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Abstract: Anaerobic ammonia oxidation bacteria (AnAOB) are difficult to cultivate due to their long
start-up time and sensitivity to environmental conditions. In this study, anammox granular sludge
was cultured with ordinary activated sludge under influent dissolved oxygen concentrations of
6–8 mg/L, successfully enriching AnAOB. The presence of multiple microorganisms in the activated
sludge enabled the anammox system to resist the unfavorable influent environment and sustain
system stability. The total nitrogen removal rate reached a maximum of 81%, and the TN effective
load increased from 0.1 to 1.5 kg N/m3/d. The results showed that the dissolved oxygen present
in the influent did not lead to a breakdown in the anammox system. The protein in the sludge
extracellular polymeric substances played an important role in the enrichment of AnAOB, and the
sludge settling performance at the bottom of the reactor was better than that at the top of the reactor,
with protein/polysaccharide in the range of 5–6.3. Candidatus brocadia and Candidatus kuenenia were
the main anammox functional bacteria in the system. On 153 d of reactor operation, their relative
abundances were 8.51 and 5.68%, respectively. This study shows that microorganisms in activated
sludge contribute to the stability of the anammox system when the influent conditions are appropriate.
This provides a new idea for the rapid start-up of the anammox system and enrichment of AnAOB.

Keywords: anammox; activated sludge; granular sludge; nitrogen removal; microbial communities;
extracellular polymeric substances

1. Introduction

Discharges of excessive quantities of nitrogen into water bodies lead to the disruption
of aquatic ecosystems and to the eutrophication of water bodies [1]. However, with
increasing industrialization in China, large quantities of factory wastewater are being
discharged into wastewater treatment plants, and the carbon-to-nitrogen ratio of this
wastewater is often not sufficient for traditional denitrification-driven nitrogen removal
processes [2]. Many wastewater treatment plants face problems associated with the high
cost of organic carbon addition and with meeting discharge standards [3]. In this context,
new organic carbon-saving processes have been developed. The anaerobic ammonia
oxidation (anammox) reaction allows for nitrogen removal without the consumption of
organic carbon and aeration. This not only conserves carbon sources but also saves energy,
and the approach has therefore gained attention [4]. However, several difficulties have
been found in the study of anammox. One anammox reaction substrate is NO2

−-N, which
is uncommon as an intermediate product in wastewater treatment [5]. To generate stable
NO2

−-N as a substrate, two processes, partial nitrification, and partial denitrification, have
been developed to achieve NO2

−-N accumulation [6–8]. In addition, it was found that
anaerobic ammonia-oxidizing bacteria (AnAOB) are sensitive to environmental conditions
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and have a long generation time (11–20 d), leading to a long start-up time [9]. These
difficulties limit the large-scale application of anammox technology.

During the long start-up and in situ enrichment process of anammox systems, the
systems have been reported to have nitrogen removal efficiencies much lower than the
theoretical value [10,11]. Researchers have explored methods to reduce bacterial growth
inhibition [12]. Fast start-up and granulation of anammox systems have been achieved by
the addition of extracellular polymers [13], reduced graphene [9], and Fe(II) [14] and by
the action of applied electric fields [15]. Zekker et al. used anaerobic and aerobic sludge as
feed sludge and hydrazine to accelerate the start-up of the anammox system with a 110 d
start-up time [16]. Another approach is to accelerate start-up by using anammox granu-
lar sludge as the seed sludge or biofilm [17]. In a previous study, researchers employed
3–15% AnAOB carriers along with new carriers to rapidly start up a single-stage deam-
monified moving bed biofilm reactor within a few months [18]. Wang et al. attempted to
start the activated sludge as inoculum with a low concentration of anammox (0.2 g VSS/L)
as seed sludge. The start-up time was greatly reduced, and the total nitrogen (TN) removal
reached 70% [19].

AnAOB grow slowly and are not easily retained in suspended sludge obtained from
ordinary activated sludge processes [20,21]. Liu et al. investigated the interaction matrix
between suspended sludge and anammox biofilm. The results showed that the introduc-
tion of suspended sludge significantly reduced the nitrogen removal of anammox from
83.8 ± 6.5 to 48.7 ± 17.0% [20]. Zhao et al. realized a pure biofilm anammox process
by continuously reducing the concentration of suspended sludge. The nitrogen removal
efficiency increased from 62.1 ± 4.5 to 79.2 ± 3.9% [22]. Tao et al. investigated the effect of
different seed sludge on AnAOB enrichment and concluded that the initial seed sludge had
a uniform microbial community and that a high concentration of AnAOB was favorable
for rapid start-up. He believed that the initiation strategy was more important and should
retain significant microorganisms and eliminate unimportant microorganisms [23]. In
summary, suspended sludge was thought to increase competition between denitrifying
bacteria and AnAOB in the system (Table 1). However, the wide variety of microorganisms
in activated sludge may be a favorable condition. When the influent conditions are suitable,
it is possible to cancel the unfavorable environment entering the system, such as organic
matter and dissolved oxygen (DO), with the help of a variety of microorganisms, thus
providing a more suitable environment for the survival of AnAOB.

