
Citation: Xu, S.; Shirowzhan, S.;

Sepasgozar, S.M.E. Urban Waste

Management and Prediction through

Socio-Economic Values and

Visualizing the Spatiotemporal

Relationship on an Advanced

GIS-Based Dashboard. Sustainability

2023, 15, 12208. https://doi.org/

10.3390/su151612208

Academic Editor: Giovanni De Feo

Received: 10 May 2023

Revised: 16 July 2023

Accepted: 27 July 2023

Published: 9 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Urban Waste Management and Prediction through
Socio-Economic Values and Visualizing the Spatiotemporal
Relationship on an Advanced GIS-Based Dashboard
Shixiong Xu * , Sara Shirowzhan * and Samad M. E. Sepasgozar

School of Built Environment, University of New South Wales Sydney, Sydney, NSW 2052, Australia;
sepas@unsw.edu.au
* Correspondence: shixiong.xu@student.unsw.edu.au (S.X.); s.shirowzhan@unsw.edu.au (S.S.)

Abstract: Enhancing data-driven decision-making is vital for waste authorities. Although few
studies have explored the influence of socio-economic indicators on waste tonnage, comprehensive
analysis of urban waste data focusing on geographical information is also scarce. There is a dearth of
dashboards for visualizing waste tonnage with spatial relationship maps. This study aims to present
a prediction model useful for estimating urban waste by using personal income (I), the number of
income earners (E), land values (L), the estimated resident population (P) and population density (D),
called the IELPD measures. An innovative approach is developed to identify the correlation between
urban household waste data and socio-economic factors and develop an advanced dashboard based
on a geographic information system (GIS). To accomplish this, relationship maps and regression
analysis are deployed to visualize household waste data spanning six years of waste production
in New South Wales, Australia, classified into three categories: recyclable, residual and organic
(RRO) wastes. Furthermore, this classification enables accessing the association between these three
waste categories and the IELPD metrics. And there are four types of visualization generated, that
is, thematic mapping, spatial relationship maps, correlation matrices and dashboard development.
The regression analysis shows a substantial association between RRO waste tonnage, population
changes and a minor correlation with land values. Overall, this study contributes to urban waste
data storytelling and its spatiotemporal associations with socio-economic determinants. This paper
offers a valuable prediction model of the IELPD metrics to estimate urban waste and visualize them
in a dashboard allowing practitioners and decision-makers to track trends in the RRO waste stream
in urban waste generally.

Keywords: GIS; waste management; spatial relationship; dashboard

1. Introduction

Urban waste is known as a significant source for recycling and reuse as key pillars of
circular economy. To achieve these objectives, an urban solid waste collection system was [1]
developed with recycling performance evaluation and analysis, which considered various
geometrics around retail services. Moreover, research [2] of rural solid waste systems
assessed environmental impacts using lifecycle assessment, especially investigating landfill
gas between waste collection, treatment, and utilization. An assessment of waste impact at
macro levels revealed that large waste quantities pose a potential threat to the environment
by causing pollution or disease transmission. In 2018, the World Bank estimated that global
waste generation would increase from 2.01 billion UK tons in 2016 to 3.4 billion tons by 2050.
Moreover, the estimate indicated that the cost of environmental and health damage from
poor waste management in low- and middle-income regions was around USD375 billion
per year [3]. Poor waste management is likely to trigger underground water pollution and
soil contamination from landfill sites. According to the World Health Organization [4],
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unsafe water, poor sanitation, and inadequate hygiene cause an estimated 2 million deaths
per year.

The efficient management of urban waste may minimize the environmental footprints
of inhabitants. Among various wastes, household waste management has the potential for a
high level of circularity since it facilitates reuse, recycling, and recovery over disposal. Waste
management is vital for eco-friendly development and increased circularity [5]. In addition,
the circular economy contributes significantly to environmental preservation objectives [6].
To enhance urban waste management, it is essential to investigate the existing context of
the various categories of municipal and regional household waste. Urban planners and
decision-makers need to monitor the amount of waste generated over time and utilize
the sophisticated tools available to visualize the many categories of household waste in
space, such as recyclables and organics. This information will be essential for data-driven,
well-informed urban waste management decision-making.

According to Australia’s national waste stream profile [7], waste is classified into three
categories based on its source. Commercial and industrial waste (C&I), construction and
demolition waste (C&D), and municipal solid waste (MSW) are the three categories. MSW
consists of waste collection by councils (local government) from households. When the
waste stream is divided to single out the MSW, it should first pass through the two major
categories of waste before accessing household waste, which are C&D waste and C&I waste.
Household waste in urban areas was classified into three basic groups: recyclable, residual
(biodegradable and nonbiodegradable), and organic (biodegradable), together called the
RRO waste.

In the context of urban metabolism, MetaExplorer—a digital platform developed
in Portugal [8]—serves a crucial role in facilitating the sustainable energy transition by
providing comprehensive energy data. Additionally, the platform encompasses thematic
areas pertinent to waste management within national socio-economic metabolism. With
potential digital technologies, The University of Sydney, et al. [9] studied the case of NSW,
including data visualization and analytics of precincts and infrastructure in terms of space
and time, enabling scenario assessment with a focus on circular economy metrics.

Once circular material flows in the industry are implemented, minimizing waste, utiliz-
ing resources more efficiently, reusing, and recycling products also contribute significantly
to the lowering of carbon emissions from urban waste. As more and more information
became visible of the actual waste stream, the rate of waste recycling for environmental
protection was constantly mentioned.

By providing more transparency of the waste stream, data-driven decision-making
can support a deeper understanding of the current and historical situation, helping to
make better judgments and placing a more efficient emphasis on waste recycling for
environmental protection. Moreover, the significance of data-driven decision-making
originates from the fact that data-derived information supports deeper understanding of
the current situation and, as a result, better decision-making.

Accessibility to essential data, such as waste statistics, is likewise a core issue and
demand in this context. In addition to data preparation, the analysis of such datasets is
essential for exploring patterns, trends, and insights. Digital tools such as dashboards
provide decision-makers with the opportunity to view these insights at-a-glance in terms
of space and time. Household waste data collection is a demanding and time-consuming
task, since such data are dispersed across organizations that do not provide public access
to them, as so many entities are involved in collecting household waste at various levels of
governance. Even if the information is collected, processing such data is time-consuming
and requires extensive pre-processing since the datasets are stored in various file formats.
In waste management, data analytics involves examining unstructured data to uncover
previously unknown linkages and other insights through trend analysis. Organizations
and waste management companies can utilize analytics to explain, anticipate, and enhance
their operations, as Niska, et al. [10] mentioned.
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Some official documents from the federal government in Australia, such as the Na-
tional Waste Report [11–13] and National Waste Policy Action Plan [14,15], emphasize the
importance of digitalization in waste data management in Australia. The word clouds of
these reports are visualized based on the word frequency in Figure 1. This initiative will
provide an interactive waste data management platform for government and industry. The
policy may require the presentation of a proof-of-concept platform or the visualization
of waste flow. The ‘Waste Data Hub’ is being improved by the Federal Waste Authority,
and Microsoft Power BI was used to construct the ‘National Waste Data Viewer’ dash-
board [16], which is categorized by source stream, material category, time, jurisdiction, and
waste facilities.
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The current dashboards’ prediction functionality and trend analysis capabilities are
limited. Current access to waste data allows users to view the spatial relationship between
social and economic indicators. The tonnage of urban household waste, associated with
the population and households, could be used directly for social studies to track personal
income and income earner numbers for their socio-economic characteristics. As one study
mentioned [17], the municipal solid waste management transition focused on Chinese
cities with different population sizes and considered multiple metrics, including finance,
land, administrative control, tax revenue and subsidies. Such studies embraced population
size, land, and tax revenue in solid waste studies. The connection between waste tonnage
and metrics is one of the reasons why the study chose four parameters related to waste
generation: land, population, income, and the number of income earners [18]. Furthermore,
community characteristics such as land values, land use in urban and regional areas, and
waste management are based on land values rather than personal income in the local
community. The spatial relationship between socio-economic metrics and the tonnage of
waste generated, play an important role in assessing the impact of locational information
and neighbourhood analytics. Based on the year-to-year changes in socio-economic metrics,
the tonnage of waste can be assessed with temporal change from the spatial level.

