expressed as
atomic percent in ash-free samples. Furthermore, the atomic ratios H/C and O/C were
calculated to express the relationship of the elements in the composition of HA.

2.5. Spectroscopic Analysis of HA
2.5.1. E4/E6

Vis spectroscopy analysis of HA was performed using UV-Vis Cary 60 (Agilent
Technologies, Santa Clara, CA, USA). About 1 mg of HA was dissolved in 100 mL of
0.1 mol/dm3 NaOH and a clear solution. Vis absorbance was measured in 1 cm quartz
quvettes at wavelengths of 465 and 665 nm. The ratio of both absorbances was calculated
as the E4/E6 ratio.

2.5.2. FTIR

Fourier-transformed infrared (FTIR) spectroscopy of HA was used to analyze the
nature and structure of HA molecules. FTIR spectroscopy provides information on the
presence of functional groups in both aliphatic and aromatic components. FTIR spectra
of HA were recorded with a Bruker Vertex 70 FT-IR spectrometer on KBr pellets (an
approximately 1 mg sample in 400 mg of KBr). The collected spectra were presented in the
figure as transmittance (T). The same spectra, but in absorbance (A) mode (A = −log(T)),
were used for quantitative analysis. Spectra were divided into characteristic peak regions
and integrated using OriginPro 2016. Ten areas were chosen with a maximum wavenumber
of (cm−1): 1040, 1076, 1229, 1076, 2441, 1451, 1540, 1653, 1229, 1451, 1540, 1653, 1725, 2851,
2922, and 3421.
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2.5.3. 1H NMR
1H NMR spectra were taken for HA samples diluted in NaOH solutions dissolved

in D2O. These studies were done to compare proton content in different structures (aro-
matic/aliphatic methoxy, alcohol groups) of humic acids. Automatic measurements were
performed using the Bruker Avance III 500 MHz Spectrometer with the liquid probe BBI,
5 mm, 1H/2H/31P-109Ag, Z-grad, ATM. Standard measurement parameters were used:
16 scans, pulse sequence zg30, d1 = 1 s, acquisition time 2.62 s, fid resolution 0.38 Hz,
rotation frequency of sample 20 Hz.

For quantitative analysis, integration of NMR spectra was performed using TopSpin
4.1 software.

2.5.4. EPR

EPR (Electron Paramagnetic Resonance) spectra were applied for quantitative and quali-
tative analysis of radicals, which are built into humic substance structures [52,55,57]. All EPR
spectra of humic acids were recorded at room temperature using a Bruker Elexsys E500
spectrometer equipped with standard Bruker instrumentation (frequency and teslameter
counters). For quantitative measurements, the resonator of a double cavity was applied; the
radical species concentration standards (IHSS peat and Leonardite HA as well as Bruker
alanine pill) were placed in the first cavity while the analyzed sample was placed in its
second cavity. After tuning, the spectra were recorded separately for each of the two cavities
without changing any of the measurement parameters. X-band spectra were performed at
a microwave power of 20 mW and a modulation amplitude of 1 G. The double integrations
were conducted using the WinEPR 2.22 rev.12 program (developed by Bruker).

2.6. Statistical Analysis

Results of the humic substances properties were compared between the mean values
of groups with different water regimes (meadow flooded soils vs. riparian forest unflooded
soils) using analysis of variance (ANOVA). Tukey’s honest significant difference (HSD) test
was used to find pairs of means that were significantly different from each other at p < 0.05
after ANOVA revealed statistically significant differences. Before running the ANOVA, the
Shapiro-Wilk normality test was performed. The raw data on humic fraction content as
well as molecular properties of the humic acids were log-transformed based on the results
of Shapiro–Wilk’s test that revealed the lack of their normal distribution. All the data were
processed using the software package Statistica version 13.3 from TIBCO Software Inc.,
Karifuku Niya Pavilion, CA, USA.