Previous studies showed that AnAOB are very sensitive to DO concentrations, and
5% oxygen saturation can cause inhibition of the anammox process, which would only
occur when there was no DO in the environment. Furthermore, when AnAOB were in an
environment with 18% oxygen saturation, complete inactivation occurred, which could
not be recovered even if the DO was subsequently removed [24,25]. However, in practical
engineering applications, some DO is typically present in wastewater entering the anammox
process after the aerobic degradation of organic matter or after partial nitrification at the
front end to obtain NO2

−-N. The effect of DO carried over from the previous process of
nitrogen removal from the anammox system has not been specifically determined. Most
existing studies start with the removal of DO present in the influent water [25], and there
are fewer studies on the effect of DO carried over in the influent on anammox [26].

In conclusion, the main objective of this study was to investigate the effect of DO car-
ried in the influent on anammox. Rapid enrichment of AnAOB was achieved by incubating
waste sludge and anammox granular sludge with a 2:1 ratio. The microbial transformation
was manifested through the combination of extracellular polymeric substances, sludge
surface special, microbial community, and effluent water quality.
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Table 1. Rapid enrichment AnAOB strategies and enhancement strategies.

Cultivation Strategy Inf. NH4
+-N Inf. NO2−-N TN Removal

Efficiency NRR Start-Up Time References

mg/L mg/L % kg N/(m3·d) d

Addition of extracellular
polymeric substances. 60–200 80–250 - 0.05–0.75 19 [13]

Activated sludge as
inoculum, fed with a low

concentration of
anammox sludge.

30–160 40–180 >70 - 5 [19]

Biochar accelerates start-up 140 140 80.0 ± 9.6 1.48 85 [27]
low frequency and

intensity ultrasound. 70 70 86 0.68 53 [28]

Inoculating denitrifying
granular sludge
mixed AnAOB

50–220 50–300 - 0.72 28 [29]

inoculated with flocculent
nitritation sludge 75–210 75–230 - 0.5 73 [30]

feed in ferrous iron. 50 50 - 0.16 50 [31]
Inoculating

perchlorate reduction
sludge and a small amount

of anammox sludge.

200 200 73.20 ± 6.79% - 41 [32]

A novel
electrolysis-integrated

anammox system
420 420 90.12–90.80 - - [33]

cultivation strategy 90–95 105–110 75.3 0.67 - [34]

2. Materials and Methods

This paper was based on running an up-flow anaerobic sludge blanket (UASB) reactor
for AnAOB enrichment. The specific materials and methods are as follows:

2.1. Experimental Setup and Operation Strategy

The UASB reactor used in the experiments had an effective volume of 4 L, an inner
diameter of 0.07 m, and a height of 1.2 m and was made of Plexiglas (Figure S1). The top
of the reactor was equipped with a three-phase separator. The uplifted sludge returned
to the reactor by gravity; the gas reached upwards to the top and was collected. The inlet
bucket of the reactor was a 40 L cylindrical tank. The influent was pumped into the bottom
of the reactor from the inlet bucket by a peristaltic pump (Lange, Shijiazhuang, China),
and the effluent water overflowed from the top of the reactor. Water from the upper part
of the reactor was pumped through the peristaltic pump to the inlet pipe for reflux. The
return flow rate was 100 L/d. The outer wall of the reactor was wrapped with a heating
(JCS, Suzhou, China) and temperature-retention belt to control the temperature inside the
reactor at 30 ± 1 ◦C (Figure S2).

The reactor was continuously fed and continuously discharged. The hydraulic re-
tention time (HRT) was 17.4 h at the beginning and then gradually reduced to 2.2 h. At
this time, the reactor sludge layer was approximately 500 mm from the outlet, and there
was almost no sludge loss except for a small amount of flocculated mud. pH, DO, and
temperature were monitored daily. NH4

+-N, NO2
−-N, and NO3

−-N in the influent and
effluent of the reactor were monitored regularly using standard methods [35].

2.2. Seed Sludge and Feed Wastewater

In this study, the inoculated sludge was anammox granular sludge and ordinary
waste sludge in a 1:2 ratio. The particle size of the inoculated anammox sludge ranged
from 10 to 2000 µm, with an average particle size between 350–400 µm. The average
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particle size of activated sludge was less than 100 µm. The feed was synthetic wastewater
made from nutrient-added recycled water. The recycled water contained approximately
5 mg/L NH4

+-N and 10 mg/L NO3
−-N, and the DO concentration was 6–8 mg/L. Ammo-

nium bicarbonate and sodium nitrite were used to provide the main influent NH4
+-N and

NO2
−-N with initial concentrations of 50 mg/L and 66 mg/L, respectively, and these con-

centrations were gradually increased thereafter. The mineral elements and trace elements
required for microbial growth were also added to the influent.