While the dynamic representation of past data in dashboard diagrams is very useful,
the inclusion of spatial analysis insights from the data is rare. This study fills this gap by
using spatial relationship maps to build a dynamic and innovative smart waste visualization
dashboard (SWVD) for NSW. This paper analyses household waste data from 2014 to 2019
and specifies spatiotemporal associations between the RRO waste and IELPD metrics, using
correlation matrices and relationship map methods.

2. Review of Urban Waste Relationships, Digital Platforms, and Policies

GIS-based data are typical location-based data that visualize spatial distribution pat-
terns. Figure 2 present a summary of research methods for waste management and spatial
analysis. GIS is known as a useful tool for analysing waste’s spatiotemporal relationships
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and visualizing waste changes over time. Some researchers have investigated the spatial
relationship of waste collection stations and their temporal impacts on neighbours. For
instance, Yang, et al. [19] proposed the spatial and temporal analysis of illegal dump-
ing in municipal solid waste evaluations, considering social indicators such as income,
unemployment, and population density.
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Exploring the temporal relationship between waste tonnage and related variables
depends on regression analysis methods, particularly multiple linear regression, and
Pearson regression techniques. For instance, researchers developed heuristic route planning
algorithms for waste pickup vehicles in Greater Melbourne [20]. The study utilized Python
libraries and ArcGIS mapping to simulate neighbourhoods and designed a chart-based
intelligent bin system in Wyndham City Council.

For exploring spatial relationships, Smith, et al. [21] research employed approaches
from social epidemiology datasets to study the spatial relationship between the outbreak
of COVID-19 and construction in Sydney and Melbourne. To consider the patterning of
disease among entire populations and other metrics, including environment, economy,
and government policies, the relationship map and clustering analysis must be employed
in order to connect these metrics together to explore spatial patterns before and after
COVID-19.

Figure 2 shows the correlation matrix and machine learning, which is generally con-
sidered in the research of multiple influencing factors. For instance, the researcher of [22]
collected historical bushfires and meteorological and vegetation datasets to explore the
relationships and interactions over the past 40 years. To achieve the relationship explo-
ration in space and time, He, et al. [22] applied multiple linear regression and Bayesian
logistics to model the probability of forest fire occurrence. The correlation matrix shows the
importance of each influencing factor in multiple linear regression.

Focusing on waste research, metropolitan waste collection areas were divided into
suburbs, Local government areas (LGAs) or municipal governments. Local government
areas collect household waste from each bin on a building, at the community level. Rare
datasets for waste tonnage optimization and regional recycling rate improvements are
linked. Thus, waste estimation through potential impact factors in regions is a popular
data science topic for waste management. For instance, a study [23] uses machine learning
to estimate municipal waste. This method forecasts weekly and daily waste generation at
the property level for 609 subsections of new work city from the department of sanitation
over ten years. Weather, building type, density, and demographic variables are included.
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Data limitations may reduce machine learning’s prediction accuracy, however, requiring
incremental improvements.

Some studies highlighted the significance of using appropriate modelling techniques
for the predictive analysis of environmental impact in agricultural systems. Ghasemi-
Mobtaker, et al. [24] proposed that wheat farm production should be developed using
mathematical and artificial intelligence modelling, which could predict the economic
profit, global warming potential (GWP) and output energy. It provides insights into the
relationship between inputs and outputs in agricultural production.

In this agricultural study [25], the researchers considered diesel fuel, biocides, input
costs and the cost of different operations in 75 wheat farms with modelling techniques
including life cycle assessment (LCA), artificial neural networks (ANNs), and adaptive
neuro-fuzzy inference system (ANFIS) methods. Nabavi-Pelesaraei, et al. [25] suggested
using these methods, especially ANNs and ANFIS, to solve the optimization of energy
consumption and estimate the yield of agriculture products without plant farming.

In a large agricultural system, environmental impacts [26] need to be evaluated for
toxicity factors and exergy analysis to identify the demands of water systems. Multiple
factors analysis generally needs analytic hierarchy processes to identify metrics’ priority in
complex systems.

There are temporal, topographical, and observational correlations between RRO waste.
Apartment occupants gather recyclables from nearby areas [27,28]. The property owner
develops and controls these collecting facilities mandated by the Australian cadastral parcel.
Local councils collect green, red, and yellow bins by ‘colours’, and ‘materials’ [29]. It is
characterized by yellow for recycling, green bins for organic waste, and red bins for rubbish,
categorized in this study as residual.

For waste research across social and economic parameters, researchers [30] suggested
that the variation of waste disposal factors is associated with the mass of biomedical waste
in Regina, Canada. The study used Python Seaborn data visualizations such as Boxplots,
Violin Plots, and Joint plots to analyse the tonnage of waste. As a result, the amount of
monthly waste disposal was 450–550 tons/month. Compared to the pre-COVID-19 era,
monthly waste data were less available, and seasonal influences on total waste disposal
were less clear before the COVID-19 pandemic.

In Australia, the waste collection management system displayed the waste tonnage
of city council datasets and the vehicle’s route. RRO waste is listed in the mesh block
of several local government areas in the open-source workbook available from the NSW
EPA. Smart waste management was analysed with the challenges for a sustainable circular
economy in an Indian study [31]. The research utilized a comparative analysis between
the qualitative phase of government employees and quantitative analysis to identify the
barriers to the implementation of smart waste management.

After waste data collection, the researcher assesses neighbourhood spatial linkages
between spatial visualization and regression analysis in household waste. Using weighted
regression, morphological and residential dispersion is analysed. A Campania study
compared mountain town waste collection with the impact of land characteristics [32],
especially how morphology and housing distribution affect separate waste collection
(SWC) in mountain communities. In sparsely populated regions, socio-economic variables
support the large geographical variation of land characteristics. Similarly, Richter et al. [33]
reveal that numerous sources have previously optimized the cost-effectiveness of waste
management. These studies employ geospatial or temporal analysis to investigate the
neighbourhood environmental impacts. Based on these studies, it can be reflected that rare
studies identified the statistical correlation and spatial relationship among year-to-year
waste tonnage and socio-economic metrics in same geographical areas. There are multiple
indicators that influence the amount of waste generation such as personal income, number
of income earners, land values, population, and population density. In the study mentioned
above [17], disposal management transition was defined as the process of transition from
traditional methods of municipal solid waste (MSW), including landfill and incineration.
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Municipal solid waste in Chinese cities can identify the effects of disposal management
transition and its determinants, including population size, per capita GDP, per capita
road area, and number of tourists. These metrics were developed to predict the carbon
reduction in MSW disposal. One study [1] of urban solid waste management in aggregating
performance indicators mentioned the number of retail services in the assessment models.

The dashboards of vehicles indicate speed, oil, and water temperature in real-time. A
‘dashboard’ in business provides fast views of KPIs related to a goal or business process.
The dashboard is a visual representation of a ‘process report’ in maps and infographics
so that internet dashboards for the COVID-19 pandemic since 2020, display active cases,
immunization rates, and regional patterns. Dashboards for regional government, cov-
ering architecture, engineering, construction, urban planning, and emergency services,
are expanding. Dashboards have been developed at several infrastructure levels in city
management. The dashboard displays real-time data so that drivers may immediately
respond to incidents [34]. It has tools for monitoring and assisting decision-makers, such
as statistical graphs and geographic maps [35].