3. Results and Discussion
3.1. Total Organic Carbon and Nitrogen

The studied Fluvisols were characterized by various total organic carbon (TOC) con-
tents depending on the land use and distance from the river (Table 2). Fluvisols under the
non-flooded riparian forest contained significantly lower TOC compared to the meadow
soils (26.0 to 39.9 g kg−1 and from 45.8 to 56.9 g kg−1, respectively). Lowering the ground-
water level causes aerobic conditions in the soil. This favors an increase in organic matter
decomposition, as confirmed by the lower C/N ratio compared to the floodplain soils.
Similar results were described by Banach-Szott et al. [58] and Kercheva et al. [59], who
found the highest TOC for the regularly flooded Fluvisols.

3.2. Content of Humic Substances

The process of organic matter transformation after drainage led to a change in the
fractional composition of humus in the investigated soils. However, in soils from both
transects, humin-residual carbon (CR) was the main fraction of total organic carbon (Table 2,
Figure 2). CR values decreased with an increase in the distance from the river (61.4 to
44.5% of TOC for the soils under riparian forest (Rp sample code) and 60.8 to 47% of TOC
for the grassland soils (Mw sample code). Interesting phenomena have been observed
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for the Rp1a soil with 0% clay content and the highest content of CR fraction (Table 1
and Figure 2). This seems to confirm the theory that the CR/humin fraction, or at least
much of this fraction, is probably derived from cuticular components mostly of aliphatic
character, which emphasize a much slower rate of decomposition than the other plant
constituents [14]. Greater distance from the river banks and particularly drainage conditions
favor deeper transformation of organic residues, which is reflected in the lower content
and share of CR fraction in TOC in unflooded Fluvisols (13.98–24.39 g kg−1) compared to
the soils within the embankment (25.46–32.33 g kg−1). The decrease in humin fraction is
correlated with an increase in total extractable carbon (TEC fraction, isolated with alkali
extracts and consisting of humic and fulvic acids) (Table 1 and Figure 2), which suggests
that this fraction may play a significant role in the humification path [60]. In the soils after
drainage, a significant decrease of humic acids has been observed compared to the flooded
areas (4.77–7.51 g kg−1 and 8.54–14.97 g kg−1, respectively) and a share of this fraction in
the total organic carbon content as well (Table 2, Figure 2). This resulted in a decrease in the
humic acid/fulvic acid (CHA/CFA) ratio and changes in humification parameters (Table 2).
This ratio is commonly used to determine the direction of the humification process. Fertile
soils such as chernozems are characterized by humic substances with CHA/CFA ranges
of about 2.0–2.5, which means that organic matter transformation leads to the formation
of two times more humic acids than fulvic acids [10,11]. The main reason for the lower
CHA/CFA ratio in the riparian soils was presumably the more oxidized conditions in the
unflooded soils, which enhanced mineralization of the organic matter [36].

Table 2. Content of carbon fractions in the Fluvisols (depth of sampling 0–10 cm).

Factor
Distance

from River
(m)

TOC CAC TEC CHA CFA CR

g.kg−1

Mw6a 120 45.8 1.58 16.37 8.54 7.83 27.85
Mw7a 150 56.9 1.84 22.73 12.00 10.73 32.33
Mw8a 200 54.2 2.56 26.17 14.97 11.20 25.46
Rp1a 900 39.7 3.45 11.86 5.37 6.49 24.39
Rp2a 950 26.0 1.76 10.26 4.77 5.50 13.98
Rp3a 1050 39.9 4.28 17.87 7.51 10.36 17.75

LSD 3.099 0.485 3.142 2.742 1.240 1.314
Grassland 52.3 1.993 21.757 11.837 9.92 28.547

SD 6.99 0.47 4.67 3.17 1.72 3.15

Land use Riparian
forest 35.4 3.163 13.330 5.883 7.45 18.707

SD 5.26 1.17 3.66 1.35 2.32 4.74
LSD 2.017 0.316 2.045 1.785 0.807 0.855

Explanations: LSD—lowest significant difference, SD—standard deviation at p < 0.05; Rp—riparian forest,
Mw—grassland; TOC—total organic carbon, CAC—carbon of low-molecular fulvic fraction, TEC—total ex-
tractable carbon, CHA—carbon of humic acids, CFA—carbon of fulvic acids, CR—carbon of humin fraction.