2.3. Batch Test

The effect of substrate (NH4
+-N, NO2

−-N, and COD) concentration on the anam-
mox reaction was investigated using sludge incubated for approximately 200 d in the
reactor. Equal amounts of sludge were placed in five 1 L conical flasks, the sludge was
washed three times with oxygen-free distilled water, and then the volume was fixed to
1 L. The DO concentration of the sludge-water mixture in the flasks was ensured to be less
than 0.1 mg/L.

For the effect of COD, 2.5, 5, 25, and 40 mL of sodium acetate concentrate (COD of
20 g/L) were added, respectively, while 1 mL of ammonium bicarbonate concentrate
(NH4

+-N of 23 g/L) and 1.32 mL of sodium nitrite concentrate (NO2
−-N of 23 g/L) were

added. For the effect of NH4
+-N, 1–5 mL of ammonium bicarbonate concentrate and 1 mL

of sodium nitrite concentrate were added, respectively. For the effect of NO2
−-N, 1–5 mL

of sodium nitrite concentrate and 1 mL of ammonium bicarbonate concentrate were
added, respectively.

After adding the concentrate, stir quickly until well mixed, take 10 mL of mud-water
mixture, and quickly centrifuge the supernatant. The measured NH4

+-N and NO2
−-N

values were the initial concentration values. Then, the bottles were quickly sealed and
incubated in a constant temperature incubator at 31 ◦C. The substrate concentration was
measured by taking samples every 2 h. pH of 8.0–8.5 for the whole process.

2.4. Extraction and Determination of Extracellular Polymeric Substances

Loosely bound extracellular polymeric substances (LB-EPS) and tightly bound extra-
cellular polymeric substances (TB-EPS) were extracted using a modified thermal extraction
method [36]. LB-EPS was extracted using a 0.5% NaCl solution at 70 ◦C, followed by
TB-EPS in a water bath at 60 ◦C for 30 min. The protein (PN) and polysaccharide (PS)
composition was determined. PN was determined by the Folin-Ciocalteu method. PS was
determined by the phenol-sulfuric acid method [36].

2.5. Scanning Electron Microscopy Observations

The surface morphology of the sludge was observed using a GeminiSEM (Jena, Germany)
300 field emission scanning electron microscope. Sludge samples were fixed in glutaralde-
hyde (2.5%), rinsed in a phosphate-buffered solution, dehydrated in a gradient of ethanol
(50%, 70%, 80%, 90%, and 100%), and dried after displacement. Finally, the samples were
observed after the surface of the samples was coated with a metal film.

2.6. Microbial Analysis Methods

The sludge samples were centrifuged, and the supernatant was removed and lyophilized
in a lyophilizer (LABCONCO, Kansas City, MO, USA). The lyophilized sludge was weighed
to 0.1 g, and DNA was extracted using a Fast DNA spin kit (MP bio, Santa Ana, CA, USA).
The extracted genomic DNA was then detected by 1% agarose gel electrophoresis and
amplified using an ABI GeneAmp® 9700 PCR instrument. The 16S rRNA gene-specific
amplification primers used were 338F and 806R. The samples were sent to Majorbio Group
for high-throughput sequencing on an Illumina MiSeq platform after DNA extraction,
monitoring, and amplification. The sequenced data were quality-controlled, screened, and
partitioned to analyze their microbial communities at all levels.
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3. Results and Discussion

Anammox granular sludge was mixed and incubated with ordinary waste sludge. The
enrichment of AnAOB was further characterized by effluent quality, sludge EPS, microbial
surface characteristics, and microbial community succession.

3.1. Nitrogen Removal Performance

The influent NH4
+-N and NO2

−-N concentrations were 50 mg/L and 66 mg/L, re-
spectively, at the beginning of the operation, and the HRT was 17.4 h (Figure 1). At this
time, the effluent TN removal efficiency was 39.3%, and the TN effective load was only
0.13 kg N/m3/d (Figure 2). There was no significant increase in the TN removal efficiency
for 15 d, probably because the sludge was newly inoculated, had low activity, and needed
time to adapt to the environment [19]. It was also found that there was a buildup of
reactor sludge. After 16 d, the reflux was increased to achieve a reflux rate of 100 L/d,
and the HRT was reduced to 10.2 h. Subsequently, the effluent NH4

+-N and NO2
−-N

continued to decrease to approximately 5 mg/L (Figure 1a,b), and the effluent NO3
−-N

concentration increased from 10 to 17 mg/L (Figure 1c). Nutrients and sludge were in full
contact, and microorganisms started to adapt to the environment. In this situation, the TN
removal efficiency reached 79%, the TN effective load increased to 0.25 kg N/m3/d, and
the reactor was successfully initiated. The influent NH4