In these dashboards, developers generally visualize real-time statistics on maps and
diagrams, including Sydney’s dashboard [36]. These features also exist in one of the
most popular COVID-19 cases, a real-time dashboard from John Hopkins University [37].
Meanwhile, the researcher [37] found more issues. Several options for expanding the
prototype’s functions emerged. The researchers emphasize interactive reporting to access
historical or real-time geocoded data through 1D diagrams, 2D maps and 3D scenes.
Meanwhile, socio-economic metrics are to be displayed in the local communities. Examples
of waste management dashboards from the literature evaluation and industry investigations
are shown in Table 1.

Table 1. Summary of the state-of-the-art practices in developing the waste dashboards.

Name Dash or Map with
‘Tools’

1D/2D/3D 1 +
Real-Time/Historical

Limitations
and Deficiencies

With Social
Metrics

Victoria’s waste projection model
[38] Dash, Microsoft Power BI 2D + Historical Without

spatiotemporal analysis Yes

Victoria’s local government waste
data dashboard [39] Dash, Microsoft Power BI 2D + Historical Without

spatiotemporal analysis No

Domestic waste and recycling
dashboard in WA [40] Dash, Microsoft Power BI 1D + Historical Without spatial

analysis No

Smart city waste management
with SAP Analytics Cloud [41]

Dash, SAP Analytics and
ESRI 2D + Real-time Without

spatiotemporal analysis No

Map of waste and recycling
centres [42] Map, Google Map 2D + Historical Without temporal

analysis No

Waste streams (Roboat) [43] Dash, Mapbox+ OSM 2D + 3D + Realtime Without
spatiotemporal analysis No

National waste reporting mapping
tool [44]

Map, Geoscience
Australia tool 2D + Historical

Without temporal
analysis, more

qualitative
No

Waste and resource recovery data
hub—national waste data

viewer [16]
Dash, Microsoft Power BI 2D + Historical Without

spatiotemporal analysis No

August 2022 waste metrics
dashboard [45] Dash, report PDF 2D + Historical

With spatiotemporal
analysis, but display

without interactivities
No

NSW Jobs and Businesses In waste
management and recycling [46]

Dash,
Flourish Studio 2D + Historical Without temporal

analysis Yes
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Table 1. Cont.

Name Dash or Map with
‘Tools’

1D/2D/3D 1 +
Real-Time/Historical

Limitations
and Deficiencies

With Social
Metrics

Zero waste data dashboard [47] Dash, Microsoft Power BI 1D + Historical Without spatial
analysis No

Solid waste tonnage
dashboard [48] Dash, Microsoft Power BI 1D + Historical Without spatial

analysis No

1 1D: Diagram (diagram view), 2D: Map + diagram (map view), 3D interactive diagram map (scene view). Note:
‘Realtime’ refers to current or ongoing tracking, and ‘historical’ refers to data covering a few years saved in digital
storage. Source: compiled by the authors, 2023.

Due to the popularity of the ‘smart city’ concept, waste management is undergoing a
digital transformation, such as with city council or EPA waste stream data. The national
waste report is illustrated graphically. However, these waste management datasets were
not chosen for digital display and real-time analysis in the interactive mapping app. This
current work will identify the temporal changes in waste tonnage and social, economic
metrics from 2014 to 2019, and perform spatial visualization and relationships in RRO
waste with multiple social metrics, develop an SWVD of annual household waste in NSW
from 2014 to 2019.

3. Materials and Methods
3.1. Study Area and Data

This study aims to develop a GIS-based technique for monitoring and analysing waste
as part of its overall mission. New South Wales (NSW) was selected as a case study for
the implementation of the visualization method, including Greater Sydney, as shown in
Figure 3. The map is based on the coordinate system of GDA2020 MGA Zone 55. The figure
displays the geographical range from NSW in Figure 3a to Greater Sydney in Figure 3b. The
area in NSW that is not included in the Greater Sydney area is called the ‘Regional NSW’.

NSW has a larger population and superior garbage databases compared with other
Australian jurisdictions. However, no research has been undertaken on relationship maps
to help with educated household waste decisions. NSW is located on Australia’s East
Coast. In 2020, NSW was the most populous state in Australia, with 128 LGAs. There are
three types of RRO waste streams, and the data profile, format, and sources are displayed
in Table 2.

Table 2. Data profile, including the waste datasets from NSW.

Name Format Data Source Location Information
in the Dataset

Temporal Information
in a Period

Local council waste and
resource recovery data 1* XLSX Environmental Protection

Authority of NSW Polygon-LGA 2014–2019

Land values XLSX NSW Spatial Services Point-Suburb 1996–2021

Estimated resident
population (ERP) CSV/XLSX Australian Bureau of

Statistics (ABS) Polygon-LGA 2001–2021

The personal income and
number of earners CSV/XLSX

ABS Income (Including
government allowances),

LGAs, 2014–2019
Polygon-LGA 2014–2019

ERP density 2* CSV/XLSX ABS Polygon-LGA 2001–2021

Sources: compiled by the authors, 2023. Note: 1* This study for waste tonnage datasets in EPA from 2014 to 2019
is shown in the original files for 2014–2015, 2015–2016, 2016–2017, 2017–2018, 2018–2019, and 2019–2020. One year
gap value uses 2019–2020 minus 2018–2019 data, which means waste tonnage changes from year to year. The
five-year gap is followed by similar waste tonnage changes from 2014 to 2019. 2* Estimated Resident Population
Density uses Estimated Resident Population divided by the LGA in km2.
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3.2. Methods

This study aims to conduct a spatiotemporal analysis of the NSW waste data with
socio-economic metrics between 2014 and 2019. Table 3 shows the specific methods and
data used for achieving each objective in this research.

Table 3. Methodology summary through the research objectives (Source: compiled by the authors).

Research Objectives Data Methods and Tools

Analyse the variance of waste-related social metrics
and RRO waste between 2014 and 2020 by location

at the LGA level.
Residual, organic, recyclable Thematic mapping (Jenks

natural break)

Identify the spatial relationship between the level of
IEPLD, and the amount of produced waste in the

three types of RRO waste.
Residual, organic, recyclable

Relationship map (Quantile
breaks), Pearson correlation,

Spearman correlation

Develop a dashboard with visualization,
cross-interactive maps, and insights from waste

stream data.

Personal income, number of income
earners, land values, ERP, ERP density,

residual, organic, and recyclable.
ArcGIS experience builder

As seen in Table 3, methods of spatial visualization in different social economics, a
relationship map, and a correlation matrix are implemented in this research to achieve the
objectives. These methods are explained below after describing data preparation.
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3.2.1. Data Preparation and Processing

Geocoding helps to visualize spatial data. For GIS specialists, Feature Manipulation
Engine (FME) software (version 2021.1.0.1) can convert file formats and geocode datasets.
The geocoder for FME can locate the nearest address using ArcGIS Online, Google, ArcGIS
Online and ArcGIS Pro were used to join geographical features of maps geocoded from
several LGAs. There are insufficient monthly and daily public datasets for high-resolution
spatial analysis. Although the EPA’s annual data collection on MSW and C&D waste is
limited by commercially sensitive datasets, the RRO waste data can be reviewed annually
in the household waste from ‘Local council waste and resource recovery data’. Green
bins, yellow bins, and red bins have been recognized categories for RRO waste since
2005. Reclassification of time series datasets indicates RRO inefficiency. Since the smallest
unit of information was, the city council in the datasets obtained, the update of the LGA
geographical boundary impacted spatial visualization and the examination of relationships
within LGAs. Spatial visualization is less explicable when a classification contains missing
data (null values). In addition, the processing of spatial data enables the connection of
household waste patterns within municipal solid waste jurisdictions.