3.3. E4/E6 Ratio Results

Another parameter determined for humic acids extracted from the investigated soil
was the E4/E6 ratio. The ratio that is calculated to express the degree of humification on
the basis of the absorbance, called the color ratio, provides information on the degree of
aromaticity and is commonly used in the characterization of organic matter [61,62]. This
ratio ranged from 3.16 to 3.90 (Table 3) for the humic acids studied, achieving values typical
for this organic matter fraction (5.0) [63]. The E4/E6 relationship was significantly lower
for the meadow soils (3.35) than the forest ones (3.79). In general, the lower parameter
values are typical for relatively large humic substances with high molecular masses and
degrees of humification [64].
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Figure 2. Carbon fractions in the fluvisols (in % of total organic carbon) (depth of sampling 0–10 cm).
Error bars represent standard error at p < 0.05. Explanations: Rp—riparian forest, Mw—grassland.
CAC—carbon of low-molecular fulvic fraction, TEC—total extractable carbon, CHA—carbon of
humic acids, CFA—carbon of fulvic acids, CR—carbon of humin fraction.

Table 3. Humification indexes of the Fluvisols (depth of sampling 0–0.1 m).

Factor
Distance

from
River (m)

HD HR HI CHA/CFA E4/E6

Mw6a 120 16.37 0.41 21.51 1.09 3.25
Mw7a 150 22.73 0.86 44.97 1.11 3.16
Mw8a 200 26.17 0.66 37.51 1.34 3.65
Rp1a 900 11.86 0.26 11.72 0.83 3.90
Rp2a 950 10.27 0.18 8.38 0.87 3.82
Rp3a 1050 17.87 0.33 13.84 0.72 3.66

LSD 3.91 0.06 5.60 n.s. n.s.
Grassland 21.76 0.64 34.66 1.18 3.35

Land use SD 4.81 0.20 11.08 0.14 0.33
Riparian

forest 13.33 0.26 11.32 0.81 3.79

SD 3.66 0.22 2.52 0.07 0.26
LSD 2.55 0.04 3.64 0.09 0.43

Explanation: n.s.—not significant, LSD—lowest significant difference, SD—standsrd deviation at p < 0.05;
Rp—riparian forest, Mw—grassland; HD—humification degree, HR—humification ratio, HI—humification index,
CHA/CFA—humic acids to fulvic acids ratio, E4/E6—absorbance ratio measured at 465 (E4) and 665 nm (E6).

In our studies, changes in the quantity of humic acids under different water regime
influences may originate from two processes: the production of HA precursors and the
transformation of native HAs during modification of the soil redox conditions [65].

3.4. Elemental Composition of and Atomic Ratio of HAs

The content of carbon in the HA molecules exhibits a change in the soil-water regime
and is connected with an increasing distance from the riverbed (Table 4). Humic acids
from periodically flooded soil (120–200 m from the riverbed) contain a lower amount
of C (50.00–51.88%) compared to those isolated from unflooded soils located out of the
embankment (50.95–52.86%).
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Table 4. Elemental composition (in weight percent), atomic ratio and degree of internal oxidation of
humic acids from the fluvisols (depth of sampling 0–0.1 m).

Object C (SD) H (SD) N (SD) S (SD) O H/C O/C ω

%

Mw6a 51.88 a

(0.16) 5.57 a (0.37) 4.99 a (0.06) 0.85 a (0.01) 36.71 1.29 0.53 0.0208

Mw7a 51.48 ac

(0.07) 5.62 a (0.36) 4.97 a (0.04) 0.86 a (0.01) 37.06 1.31 0.54 0.0177

Mw8a 50.00 b

(0.26)
5.58 a (0.36) 5.37 b (0.05) 0.92 a (0.03) 38.13 1.34 0.57 0.0817

Rp1a 50.95 c

(0.01) 5.80 a (0.25) 5.06 a (0.05) 0.66 b (0.03) 37.54 1.37 0.55 −0.0046

Rp2a 51.90 a

(0.13) 5.75 a (0.36) 4.90 a (0.06) 0.67 b (0.02) 36.77 1.33 0.53 −0.0247

Rp3a 52.86 d

(0.08)
6.00 a (0.40) 5.39 b (0.04) 0.65 b (0.02) 38.04 1.36 0.54 −0.0205

Explanaition: a,b,c,d means followed by the same letter are not significantly different at p < 0.05; Rp—riparian
forest, Mw—grassland; (SD)—standard deviation, ω—degree of internal oxidation.