+-N and NO2
−-N concentrations

further increased to 80 and 105 mg/L, respectively, on 63 d. However, the effluent NH4
+-N

increased sharply to 22 mg/L, and NO2
−-N was 38 mg/L. The concentration did not

decrease significantly for 15 d, and the average TN removal efficiency was 56%. When the
influent TN concentration reached 200 mg/L, the nitrogen removal efficiency decreased
significantly, and the anammox reaction was inhibited. In Wang et al.’s study, an increase in
effluent substrate concentration was also observed when both influent NH4

+-N and NO2
−-N

concentrations were increased to 100 mg/L [29]. It has been suggested that this was due to
inhibition caused by high nitrite concentrations [27]. It has been shown that a high sub-
strate concentration stimulates microorganisms to secrete extracellular polymers rapidly,
blocking gas-release channels and causing particle cleavage [37]. It has also been shown
that free ammonia and free nitrite alter the cellular transmembrane potential, resulting in
inhibition [38]. In conclusion, a high concentration of substrate inhibited AnAOB.

To reduce the inhibition effect of substrate concentration, the influent NH4
+-N and

NO2
−-N were adjusted to 65 and 85.8 mg/L on 81 d. After the substrate concentration

was reduced, the effluent NH4
+-N and NO2

−-N concentrations rapidly decreased to below
5 mg/L (Figure 1a,b). The TN removal rate recovered to 78% (Figure 2). This result
indicates that when AnAOB are inhibited by a high substrate concentration, the inhibition
can be mitigated by reducing the substrate amount. To further increase the load, the HRT
gradually decreased from 6.4 to 2.2 h from 96 to 194 d (Figure 1c). Stable operation of
the reactor was maintained, with an effluent NH4

+-N below 2 mg/L and NO2
−-N of

approximately 5 mg/L after 200 d. The removal rates of NH4
+-N and NO2

−-N reached
more than 95%, and the average effluent NO3

−-N was 26.8 mg/L. With the enrichment
of AnAOB, the TN effective load increased from 0.1 to 1.5 kg N/m3/d (Figure 2). This
was not the maximum load that the reactor could achieve and continued increases in
influent flow or concentration were expected to continue to increase its load. The TN
removal rate was stable at approximately 80%, which was 8% lower than the theoretical
anammox TN removal rate of 89% [39]. The 6–8 mg/L DO present in the influent converted
1–3 mg/L NH4

+-N. Therefore, in the fitting results for the long-term experiment, the NO2
−-N

to NH4
+-N ratio was approximately 1.25 (Figure S3), which was slightly lower than the

theoretical value of 1.32 [39], and the NO3
−-N to NH4

+-N ratio was approximately 0.25,
which was close to the theoretical value of 0.26 [39].

The anammox system cultivated in this study was a coexistence of suspended sludge
and granular sludge. Zhao et al. achieved a pure biofilm anaerobic ammonia oxida-
tion process by continuously reducing the concentration of suspended sludge. The ni-
trogen removal efficiency increased from 62.1 ± 4.5 to 79.2 ± 3.9% [22]. Its nitrogen
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removal efficiency was not much different from this study. In contrast to studies starting
with single nitrifying sludge, anaerobic activated sludge, etc. [23,31], the present study
showed significant TN removal at the very beginning. Moreover, the high concentration
of basal AnAOB resulted in more rapid microbial growth, which greatly saved time for
reactor startup.
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3.2. Changes in Sludge Extracellular Polymeric Substances

EPSs play a crucial role in promoting microbial coagulation and adhesion. Addition-
ally, they contribute significantly to maintaining system stability and facilitating particle
formation [40]. EPS was extracted from the sludge at different heights of the reactor and in
different periods, and the PN and PS contents were determined for analysis.

Sludge at 10, 40, and 70 cm from the bottom was taken on 60 d of reactor oper-
ation. LB-EPS and TB-EPS were extracted, and Total-EPS was calculated as the sum of
LB-EPS and TB-EPS. The sludge mixed liquor volatile suspended solids concentrations were
17.16, 8.93, and 5.72 g/L from the bottom to the top of the reactor. Consistent with the
findings of others [41], the PN content was greater than the PS content in EPS at different
heights. The highest PS and PN contents were 1.43 and 4.54 mg/g VSS in LB-EPS and
5.30 and 27.53 mg/g VSS in TB-EPS, respectively. The PN/PS index showed a decreasing
trend from the upper to the lower part of the reactor, with the PN/PS value of Total-EPS
decreasing from 10.46 to 2.57. PS are hydrophilic substances, and a small amount of PS se-
cretion is beneficial to adhesion between microorganisms. However, the secretion of higher
amounts of PS increases sludge viscosity [42]; in contrast, PN and amino acid-like PN
substances are reported to contain a high negative charge and are hydrophobic substances,
which can promote cell aggregation and contribute to sludge-settling performance [43].
Therefore, a high content of PN in EPS helps to promote and maintain good sludge set-
tling performance. In summary, the sludge in the lower part of the reactor had better
settling performance.