In the meantime, the model builder in ArcGIS Pro optimizes the pre-processing of
data joins across different datasets. Identifying regional correlations between RRO waste
and other socio-economic variables can reduce software operating time and permit data
processing. Pearson regression enhanced the regression of numerous socio-economic
components. Using data cleaning, the yearly data frame is transformed into several
columns, including various annual datasets, such as the attribute table of the residual
recycle layer in GIS, particularly residual waste recycling from 2014 to 2019.

For thematic mapping in multiple metrics, there are two methods mentioned in this
study, such as Jenks natural breaks and quantile breaks. Jenks natural breaks classify ranked
numerical data by considering multiple nonuniform classes with varying frequencies of
observations per class. On the other hand, quantile breaks use a different distribution
method to evenly classify the observed values into multiple class intervals, resulting in
uneven class distances but an equal frequency of observed values per class.

3.2.2. Relationship Map

Bivariate choropleth maps [49], known as relationship maps, were customized to
reveal spatial patterns of areas’ cross-overlap and divergence in several waste types. Using
ArcGIS online or ArcGIS Pro, an analyst can compare two columns of datasets by selecting
one column and then selecting the ‘relationship’ mapping style from the symbology section
of layers. This method is to determine whether there is a spatial relationship between a
RRO waste tonnage and IELPD in this research.

3.2.3. Regression Analysis

(1) Pearson correlation

Pearson correlation is beneficial for displaying the correlation heatmap among multiple
indicators in the research. It expresses the importance of correlation among multiple
parameters at the neighbourhood level [50,51].

Equation (1) The metric of Pearson Correlation

ρ =
∑n

i=1 (xi − x)(yi − y)[
∑n

i=1 (xi − x)2(yi − y)2
] 0.5 (1)

where:
x, y are the mean of x, y, which are representatives of urban household waste data and

one of the four urban data factors (i.e., land value, number of income earners, personal
income, and ERP, ERP density).
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The range of Pearson’s regression, which assesses the correlation between two numeric
features, is from −1 to 1. It is the ratio between two variables’ covariance and standard
deviation products. The value ‘+1’ denotes the highest positive correlation, while ‘0’ denotes
the absence of a linear relationship, and ‘−1’ denotes a perfect negative linear relationship.

For a better visual representation of the outcomes of Pearson’s correlation, a correlation
heatmap [22] is generated. Positive cell values denote a positive relationship, while negative
cell values denote a negative relationship. Correlation heatmaps can be used to identify
potential relationships between variables and assess the strength of these correlations.

(2) Spearman regression

The Spearman’ rank correlation is to study the nonlinear relationship between two
variables. It is defined similarly to the Pearson correlation for variables, which is nonnor-
malized distribution in spatial scales [52]. The categories of correlation [53] were evaluated
to rank correlation coefficients as follows: (a) The coefficient is greater than 0.7, called a
well-correlated metric; (b) the coefficient is between 0.5 and 0.7, called a moderate correlated
metric; (c) the coefficient is between 0.3 and 0.5, called a weak correlated metric; (d) the
coefficient is less than 0.3, called a slight correlated metric.

3.2.4. Development of a GIS-Based SWVD

The GIS-based SWVD is developed in this research to provide the possibility of gaining
at-a-glance insights from the waste data spatial visualization and relationship analysis
across NSW, Australia. Such SWVD provides the possibility of efficient and informed
decision-making. Interactive mapping and diagrams in the SWVD show the changing
pattern of waste disposal, the relationship map between RRO waste, and population change
from IELPD. Moreover, this SWVD makes the outcomes of the research accessible and
interactive for the audience, to provide them with the possibility of exploring the needed
details further. ESRI products such as ArcGIS Online and experience builder [54] are used
to make interactive web maps [55] and dashboards. There is a graph that describes the
dashboard development of SWVD in this study (see Figure 4).

Sustainability 2023, 15, x FOR PEER REVIEW 11 of 40 
 

pattern of waste disposal, the relationship map between RRO waste, and population 
change from IELPD. Moreover, this SWVD makes the outcomes of the research accessible 
and interactive for the audience, to provide them with the possibility of exploring the 
needed details further. ESRI products such as ArcGIS Online and experience builder [54] 
are used to make interactive web maps [55] and dashboards. There is a graph that de-
scribes the dashboard development of SWVD in this study (see Figure 4). 

 
Figure 4. The workflow of developing SWVD, including datasets, techniques, and outcomes. Source: 
compiled by the authors, 2023. 

4. Results 
This section presents the results of the waste data analysis. The results below are or-

ganized based on the sequence of the research objectives. 

4.1. Spatial Data Visualization of Multiple Metrics 
Research objective 1 was to use the RRO stream data after pre-processing to visualize 

the socio-economic metrics’ datasets for location information, as shown in Figure 5. In 
Greater Sydney, there are four categories of values identified using the range values of the 
Jenks Natural Breaks. On the other hand, in the same attribute table, there are RRO waste 
stream data spanning the years from 2014 to 2019, which can be utilized in mapping the 
temporal changes between one of the RRO waste categories and social metrics. Table 4 
lists various socio-economic metrics and one group of the RRO waste, visualizing the year-
to-year unit of income, number of income earners, population, and population density 
from 2014 to 2019. 

  

Figure 4. The workflow of developing SWVD, including datasets, techniques, and outcomes. Source:
compiled by the authors, 2023.



Sustainability 2023, 15, 12208 11 of 38

4. Results

This section presents the results of the waste data analysis. The results below are
organized based on the sequence of the research objectives.

4.1. Spatial Data Visualization of Multiple Metrics

Research objective 1 was to use the RRO stream data after pre-processing to visualize
the socio-economic metrics’ datasets for location information, as shown in Figure 5. In
Greater Sydney, there are four categories of values identified using the range values of the
Jenks Natural Breaks. On the other hand, in the same attribute table, there are RRO waste
stream data spanning the years from 2014 to 2019, which can be utilized in mapping the
temporal changes between one of the RRO waste categories and social metrics. Table 4
lists various socio-economic metrics and one group of the RRO waste, visualizing the
year-to-year unit of income, number of income earners, population, and population density
from 2014 to 2019.
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Figure 5. The temporal changes in residual waste collection in relation to the social metrics between
2014 and 2019 in Greater Sydney: (a) in residual waste collection (b) ERP (estimated resident pop-
ulation); (c) number of income earners; (d) population (ERP) density; (e) land values; (f) median
personal income.

The RRO waste tonnage data with respect to residual waste collection were visualized
for the Greater Sydney area (see Figure 5a), with Blacktown displaying the most significant
positive changes with increasing trends from 2014 to 2019. The representation in the State
of NSW reveals that the second shaded centres of residual waste collection are located in
LGAs such as Eurobodalla, Shoalhaven, Goulburn, Wingecarribee, Sutherland Shire, and
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part of the councils of Greater Sydney such as Parramatta, Ryde, the City of Sydney and
other LGAs listed in Table 4. The positive changes in the increasing RRO waste tonnage
also apply to some of the councils in the north part of the NSW, such as Dungog, Upper
Hunter, Coffs Harbour, and Lismore.

Table 4. The thematic mapping of social metrics’ changes in Greater Sydney between 2014 and 2019.

Figure Number/Metrics Number of Neighbourhoods The List of LGAs with Special Features

Figure 5a, Residual waste collection Second shaded: 10
The second top shaded group: Wollondilly, Camden,

Liverpool, Penrith, Liverpool, Fairfield, Parramatta, and
Ryde, City of Sydney.

Figure 5b ERP changes Top shaded: 7
Top shaded group: Camden, Liverpool,

Canterbury–Bankstown, Cumberland, Blacktown,
Parramatta, Sydney.