A lower amount of hydrogen (although not statistically confirmed) at the same time
results in a less aliphatic or more aromatic character of the HA molecules, which is also
expressed in a lower H/C ratio. Higher H/C exhibits more condensed aromatic ring
or substituted ring structures in the HAs molecules [66]. Periodically flooded Fluvisols
covered by the grassland community create a better condition to cumulate organic matter
with slow but regular transformation of organic matter compared to the drier soils located
out of embankment (Rp1a–Rp3a). These results are in good agreement with the ones ob-
tained from the Vis analysis. The E4/E6 ratios of HAs from periodically flooded soils were
characterized by significantly lower values in comparison to those from unflooded soils
(Table 3), which is connected with the higher molecular weight of HAs from Mw soils [67].
Negative values of the degree of internal oxidation obtained for the HAs from unflooded
Fluvisols (Table 4) confirm the above observation. Young humic acids from organic matter
of lower humification degree are often characterized by a lower molecular weight expressed
in lower values of the parameter (negative values mean “young” unmatured HAs), as
reported by some authors [67,68]. The Van Krevelen diagram presented in Figure 3 exhibits
the H/C and O/C atomic ratios of HAs; thus, information on changes in their structure
under the influence of different humification conditions can be obtained.

More humified organic matter from the periodically flooded Fluvisols, as indicated by
the higher values of humification parameters (Table 2), is at the same time characterized
by a more aromatic character of HAs molecules. Humification leads to condensation of
unsaturated aliphatic chains and a decrease in hydrogen contents [18,52], as confirmed in
our studies.

3.5. FTIR and EPR Analysis

FT-IR spectra presented in Figure 4 exhibit bands typical for humic acids extracted
from soil [65–67]. Characteristic stretching of COOH at 1722 cm−1 [17] for all investigated
samples is week. Although the absorbance mode integrals did not show significant changes
between the two types of samples (flooded and unflooded), small differences could be
found. Peaks ascribed as aromatic (1620–1630 cm−1), C=C, were slightly more marked for
HAs from periodically flooded soils, what is in a good agreement with results presented in
Van Krevelen’s diagram as well as well the degree of internal oxidation and E4/E6. HA orig-
inated from periodically flooded (Mw) soils exhibited slightly higher intensities of aliphatic
C-H stretching vibrations (3000–2820 cm−1). Similar results were found by Rosa et al. [69]
who described the presence of aliphatic chains in the organic matter from Fluvisols.
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Valuable information on the type and quantity of semiquinone radicals was provided
by the EPR measurements. The obtained results on the diversity of identified radical spin
concentrations among studied flooded and riparian soils are presented in Table 5.

Quantitative studies of semiquinone radicals indicate lower values of radical concen-
tration for HAs from flooded Fluvisols compared to those from unflooded soils (Table 5).
Statistical analysis—calculated correlation coefficients (Table 6) confirmed that soils with
organic matter of higher humification index (HI) (Mw soils) contained HAs of lower radical
concentration in comparison to the soils with lower humification index (HI) (Rp soils).
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There are several known reasons for the changes in the radical concentration in humic
acids. Particularly critical is the influence of the pH, whose changes not only modify the
base-acid equilibria but, what is more important, also affect the redox reaction equilibria
in the structural units of organic matter [70]. The change of the pH results in the shift of
the equilibria: hydroquinone, semiquinone (radicals A, B, and C in Figure 5), quinone, and
similarly, phenol, the phenoxyl radical. As presented in Figure 5, the presence of a specific
form of quinone depends not only on pH but also on the redox conditions [57,71]. From a
very simple polyphenol such as pyrogallol, at least three radicals could be formed depend-
ing on the pH and redox conditions, as presented in Figure 5. More complex structures like
HA could lead to a much bigger variety of radicals with similar but not the same structures.
The most reduced form of the discussed equilibria, hydroquinone, is not paramagnetic,
so a decrease in radical concentration is observed when reduced conditions for HA are
observed. Additionally, radicals that are still present in the humic acids are protonated
(smaller g parameter) [72,73]. While deprotonated radicals (C) are formed at higher pH, an
increase in the value of the g-parameter is also observed [74,75]. All forms presented in
Figure 5 exist in equilibria that could be shifted [74]. In the studied case for HA of flooded
areas, a very small but repeatable decrease of the g parameter is observed, paralleled by a
decrease of the radical concentration, which could be an indicator of reduced conditions in
the soils of flooded areas.