The EPS of the sludge extracted at a 20 cm height was analyzed on 60, 130, and 240 d
(Figure 3d–f). The sludge mixed liquor volatile suspended solids were 17.16, 23.1, and
19.93 g/L, respectively. As the reactor operated, the PS content remained relatively stable,
whereas the PN content gradually increased, leading to a gradual increase in EPS within
the sludge. The highest levels of PS in LB-EPS and TB-EPS were 2.71 and 8.87 mg/g VSS,
and the highest levels of PN were 5.48 and 48.89 mg/g VSS, respectively. Similarly, the
PN content was consistently greater than the PS content, and the total EPS content on 240 d
was significantly higher than that prior to 130 d. The PN/PS results revealed that on
both 60 and 130 d, the ratio ranged between 1.5 and 3.5. However, on 240 d, the ratio
significantly increased to 5–6.3. This could be because the increase in load caused the
microorganisms to secrete more EPS, while the increase in PN was more favorable for
particle stabilization [44]. This indicates that the anammox sludge culture was more mature
and had better sedimentation performance on 240 d.

The 60 and 130 d sludge EPS were subjected to three-dimensional excitation-emission
matrix fluorescence spectroscopy to analyze the substances present, as shown in Figure S4.
PN-like substances were detected in the sludge EPS, with two main types of peaks, one
peak (peak 1) in the wavelength range of 220–230/305–340 and the other peak (peak 2)
in the wavelength range of 275–285/330–340; peak 1 belongs to aromatic-like PN, and
peak 2 is a soluble microbial byproduct corresponding to tryptophan-like substances [45].
Essentially, no PS were found. The results are consistent with the trends in the PN and PS
contents in the EPS measured above. It also showed the importance of PN-like substances
for microorganisms.

3.3. Sludge Surface Characteristics and Microbial Community Structure

Figure 4a,b show photographs of the sludge from the reactor after operation for
0 and 240 d. The domesticated sludge had a dark red color, and the granules exhibited
a variety of shapes and sizes. This is probably related to the fact that the inoculated
sludge consisted of flocculent-activated sludge and granular anammox sludge. The gradual
change in the microorganisms present in the sludge during the domestication process may
have also played a role [38]. The yellow-brown color of the activated sludge that was
inoculated at the beginning was essentially no longer visible in the reactor, indicating that
the microorganisms changed. Apparently, AnAOB had become the dominant bacteria. To
further observe the surface properties of the sludge, the sludge at the bottom (10 cm height)



Sustainability 2023, 15, 12123 8 of 15

of the reactor on 240 d was observed by scanning electron microscope (SEM), and the results
are shown in Figure 4c–e. The sludge contained dense material. At increased magnification,
spherical and ellipsoidal microorganisms were observed, and the microorganisms were
connected to each other by mesh-like substances (Figure 4d,e), presumably extracellular
polymers secreted by the microorganisms [3]. A small number of other shapes, such as fila-
mentous and rod-shaped microorganisms, were also observed, indicating the coexistence
of other microorganisms. Other studies have also indicated that the anammox system is a
result of the collective action of various microorganisms [46].
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Figure 3. EPS indicators. (a–c) Sludge LB-EPS, TP-EPS, and Total-EPS at 10 cm height, 40 cm height,
and 70 cm height in the UASB reactor after operation for 60 d. (d–f) Sludge EPS at 10 cm height in
the UASB reactor after operation for 60, 130, and 240 d.
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Sludge samples from the reactor on 123 and 153 d of operation at 10 cm from the
bottom were analyzed with high-throughput sequencing. The main bacterial phyla were
Chloroflexi (52.31 and 73.24%), Proteobacteria (8.49 and 19.44%), Planctomycetes, Bacteroidetes,
and Acidobacteria (Figure 5a). This finding aligns with previous reports on the majority
of anammox systems [47,48]. Chloroflexi had the highest percentage in this study, and
it was also found in a high percentage of many anammox systems [49]. Chloroflexi was
reported to provide a stable skeleton for granular sludge formation along with cellular
organic matter and metabolites of dead microorganisms [50]. During the conversion of
sludge, the original microorganisms in the sludge gradually died and transformed, and
the substances released into the system caused the proliferation of Chloroflexi. Combined
with the conclusions of others, the high abundance of Chloroflexi favored the stability of
the anammox system. AnAOB are mainly composed of Proteobacteria, which promote the
enrichment of anaerobic AnAOB by producing secondary metabolites [48]. The percentage
of Proteobacteria increased significantly with the operation of the reactor.
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The dominant bacteria at the genus level were Denitratisoma (3.51 and 10.8%) and
Candidatus brocadia (5.77 and 8.51%) (Figure 5b). Among them, Candidatus brocadia is an
anammox functional bacterium, and another anammox functional bacterium, Candidatus
kuenenia (1.22 and 5.68%), was also detected. The relative abundance of both types of
functional bacteria increased, indicating that the AnAOB in the system were gradually
enriched with the operation of the reactor and the increase in influent load. The absence of
ammonia-oxidizing bacteria in the samples may be related to the location where the sludge
samples were taken. Apparently, the anammox system has the capacity to consume DO
in the system, which may be absorbed close to the reactor inlet, while the samples were
taken at 10 cm from the inlet. The heterotrophic bacteria Denitratisoma and Limnobacter were
found in the system, and the minor presence of other microorganisms favored a system
with some resistance to shocks such as organic loading. It has also been reported that the
anammox system is achieved by the combined action of several microorganisms [51].