Figure 5c Number of
earners’ change Top shaded: 4 Top shaded group LGAs: Sydney,

Canterbury–Bankstown, Parramatta, and Blacktown.

Figure 5d Population density
change (ERP density)

Top shaded: 1
Second shaded: 12

Top shaded: Sydney
The second shaded:

North Sydney, Burwood, Strathfield, Land Cove,
Parramatta, Inner West, Ryde, Canada Bay, Waverley,

Cumberland, Willoughby, Randwick.

Figure 5e Land values change Top shaded: 1 Top shaded group: Sydney

Figure 5f Median personal
income change

Top shaded: 22
Second shaded: 2

Top shaded group: Blue Mountains and Hawkesbury,
and Wollondilly, Penrith, Blacktown, Camden,

Campbelltown, Penrith, Central Coast, and others.
The second shaded group: Sydney and Parramatta.

Source: compiled by the author, 2023.

Regarding the social metrics, the population changes in the ERP data (see Figure 5b)
show that in areas of dotted box such as Camden, Liverpool, Canterbury–Bankstown,
Cumberland, Blacktown, Parramatta, and Sydney, the LGAs existed as densely shaded
groups with the greatest changes occurring from 2014 to 2019. Once the research focuses
on the change in the number of earners (Figure 5c), it becomes clear that there are multiple
LGAs in the top shaded LGAs’ list, such as Sydney, Canterbury–Bankstown, Parramatta,
and Blacktown.

Referring to the population density changes shown in Figure 5d, there are three
categories of values associated with this period. In the top shaded group, only one LGA,
the City of Sydney, existed in the group of very high population density changes in Greater
Sydney, increasing from 49.6 to 154 ERP/km2 between 2014 and 2019. Twelve LGAs are
situated in the second shaded group of population density changes around Metropolitan
Sydney, displaying increases ranging from 24.4 to 49.6 ERP/km2 (see Table 4). The third
shaded group is mentioned, with 10 LGAs in underdeveloped areas increasing in density
from 5.8 to 24.4 ERP/km2.

Meanwhile, the most significant land value changes shown in Figure 5e are in the
dotted box including City of Sydney. There are underdeveloped LGAs with the highest
increases in median personal income occurring in the dotted box, for instance, the Blue
Mountains and Hawkesbury, Wollondilly, Penrith, Blacktown, Camden, Campbelltown,
Penrith, Central Coast—Figure 5f. The developed LGAs are in the second-highest cat-
egory changes (second shaded group) in personal income, such as the City of Sydney
and Parramatta.

Through these maps of five years of change in Greater Sydney, Blacktown stands out
in the high-frequency list of the top shaded group among social metrics and residual waste
tonnage. After mapping one metric, it becomes comparable for researchers to explore the
two metrics of land values and ERP in the spatial relationship as shown in Section 4.2 from
Figures 6–14.
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4.2. Spatiotemporal Relationships with Other Metrics

Research objective 2 is to identify the spatial relationships between one socio-economic
metric from IELPD, the number of income earners, and the amount of waste generation for
the three types of RRO waste. To meet Objective 2, the relationship map and correlation
matrices were applied to the RRO data after multiple data pre-processing steps using
Python, and the result is demonstrated in Figures 6 and 7a,b with the relationship map
across the multiple IELPD metrics. Meanwhile, correlation matrices were able to identify
the significance of the correlation between two metrics, especially the waste tonnage, with
the other four metrics, as shown in Figure 8a,b for annual data.

Based on the illustrations, the spatial analysis will help to examine the spatiotemporal
interaction between household waste tonnage in three channels and other waste disposal
datasets in quantile natural breaks. Regression analysis also helps to estimate future waste
tonnage in LGAs.

The spatial relationship map in Figure 6 portrays recyclable waste collection and land
value. At the same time, the circle size represents the ratio of the number of income earners
divided by the population in 2019. Taking the cartographic symbols, a series of LGAs is
focused on Greater Sydney, such as the eight LGAs listed in Table 5. Moreover, Central
Darling and Brewarrina have a particularly significant ratio of earners to residents.

In Figure 7a, there are significant top shaded areas in LGAs which are located in
Shoalhaven, Bathurst Regional, and other LGAs in Table 5. These areas display positive
correlations between the number of income earners and ERP, which means that there are
higher employment rates and increased awareness of recycling behaviours in such LGAs.
In Greater Sydney (Figure 7b), there are LGAs such as Parramatta, Strathfield, Sydney,
and another eight LGAs listed in Table 5, which also have high employment rates with
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positive correlations between the change in the number of income earners and ERP changes
(Figure 7b). The ratio of the ‘number of income earners’ divided by ERP displayed an
increasing trend, which implies an increase in both the employee number and the recyclable
waste collection.
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Figure 7. The relationship map between recyclable waste collection and change in the number of
income earners divided by ERP change in 2014–2019 (a) at the state level (quantile) and (b) in Greater
Sydney (quantile). Source: compiled by the authors, 2023.

Figure 8a illustrates some high-high areas, which are a significant top-shaded group
within the Greater Sydney area. The regions are Shoalhaven, Lake Macquarie, Newcastle,
Tweed and other LGAs listed in Table 5. In the Greater Sydney area, according to Figure 8b,
the relationship map shows high-high areas where there is a positive correlation between
recyclable waste collection and population, which includes Strathfield, Sydney, Waverley
and other LGAs listed in Table 5. However, there are null values with the new council
boundary in the Bayside LGA. Regarding the relationship map displaying ERP density
change and recyclable waste collection, the spatial pattern shows the same distribution
features as for ERP in Greater Sydney.
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Figure 8. The relationship map between recyclable waste collection and ERP changes in 2014–2019,
(a) at the state level (quantile), (b) in Greater Sydney (quantile). Source: compiled by the authors, 2023.

Figure 9 shows the spatial association between residual waste collection and land
value, with the ratios between the number of income earners and ERP in 2019. The largest
ratio in the chart is in Central Darling and Brewarrina. The diversity in symbology in
software needs to be clarified for the districts of LGAs such as Parramatta, Ku-ring-gai,
and other LGAs are listed in Table 5. These LGAs have the strongest link between the land
value, the number of income earners and residential waste collection.
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In Figure 10a at NSW State level, six LGAs, including Eurobodalla, Tweed, and other
LGAs listed in Table 5, enjoy positive correlations between the ratio of the number of
income earners and ERP. It means there are higher employment rates and high awareness
of residual waste behaviour. In the Greater Sydney area, Penrith, Canada Bay, North
Sydney, and other LGAs (see Table 5), display the highest ratios between the ‘number of
income earners and the change in ERP from 2014 to 2019, with the correlation positive in
Figure 10b.
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Figure 10. The relationship map between residual waste collection and change in the number of
income earners divided by ERP change in 2014–2019, (a) at the state level (quantile) and (b) in Greater
Sydney (quantile). Source: compiled by the authors, 2023.

Figure 11a presents significant top-shaded LGAs of residual waste collection (the
High-High Areas) and ERP. The LGAs are Ryde, Ku-ring-gai, North Sydney, Sydney and
another eight LGAs in Table 5, all located in the Greater Sydney area. In Figure 11b for
regional NSW, significant top shaded LGAs (high-high areas) for residual waste collection
are Shoalhaven, Port Macquarie, Tweed, and another four LGAs in Table 5. Regarding the
relationship map of ERP density change and residual waste collection, the spatial pattern
shows the majority of LGAs whose ERP has the high employment rate in Greater Sydney,
including Wollondilly, Camden, Liverpool, Penrith, Blacktown, Fairfield and Burwood
Ryde, Sydney.
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Figure 11. The relationship map between residual waste collection and ERP changes in 2014–2019,
(a) at the state level (quantile), and (b) in Greater Sydney (quantile). Source: compiled by the
authors, 2023.