Table 5. Radicals concentration and values of g parameter (obtained from EPR spectra) of the
analysed HAs.

Spin Concentration per
Gram × 1017 g Parameter

Rp1a 2.35 2.0034
Rp2a 1.73 2.0034
Rp3a 1.34 2.0034

Average Rp 1.81 (SD 0.5) --
Mw6a 1.37 2.0033
Mw7a 1.22 2.0033
Mw8a 1.47 2.0032

Average Mw 1.35 (SD 0.13)
Explanations: Rp—riparian forest, Mw—grassland; (SD)—standard deviation.

Table 6. Correlation coefficients between properties of humic substances isolated from flooded and
unflooded soils.

TEC CHA CFA CR HD CHA/
CFA

Spin
Concentration Alcoholmethoxy Aromatic Attached

to Benzene

Distance from the river −0.407 −0.622 0.008 −0.342 −0.407 −0.987 * 0.521 −0.972 * −0.983 * −0.447
TOC 0.827 * 0.774 0.752 0.8322 0.827 * 0.417 −0.351 0.322 0.410 −0.253
CAC −0.358 −0.475 −0.105 −0.801 −0.358 −0.835 * 0.336 −0.691 −0.853 * −0.406
TEC - 0.954 * 0.881 * 0.384 0.999 * 0.394 −0.592 0.377 0.385 −0.514
CHA - 0.698 0.367 0.954 * 0.615 −0.555 0.6243 0.578 −0.348
CFA - 0.336 0.881 * −0.028 −0.537 −0.085 0.008 −0.675
HI −0.005 0.501 0.674 −0.822 * 0.579 0.745 −0.031

CHA/CFA 0.394 - −0.436 0.963 * 0.982 * 0.404
Methylen 0.131 −0.089 0.181 0.197 0.889 *

Alcoholmethoxy −0.373 - 0.919 * 0.411

Explanations: * significant at p < 0.05; TOC—total organic carbon, CAC—carbon of low-molecular fulvic fraction,
TEC—total extractable carbon, CHA—carbon of humic acids, CFA—carbon of fulvic acids, CR—carbon of humin
fraction, HI- humification index.

Another reason for radical concentration changes is interaction with metal ions. Some
metal ions, such as Ca(II) and Zn(II), are known to increase radical concentration [70,73].
Paramagnetic metal ions like Cu(II), Mn(II), Gd(III), and Fe(II)/(III) cause a decrease in
radical concentration in humic substances [74,75]. This is the result of the antiferromagnetic
interaction between the unpaired electrons of the metal ion and the radical. This phe-
nomenon could additionally explain the decrease in radical concentration in HA from Mw
because of the higher content of Cu(II) of anthropogenic origin in the soils located inside
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the embankment (flooded Fluvisols) compared to the soils from riparian forests. The area
of the research is located in the middle Odra valley, which carries a bag of pollutants from
PCC Rokita, a manufacturer of specialized chemical products and industrial formulations.
That was reported in the previous paper by Kawałko and Karczewska [76].
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3.6. 1H NMR Results
1H NMR spectra of all studied HA samples show a typical pattern (Figure 6) for