3.4. Effect of COD, NH4
+-N and NO2

−-N on the Anammox Reaction in the Batch Test

Batch experiments on the inhibition of the anammox reaction by COD, NH4
+-N, and

NO2
−-N were conducted with the reactor sludge. Under initial NH4

+-N and NO2
−-N con-

centrations of approximately 38 and 75 mg/L, respectively, the initial COD concentration
increased from 0 to 800 mg/L, and the average conversion rate of NH4

+-N decreased from
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4.17 to 3.18 mg/(L·h), while the average conversion rate of NO2
−-N was in the range of

8.1–8.7 mg/L. NO3
−-N was not detected in the whole batch experiment (Table 2), which

indicated that NO3
−-N was converted as soon as it was generated. The ∆NO2

−-N/∆NH4
+-N

values during the reaction were all greater than the theoretical value of 1.32 [39] and
increased with the initial COD concentration. This indicates that a small quantity of deni-
trification occurred in the system, and heterotrophic bacteria were found in the microbial
community (Figure 5). The results suggest that high COD concentrations have a low
inhibitory effect on the anammox reaction. However, long-term incubation in influent
water containing organic matter may lead to the growth of heterotrophic bacteria in the
system that compete with AnAOB for substrates [52,53]. Choi et al. showed that anammox
inhibition was essentially absent or recovered within a day under transient organic loading
(150 and 300 mg COD/L) shocks. Higher levels (≥60 mg COD/L) of continuous organic
loading of influent water resulted in a significant decrease in anammox activity (complete
inhibition at 150 mg COD/L) [53]. Chen et al. investigated the effect of C/N on the nitrogen
removal effect of anammox and showed that the effluent deteriorated sharply when C/N
increased to 1.31, and the nitrogen removal efficiency decreased to 49.2%. However, the
microbial activity could be rapidly recovered when the organic inhibition was stopped [46].
Li et al. also showed that the presence of COD was harmful to anammox [54]. Fu et al.
showed that when the influent TOC concentration was lower than 100 mg/L, the
anammox activity was basically unaffected, and the maximum TN removal efficiency
of the effluent reached 95.77%. However, when the influent TOC concentration reached
200 mg/L, the anammox reaction was severely inhibited, denitrification dominated, and
the TN removal efficiency decreased to 64.17% [55]. In summary, higher concentrations
of organics have an adverse effect on nitrogen removal efficiency, and if the influent wa-
ter has a high concentration of organics, they should be removed before entering the
anammox system.

Table 2. Effect of COD concentration on the anammox reaction.

Number

Initial COD
Concentration

Initial NH4
+-N

Concentration

Initial
NO2−-N

Concentration

Average
Conversion Rate

of NH4
+-N

Average
Conversion Rate

of NO2−-N
∆NO2−-N/∆NH4

+-N

mg/L mg/L mg/L mg/(L·h) mg/(L·h)

1 0 37.49 ± 3.2 71.16 ± 5.6 4.17 ± 0.5 8.18 ± 0.7 1.96 ± 0.2
2 50 ± 5 34.47 ± 3.2 76.26 ± 5.6 3.32 ± 0.5 8.58 ± 0.7 2.59 ± 0.2
3 100 ± 10 38.66 ± 3.2 75.26 ± 5.6 3.80 ± 0.5 8.61 ± 0.7 2.26 ± 0.2
4 500 ± 50 38.19 ± 3.2 74.72 ± 5.6 3.33 ± 0.5 8.30 ± 0.7 2.49 ± 0.2
5 800 ± 80 38.60 ± 3.2 75.97 ± 5.6 3.18 ± 0.5 8.65 ± 0.7 2.72 ± 0.2

The effect of NH4
+-N on the anammox reaction was explored at initial NO2

−-N
concentrations between 62.1 and 65.5 mg/L. As the initial NH4

+-N concentration in-
creased from 39.90 to 193.8 mg/L, the average NH4

+-N conversion rate increased from
3.6 to 9.3 mg/(L·h) (Table 3). When the initial NH4