In Figure 12a, there are 11 LGAs, including Lake Macquarie, Maitland, Byron, and
another eight LGAs in Table 5. There are positive correlations in these areas between the
ratio of the number of income earners and ERP and the waste tonnage of residual waste
collection. This suggests that there are higher employment rates and high awareness of
organics’ waste disposal behaviour. In Figure 12b, at the NSW state level, there are a number
of LGAs, including the Blue Mountains, Penrith, Liverpool, and another seven LGAs in
Table 5, which also have the highest employment rates with a positive correlation with the
tonnage of residual waste collection.
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Figure 12. The relationship map between organic waste collection and change in the number of
income earners, divided by ERP change in 2014–2019 (a) at the state level (quantile) and (b) in Greater
Sydney (quantile). Source: compiled by the authors, 2023.

Figure 13a shows six significant top-shaded LGAs (high-high areas) for organic waste
collection and ERP changes, which are Camden, Liverpool, Penrith and another three LGAs
listed in Table 5 for the Greater Sydney area. Figure 13b shows additional significant top-
shaded LGAs (high-high areas) reflecting the ERP and organic waste collection—Cessnock, Lake
Macquarie, and Tweed in regional NSW.
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Figure 13. The relationship map between organic waste collection and ERP changes in 2014–2019
(a) at the state level (quan-tile) and (b) in Greater Sydney (quantile). Source: compiled by the
authors, 2023.

Figure 14 presents the spatial regression between organic waste collection and land
value. The circle size reflects the ratios of the number of income earners divided by the 2019
ERP population, including six LGAs listed in Table 5, which generate the largest amount
of recyclable waste tonnage. The LGAs in the map’s largest circle differ from those of the
others, such as Central Darling and Brewarrina. With respect to the relationship map of the
ERP density change and organic waste, the spatial pattern shows the same distribution as
that of the ERP in Greater Sydney.
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Figure 14. The relationship map between organic waste collection and land value with the ratio of
the number of income earners divided by ERP. Source: compiled by the authors, 2023.

Before the correlation analysis was carried out, the research conducted normality tests
on the waste tonnage and socio-economic metrics from Figures 15–19. In the Figure 15,
this analysis found that land values in Figure 15a and population changes in Figure 15b
have lower levels of normalization compared with the consistency of the areas (km2) in the
box plot. Moreover, the author investigated that the raw data on the population and land
values in NSW from the Australian Bureau of Statistics are not normalized for the multiple
LGAs and their different sizes in Figures 18 and 19. Based on the observations of raw data,
these inconsistencies in normality are part of the research limitations occurring in these
correlations. There are three types of correlation matrix that test the correlation between
RRO waste types and the other socio-economic metrics, shown in Figures 20–25.

Table 5. The key LGAs and the special insights in specific figures.

Figure
Number Range/Special Features Number of

Neighbourhoods LGAs

Figure 6
Greater Sydney/significant ratio
of the number of income earners

to residents

8 (Greater Sydney) + 2
(Regional NSW)

Greater Sydney: Wingecarribee, Camden,
Liverpool, Fairfield, The Hills Shire, Hornsby,

Ku-ring-gai, and Ryde
Regional NSW: Central Darling and Brewarrina
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Table 5. Cont.

Figure
Number Range/Special Features Number of

Neighbourhoods LGAs

Figure 7a,b

High-High areas: Significant
top-shaded areas, showing a

positive correlation with high
significance, located in areas

among tonnage change in
recyclable waste collection and

change in number of income
earners divided by change in ERP

10 (Greater Sydney)
8 (Regional NSW)

Greater Sydney:
Blue Mountains, Blacktown, Parramatta,

Strathfield, Sydney, Waverley, Fairfield, Liverpool,
Camden, and Sutherland Shire.

Regional NSW:
Shoalhaven, Bathurst Regional, Lake Macquarie,
Newcastle, Port Stephen, Coffs Harbour, Byron,

and Tweed.

Figure 8a,b

High-High areas: Significant top
shaded areas, positive correlation
with high significance located in

areas among recyclable waste
collection and ERP changes

9 (Greater Sydney)
7 (Regional NSW)

Regional NSW:
Shoalhaven, Shellharbour, Port Stephens, Lake

Macquarie, Newcastle, Coffs Harbour, and Tweed.
Greater Sydney:

Sutherland Shire, Liverpool, Camden, Fairfield,
Blacktown, Parramatta, Strathfield, Sydney,

and Waverley.

Figure 9
A positive correlation between
land value, number of income
earners and residential waste

6 Parramatta. Ku-ring-gai, Hornsby, Narromine,
Junee, Yass Valley

Figure 10a,b

A positive correlation with the
ratio among number of income
earners and ERP (population)

in NSW.
Greater Sydney:

higher employment rates (number
of income earners/population)
and high awareness of residual

waste behaviour

14 (Greater Sydney)
6 (Regional NSW)

Greater Sydney:
Wollondilly, Penrith, Canada Bay, Ryde, North

Sydney, Blue Mountains, Blacktown, Parramatta,
Strathfield, Sydney, Fairfield, Liverpool, Camden,

Sutherland Shire
Regional NSW:

Eurobodalla, Goulburn Mulwaree, Wingecarribee,
Port Macquarie-Hastings, Coffs Harbour,

and Tweed;

Figure 11a,b

High-High areas: Significant top
shaded areas: positive correlation
with high significance located in

areas among tonnage change
areas among residual waste

collection and ERP.

14 (Greater Sydney)
6 (Regional NSW)

Greater Sydney:
Wollondilly, Sutherland Shire, Camden, Liverpool,
Fairfield, Penrith, Blacktown, Parramatta, Canada

Bay, Strathfield, Ryde, Ku-ring-gai, North
Sydney, Sydney.
Regional NSW:

Shoalhaven, Wingecarribee, Port Macquarie,
Hastings, Coffs Harbor, and Tweed

Figure 12a,b
Positive correlations with the ratio

among the number of income
earners and ERP (population)

7 (Greater Sydney)
11 (Regional NSW),

Greater Sydney:
Blue Mountains, Penrith, Liverpool, Camden,

Sutherland Shire, Parramatta, and Ku-ring-gai.
Regional NSW:

Albury, Eurobodalla, Wagga Wagga, Griffith,
Shellharbour, Bathurst Regional, Cessnock, Lake

Macquarie, Maitland, Byron, and Tweed.

Figure 13a,b

High-High areas: Significant top
shaded areas, positive correlation

with high significance between
LGAs with organic waste

collection and ERP changes.

6 (Greater Sydney)
3 (Regional NSW)

Greater Sydney areas:
Camden, Liverpool, Penrith, Sutherland Shire,

Parramatta, and Ku-ring-gai.
Regional NSW:

Cessnock, Lake Macquarie, and Tweed

Figure 14 The largest recyclable
waste tonnage 6 Narromine, Junee, Yass Valley, The Hills Shire,

Hornsby, Ku-ring-gai, and Parramatta

Note: High-High areas means positive correlation with high significance among two metrics.
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Figure 25. The Spearman correlation of RRO waste collection with social metrics from 2014 to 2019.

Figure 20 demonstrates the relationships between the 2019’s ERP, the 2018’s ERP,
and the 2019’s recyclable waste disposal in Pearson correlation. This figure reveals three
correlated factors associated with recyclable waste disposal such as the moderate correlated
metric as ERP, and the weak correlated metric land value. In contrast, ERP density and
personal income exhibit slight correlated metric s. When considering the supplementary
variables, the study finds that the coefficients for the 2019 residual waste disposal and the
2019 average land value in LGAs, are less than 0.5. Furthermore, there is a strong closeness
of approximately 0.4 between the 2019 average LGA land value, the 2019 ERP, and the
2018 ERP.
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Figure 21 demonstrates the relationships between the 2019’s ERP, the 2018’s ERP, and
the 2019’s recyclable waste disposal in Spearman correlation. This figure reveals several
moderate coefficient metrics over 0.5 associated with recyclable waste disposal, such as
ERP, and mean personal income. Compared to ERP and land values, there are a number
of factors with weak correlated metrics, including the number of income earners and
ERP density.