that kind of substance [77–80]. The 1H NMR chemical shift is mainly divided into five re-
gions [53]: 0–1.77 ppm the terminal methyl of polymethylene chain protons; 1.77–2.33 ppm
methylene group protons; 2.33–2.8 ppm groups attached to benzene ring protons; 2.8–4.38 ppm
protons on carbon connected to oxygen (or nitrogen) (mainly carbohydrates, organic
amines, and methoxy substances); aliphatic ring H proton of alcohol methoxy groups; and
6–8.27 ppm aromatic ring protons. The proton types are also presented on the spectra
(Figure 6). The region of 4.6–4.8 ppm is the water shift and was not considered in the
calculations. In the current study, samples exhibit various degrees of absorption in these
five chemical shift regions. The obtained results are presented in Table 7.
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Table 7. Integrated areas of 1H NMR spectra. Integrals of methylene groups protons bands are
equated to 1.

Proton Type Methyl Methylene Attached
to Benzene

Alcohol
Methoxy Aromatic

ppm

0–1.77 1.77–2.33 2.33–2.8 2.8–4.38 6–8.27
Rp1a 1 0.19 0.06 0.47 0.03
Rp2a 1 0.12 0.02 0.37 0.06
Rp3a 1 0.16 0.03 0.35 0.01

Mw6a 1 0.18 0.07 0.66 0.28
Mw7a 1 0.24 0.07 0.67 0.23
Mw8a 1 0.10 0.02 0.71 0.21

Explanations: Rp—riparian forest, Mw—grassland.

Common characteristics of the 1H NMR spectra were the highest abundance of peaks
at ranges 0–1.77 ppm and 1.77–2.33, confirming the previously stated large number of
aliphatic domains and carbohydrates in HA samples. Predominance of aliphatic structures
in all studied samples, regardless of the soil origin (floodplains or out of embankment).
HA extracted from Mw soil samples in flood-prone areas close to the riverbed exhibited an
increased relative content of aromatic and methoxy protons. The methoxy groups in HA are
mostly connected to aromatic structures [81], so the increased intensities of both peak areas
corroborate that fact. Significantly high correlation coefficients between distance from the
riverbed and content of aromatic and methoxy protons (−0.985 and −0.9722, respectively),
(Table 6), confirmed the obtained results. They are in good agreement with the results of the
elemental and Vis analyses as well. In floodplain areas where anaerobic conditions could
be periodically observed, organic matter transformations are temporarily slowed down,
thus further oxidation of -OCH3 does not occur. Defragmentation of the lignin methoxy
groups is an important stage of its natural decomposition [82]. The presented results show
that in the periodically flooded areas, soil samples do not lose as many -OCH3 groups as in
the areas where anaerobic conditions are not observed.

4. Conclusions

Periodically flooded Fluvisols cumulate organic matter, with a slow transformation
of organic matter towards humic substances with a predominance of aliphatic structures.
However, on the basis of the obtained results, it can be concluded that humic acids from the
periodically flooded soils are characterized by a less aliphatic or more aromatic character of
the molecules with higher molecular weight and an increased relative content of aromatic
and methoxy protons compared to the HAs from unflooded Fluvisols. A greater distance
from the river results in the formation of less stable organic matter, which contributes
less to carbon sequestration. It is therefore necessary to take treatments that will not
contribute to changes in the water regime of alluvial soils, which may result in soil drying,
increased mineralization, and, consequently, higher CO2 emissions. Results obtained show
that in flooded areas with periodically reductive conditions, humic acids do not lose as
many -OCH3 groups as in better oxidized soils and therefore exhibit a lignin-like aromatic
structure. It has been proven that the formation and dynamics of HA transformation
may vary due to the water regime in soils. The presented results may provide a better
understanding of the processes governing the composition and structural characteristics
of soil organic matter fractions in floodplain ecosystems. Future perspectives should be
focused on the continuation of the research towards the determination of the impact of
flooding period length on the formation and structure of the humic substances in soils in
order to determine their stabilization degree in the environment.
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D.K.; resources, D.K. and E.J.; data curation, E.J., M.J. and I.Ć.-P.; writing—original draft preparation,
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