+-N concentration was 210.7 mg/L,
the NH4

+-N conversion rate was reduced to 6.4 mg/(L·h), indicating that the conversion
of NH4

+-N was inhibited. However, at TN concentrations below 200 mg/L, the aver-
age NO2

−-N conversion rate increased from 7.3 to 7.5 mg/(L·h) with increasing NH4
+-N

concentration. When the TN concentration was greater than 200 mg/L, the NO2
−-N conver-

sion rate decreased to 6.0 mg/(L·h), indicating that the conversion of nitrite was inhibited.
Yang et al. similarly found an increase in effluent NH4

+-N and NO2
−-N and a decrease

in anammox activity after increasing influent total nitrogen [13]. Li et al. showed a high
TN removal of 94.06 for influent NH4

+-N and NO2
−-N, both greater than 100 mg/L. This

was attributed to the incorporation of a pulsed electric field in the anammox system, which
was apparently an effective method [54]. However, there were no extraneous substances in
this study.
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Table 3. Effect of initial NH4
+-N concentration on the anammox reaction.

Number

Initial NH4
+-N

Concentration
Initial NO2−-N
Concentration

Initial TN
Concentration

Average
Conversion Rate

of NH4
+-N

Average
Conversion Rate

of NO2−-N
∆NO2−-N/∆NH4

+-N

mg/L mg/L mg/L mg/(L·h) mg/(L·h)

1 39.90 ± 3.5 65.54 ± 5.2 105.4 ± 8.4 3.64 ± 0.3 7.28 ± 0.5 2.00 ± 0.1
2 87.14 ± 6.7 64.27 ± 5.2 151.4 ± 12.1 5.12 ± 0.4 7.34 ± 0.5 1.43 ± 0.1
3 127.7 ± 9.6 65.43 ± 5.2 193.1 ± 15.4 5.60 ± 0.4 7.45 ± 0.5 1.33 ± 0.1
4 193.8 ± 15.3 64.19 ± 5.2 258.0 ± 20.6 9.26 ± 0.5 6.99 ± 0.5 0.75 ± 0.1
5 210.7 ± 17.5 62.09 ± 5.2 272.8 ± 21.8 6.36 ± 0.4 5.91 ± 0.5 0.93 ± 0.1

The effect of NO2
−-N concentration on the anammox reaction was investigated when

the initial NH4
+-N concentration was between 33.1 and 35.0 mg/L. As the initial NO2

−-N
concentration increased from 64.97 to 244.9 mg/L, the average NO2

−-N conversion rate
increased from 7.1 to 12.1 mg/(L·h). However, the NO2

−-N conversion rate decreased to
10.9 mg/(L·h) when the nitrite concentration increased to 288.1 mg/L (Table 4). According
to the TN results, the average conversion of NH4

+-N increased with increasing initial
NO2

−-N amount when the initial TN concentration was lower than 200 mg/L. In contrast,
when the TN concentration was greater than 200 mg/L, the average conversion rate of
NH4

+-N decreased from 4.23 to 3.33 mg/(L·h). Batch experiments on the effect of both
NH4

+-N concentration and NO2
−-N concentration on anammox showed that the anammox

reaction was inhibited when the TN concentration was greater than 200 mg/L. This is
consistent with the conclusions obtained from the long-term operation of the reactor
described above. Nitrite was previously reported to be the main cause of anammox
inhibition, with irreversible inhibition caused when nitrite concentrations were increased
above 100 mg/L [27,56]. The apparent inhibition in the present study appeared at NO2

−-N
concentrations higher than 200 mg/L, which may be due to inconsistent culture conditions.

Table 4. Effect of initial NO2
−-N concentration on anammox reaction.

Number

Initial NH4
+-N

Concentration
Initial NO2−-N
Concentration

Initial TN
Concentration

Average
Conversion Rate

of NH4
+-N

Average
Conversion Rate

of NO2−-N
∆NO2−-N/∆NH4

+-N

mg/L mg/L mg/L mg/(L·h) mg/(L·h)

1 33.75 ± 2.6 64.97 ± 5.2 98.72 ± 8.0 4.22 ± 0.3 7.14 ± 0.6 1.69 ± 0.2
2 34.96 ± 2.6 121.8 ± 9.7 156.7 ± 12.5 4.23 ± 0.3 10.79 ± 0.8 2.55 ± 0.2
3 33.62 ± 2.6 170.5 ± 13.6 204.2 ± 16.3 4.05 ± 0.3 11.48 ± 0.9 2.83 ± 0.2
4 33.81 ± 2.6 244.9 ± 19.6 277.7 ± 22.2 3.81 ± 0.2 12.07 ± 0.9 3.16 ± 0.2
5 33.12 ± 2.6 288.1 ± 23.0 319.2 ± 25.5 3.33 ± 0.2 10.85 ± 0.9 3.26 ± 0.2

Regarding the effect of initial NH4
+-N in the experiment, the ∆NO2

−-N/∆NH4
+-N

value decreased as NH4
+-N increased and was lower than the theoretical value of 1.32 [39].