The relationships between the four parameters of interest exhibit stronger correlations
in Figure 22 compared to Figure 20 This matrix encompasses residual waste disposal
between 2019 and 2018, residual waste disposal 2019, median individual income, and the
average land value of each LGA. The correlation between residual waste disposal, and ERP
is stronger than that of recyclable waste disposal, indicating that residual waste tonnage
increases with population growth. This finding emphasizes the potential for improved
recyclable behaviour and reduced residual waste generation in the high land value areas.
Importantly, the predicted 2019 resident population demonstrates a moderate positive
correlation with 2019 residual waste disposal, offering valuable insight into developing a
predictive model for RRO waste.

In Figure 23, the matrix represents the moderate positive correlated metrics over 0.5
between residual waste disposal and ERP, the number of income earners, ERP density,
especially the estimated residents’ population in 2019, estimated residents’ population in
2018, the number of income earners from 2018 to 2019, the ERP density in 2019 and the ERP
density in 2018. From 0.3 to 0.5, there are multiple weak positive correlated metrics which
include ‘2018 to 2019 mean personal income’ and ‘land value’.

The analysis of recyclable and residual waste disposal from 2018 to 2019 reveals a
moderate positive correlation with population and a slightly positive correlation with land
values. Concurrently, Figure 24 compares the correlation between the tonnage of RRO
waste collection and the change in social metrics. In the correlation analysis of recyclable
waste, there are slightly positive correlations for one year, such as 0.25 with ERP change,
0.15 for land value, and 0.13 for ERP density change. However, residual waste displays
different weak positive correlations for a single year, including 0.43 for ERP change, 0.13
for land value, and 0.15 for ERP density change. With the similar spatial distribution for
land values, ERP, and ERP density changes, waste behaviour varies between recyclable and
residual. Recyclable waste behaviour demonstrates a stronger positive correlation with
land value than residual waste behaviour.

In contrast, when examining organic waste correlations, the study reveals a slightly
positive correlation of 0.083 for ERP, 0.031 for the number of income earners, and 0.044 for
personal income. Negative, weak correlations are observed with −0.0086 for ERP density
and −0.031 for land values.

Through the spearman correlation matrix in Figure 25, the correlation coefficient is
larger than 0.1, which presents the relationship between recyclable waste collection and
no income earners change (0.14), ERP change (0.12). The organic waste collection has
similar correlations with the change in the number of income earners (0.1) and ERP change
(0.17). However, the correlation coefficient (0.15) between organic waste collection and
ERP density is larger than that (0.1) of the number of income earners. In contrast, there are
different coefficients between land value and RRO waste collection, especially in residual
waste collection; land value has larger correlations with residual waste collection than
recyclables collection (0.077) and organics (−0.12).

4.3. Urban Waste Dashboard Development

Objective 3 is to develop a SWVD to give insight relevant to the relationship map
in waste information. To meet Objective 3, the ArcGIS Experience Builder is applied to
geospatial RRO waste data after data storage and visualization steps in ArcGIS Online. The
ArcGIS Experience Builder shows the relationship map. The changes between the periods
of 2014–2015 and 2018–2019 (see Figure 26) in the spatial pattern of the RRO waste can be
easily recognized.
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The current phase of the dashboard development entails the implementation of ESRI
products to build multiple SWVDs for the three types of waste tonnage data. The RRO
waste data visualization at the spatial and temporal level was performed online using
the Esri’s ArcGIS Experience Builder platform. It is shown in Figure 26. It reveals the
spatial distribution of recyclable waste collection between 2014 and 2019 with the datasets
add socio-economic metrics from IELPD. The relationship map only shows the connection
between changes in recyclable waste collection and ERP changes between 2014 and 2019.
There are other similar tools, such as Experience Builder, which have two other dashboards,
such as residual waste and organic waste collection (refer to Tables 6 and 7) (Figure 26).

Table 6. The related dashboard for the RRO waste collection. Source: compiled by the authors, 2023.

Waste Categories Material Transferred Links Access Date

Residual Collection https://arcg.is/0TuWaX 18 April 2023

Recyclable Collection https://arcg.is/19vnuf0 30 April 2023

Organics Collection https://arcg.is/8b4180 30 April 2023

Table 7. The source links are used to produce figures. Source: compiled by the authors.

Figure Number Source Links

Figure 6 https://arcg.is/1zCPnn

Figure 7 https://arcg.is/1OiqHa

Figure 8 https://arcg.is/0OfDPC

Figure 9 https://arcg.is/1qfHei

Figure 10 https://arcg.is/0P5Drb

Figure 11 https://arcg.is/Srmv4

Figure 12 https://arcg.is/1yWyub

Figure 13 https://arcg.is/1S5eGX

Figure 14 https://arcg.is/00ezO4
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5. Discussion

This paper focuses on the explorations of spatial relationships between household
waste tonnage and multiple socio-economic metrics. The uniqueness of this study is in the
use of the RRO waste data after processing to connect it with the socio-economic metrics
in the same dataset. Based on the geographical features, we used the relationship map
and correlation matrices to obtain the SWVD, visualize and analyse spatial connections
and perform temporal analyses. Rare publications stress the importance of the relation-
ship between waste generation and the IELPD metrics. The development of a SWVD is
to provide a visualization platform to display the social-economic connection between
RRO waste in urban household waste. Decision-making will be empowered to recognize,
monitor, and predict the patterns of RRO waste tonnage with population and land values.
Once the waste stream data have open access at a higher resolution than that of the LGA
for this study, data analytics tool will be more accurate in portraying spatial relationships
to assess the performance indicators for specific waste management [1]. Not only does
the RRO waste in high geographical resolution have more geometrics to be considered
with respect to local communities, but also, the analytics and visualization of the SWVD
play a significant role in predicting waste tonnage and behaviour change [17] for different
population sizes and land values.

5.1. Contributions

This paper contributes to the body of the waste management literature by introducing
a novel approach to waste data visualization through a methodical analysis and creating
a synchronized geographical dashboard. This paper shows how advanced information
systems can be utilized for monitoring and screening changes in relationship maps across
other metrics. The visualizations can be publicly available to various stakeholders and
city decision-makers. With the geographical pattern, household waste in an urban area is
divided into the categories of RRO waste into different disposal methods. Thus, a decision
maker has access to compare neighbourhood-level variables in IELPD across strategic
waste planning.

5.2. Novelty

This study focused on the spatial visualization of the temporal data on the three
types of household waste streams to find their geographical relationship for a specific
community. This approach is based on a spatial data pre-processing framework to overcome
the restrictions of using vector GIS data for spatial visualization. This study focused on the
development of a spatial relationship between data exploration and the SWVD, which is
a novel practice in the waste management field. As discussed earlier (refer to Section 2),
the investigation of spatial area size and spatial distribution is uncommon since there is
limited consistency of data collection for locational information for the waste tonnage
and socio-economic metrics. However, Python Pandas played a significant role in data
pre-processing csv data sources into shapefiles with geographical features, especially the
usage of the one-to-many joins. The data sources after pre-processing steps are at various
levels in space and time. Regarding space, the multiple social metrics in this study need to
use the attribute of LGA to connect each other, and the temporal value needs to calculate the
monthly data. Since several data sources from this study have the same two dimensions—
space and time—it is feasible for the author to categorize and classify the RRO waste with
social metrics into one dataset.