Regarding the batch tests on the effect of NO2
−-N, the ∆NO2

−-N/∆NH4
+-N values in-

creased with increasing initial NO2
−-N concentration and were larger than the theoretical

values. It is possible that the high concentration of substrate entering the system was
easily and rapidly absorbed by microorganisms. To date, many studies have been con-
ducted to reduce the inhibition of anammox bacteria through enrichment and to accelerate
system start-up [14,57].

3.5. Discussion of Factors Influencing Anammox Enrichment

Anammox incubation conditions and influencing factors were explored based on
long-term experimental data as well as batch experiments. AnAOB are considered sensitive
to environmental conditions [43], and this study was conducted using a rough cultivation
method. Anammox granular sludge was cocultured with conventional activated sludge
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to accelerate AnAOB enrichment, and the microorganisms in the activated sludge were
used to improve the resistance of AnAOB to adverse factors. In addition, the influent
of the reactor contained 6–8 mg/L DO. The results showed that under both conditions,
the activity of AnAOB was not significantly affected, and the reactor successfully started
on 32 d. The maximum removal rate of TN was 81%, slightly lower than the theoreti-
cal value. The effective load of TN increased from 0.1 to 1.5 kg N/m3/d by increasing
the influent volume. Notably, during long-term incubation from 63 to 81 d, the influent
NH4

+-N and NO2
−-N concentrations increased to 80 and 105.6 mg/L, and the influent TN

was approximately 200 mg/L because the influent contained approximately 10 mg/L of
NO3

−-N. Due to the inhibition caused by the substrate concentration [27,29], the nitrogen
removal efficiency decreased, and the concentrations of effluent NH4

+-N and NO2
−-N

increased to 22 and 38 mg/L, respectively, with no decreasing trend. Subsequently, the
influent concentration was reduced, the influent flow rate was increased, and the effluent
NH4

+-N and NO2
−-N remained below 5 mg/L. This indicates that when the substrate

concentration is high enough to cause inhibition, AnAOB activity can be recovered if
the influent water parameters are adjusted in a timely manner [29]. Batch tests further
showed that the rate of nitrogen removal was affected at high substrate concentrations.
In the existing research, the addition of exogenous substances (e.g., Fe, EPS, etc.) ef-
fectively solved the problems of substrate concentration inhibition and the slow rate of
anammox [12,57,58]. However, inhibition of high-strength wastewater resulting in an
increase in effluent concentration has not been addressed in this study. The addition of
external substances is a major direction to solve this problem.

In this study, to address the difficulty of long generation times and slow cultivation
of AnAOB, they were cocultured with waste sludge to accelerate their enrichment. There
was no corresponding assessment of its contribution to the environment and resources.
Sustainable assessment (e.g., full life cycle assessment) can be well realized to understand
the environmental benefits of anammox technology and suggest ways to improve it [59].
Sustainability assessment is important for whether a technology is feasible for large-scale
application. This is an essential direction for future research. Quorum sensing can pro-
vide insights into the effects of environmental quorums on the metabolic substrates of
AnAOB [49,60]. Metabolomics and molecular modeling facilitate further insights into
the biometabolic pathways of AnAOB during the enrichment process [61]. In the future,
it is expected that the above techniques will be used to further understand the AnAOB
enrichment process.

4. Conclusions and Prospects

Ordinary waste sludge and anammox granular sludge were mixed and inoculated in a
2:1 ratio, and rapid start-up and sludge enrichment in the anammox system were achieved
with 6–8 mg/L DO in the influent water. Under an HRT of 2 h, the effluent NH4

+-N was
lower than 2 mg/L, the NO2

−-N was lower than 5 mg/L, the TN removal rate reached
a maximum of 81%, and the TN load reached 1.5 kg N/m3/d. The sludge EPS results
showed that PN played a major role in the enrichment of anammox granular sludge, with
PN/PS ranging from 5–6.3. Both SEM and high-throughput analyses indicated the presence
of multiple types of microorganisms in the system. The anammox functional bacteria in
the system were Candidatus brocadia and Candidatus kuenenia, with relative abundances of
8.51 and 5.68% on 153 d, respectively. TN concentrations above 200 mg/L inhibited the
anammox reaction. In this case, it is possible to reduce the inhibition by adding foreign
substances in the future. In this study, anammox granular sludge was used as the carrier
to successfully convert ordinary flocculent sludge. This study was expected to solve the
problem of insufficient anammox seed sludge, reduce the amount of anammox seed sludge
and accelerate the enrichment of AnAOB. This study provides a new culture strategy for
the use of the anammox process in large-scale wastewater treatment plants.
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