Meanwhile, the RRO waste variations show urban planners how social and economic
parameters affect the amount of waste generation across space and time. In recent years,
few government reports and limited academic research have considered the relationship
between waste generation and socio-economic factors over space and time. They have
generally considered the temporal features of the relationship between waste tonnage and
other metrics. For instance, from the experimental estimates of waste accounts [56], waste
intensity was proposed to estimate the generation of waste per million dollars of value
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added into the economy and per million dollars of final expenditure of households with
time changes.

Consequently, the income of households per capita is a key metric to be considered
in waste spatial relationships. The influence of socio-economic factors on household solid
waste was noted in Trang, et al. [57], who stressed the statistical significance of monthly
household income per capita and educational background. The investigation of data in
the study by Trang, et al. [57] was based on a questionnaire of 300 sample households and
focused on social and economic factors such as household size, income, education, and
environmental concern. In these metrics, the temporal variation of income is the key part,
together with the spatial distribution.

Previous studies examining the relationship between waste generation and socio-
economic metrics have been limited to small-area predictions, waste estimations, and
geospatial dashboard development. In one such study, Kontokosta, et al. [23] used a socio-
spatial model to estimate municipal solid waste (MSW) based on demographic and socio-
economic factors, including racial percentage, employment, education, elderly population,
household type, rent, and income. This study found that demographic variables were
highly significant predictors of MSW generation but did not explore the spatial relationship
between waste generation and socio-economic factors. In another study, Madden, et al. [58]
used GIS to estimate household waste based on dwelling type and waste type (residual
fraction, dry recyclables, and garden waste). Additionally, a study by Delaney, et al. [59]
developed a geospatial dashboard to monitor wind turbine blade waste at the end-of-life
stage, identifying a significant spatial relationship between blade waste weight and turbine
power rating. However, this dashboard primarily focused on data tracking rather than
analysing waste data variation at the spatiotemporal level.

The present paper also addresses the gap of waste management by providing a unique
SWVD for waste authorities to examine spatial relationships in LGAs. GIS and spatial
visualization work as mapping tools and deliver a pathway to analyse spatial relationships
and interactively display them on a webpage.

5.3. Specific Findings

The first research objective visualized how RRO waste has changed in the specific local
community over time at the LGA level. The visualization shows waste disposal in collection,
disposal, and recycling pathways from 2014 through 2019 in space and time. Separate spa-
tial distribution maps were developed to depict the spatial relationships among land values,
number of income earners, household income, and ERP. The three-path analysis compared
109 LGAs between 2014 and 2019. In these research objectives, the mapping of data after
mass data preparation may be identified in the current results. This innovative approach
to visualizing RRO waste distinguishes differences over time in multiple jurisdictions.
However, the availability and resolutions of time series datasets from waste authorities
hampered previous investigations in this case. There are LGA level datasets which were
studied. The data visualization of waste-related social metrics can provide waste authorities
with significant insights into annual changes, and regional NSW’s economic development
can be identified through household income and environmental consciousness.

The second research objective in Table 3 explored the links between neighbourhood
social-economic characteristics and the RRO waste tonnage, especially the utilization
and distribution over time and location. This objective was achieved by exploring the
spatial relationship between the metrics of IEPLD from 2014 to 2019 (refer to Section 4.2).
Regression can help to analyse neighbourhood-level correlations for several factors. The
spatial and temporal analysis in ArcGIS Pro benefits from neighbourhood relationships.
Pearson’s and Spearman regression was utilized to increase the regression’s interpretability
for multiple socio-economic components, including the IELPD metrics. These findings
indicate that organic waste is collected more in rural areas, which have lower population
density and low land values, while urban areas exhibit a reduced likelihood of organic
waste collection.
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The third research objective evaluates the spatial relationships for, population, and
RRO waste tonnage, the year-to-year changes of IELPD in 5 years differently from a
connective dashboard.

The third research objective, what type of SWVD should be developed to better
depict and include the spatial relationship with other metrics from waste stream data, was
addressed by uploading pre-processed datasets onto an online platform that includes an
interactive dashboard. After saving pre-processed datasets, users can search for five years
of EPA waste data. This study’s SWVD enables users to analyse raw data pre-processing
and data transformation for waste data management. For example, the SWVD in ArcGIS
Experience Builders in ESRI, involves interactive visualizations about current versions of
dashboard, such as recyclable waste collection in 2014, recyclable waste collection in 2019,
and LGA population in 2020.

5.4. Value of the Findings

When the complete dashboard is clicked on a spatial map, waste tonnage information
appears on an interactive web page, along with local government statistics. The current
edition will bring more social and economic datasets to the same polygon and model. It
will enable the public and decision-makers to access waste management matters. These
dashboards provide historical spatial data visualization of the waste stream for accessible
datasets and a digital tool to examine present spatial relationships at the neighbourhood
level. The findings of this study enable decision-makers to recognize waste data trends and
impact variables over the years in an interactive dashboard that presents the three waste
data categories, with a valuable geographical relationship at the neighbourhood level. It
would expand the geographical understanding of socio-economic parameters and waste
streams. The SWVD utilized a relationship map in ArcGIS Experience Builder in this
research. The neighbourhood analytics in the household waste stream play a significant
role in performance assessment for urban metabolism [8] and carbon reduction [17], specif-
ically the identification and monitoring of potential human-centric factors connected with
waste generation.

5.5. Practical and Theoretical Implications of the Study

The SWVD established in this research are important for waste management. For
instance, radio frequency identification (RFID) technology is often utilized in monitoring
waste bins, and the dashboard of waste RFID provides a real-time track for household
waste in the literature [60]. Meanwhile, the findings of this study in dashboard develop-
ment empowered historical data insights into, the tonnage of RRO waste collection, and
the spatial relationships with the IELPD metrics from 2014 to 2019 in financial years. The
digital transformation in waste data visualizations is shown with spatial analysis and a
digital tool developed to enable decision-makers to monitor and evaluate data trends using
a dashboard. The authorities can easily compare neighbourhood-level variables relevant to
strategic waste planning with appropriate criteria or metrics aligned with the SDG goals.
In urban waste, the optimization of waste transport networks and the selection of waste
facility sites can be adjusted and assessed with historical waste stream trends and real-time
monitoring. For instance, realigning the spatial distribution of one of RRO waste through
the differentiation of population and land values. Hence, waste management will be em-
powered with multiple dashboard development and spatiotemporal analysis to support
communities to achieve increases in the quantities of recyclable waste and reduction in
residual waste, to enable carbon reduction in residuals and advance circular economy
principles. As mentioned in a study conducted in Iran, the researchers [61] proposed an as-
sessment framework with factor analysis involving 60 social, economic, and environmental
indicators to assess sustainable development. It stresses the importance of factor analysis
in waste disposal involving the ‘sustainable development goals’ (SDGs) and government
bodies. Similar to SWVD, the spatial analysis visualization of historical trends would con-
tribute to waste transport and facility site selection. In waste generation and management,



Sustainability 2023, 15, 12208 34 of 38

highly efficient waste management supports SDG 06—‘clean water and sanitation’—with
less underground pollution, and the neighbourhood analytics in waste generation stress
the importance of SDG 08—‘decent work and economic growth’—especially in land val-
ues and population growth. This two highlighted sustainable development goals reflect
the importance for waste generation of these spatial relationships around waste streams
in communities.

5.6. Future Research Directions

This project transforms accessible datasets into interactive diagrams illustrating his-
torical spatial and temporal data. Digital transformation for waste management is still in
progress for long-term analytics, and waste stream data collection is a data governance
challenge. With decades of data on the waste stream in developing countries, assessing
waste impact from a social, economic, and environmental viewpoint is very significant.

In these research topics, when industrial partitioners can have relationship maps
and spatial data visualization multiple waste streams can be seen in and support smart
waste management. The key challenges of digital waste management include extracting
and transposing datasets from *.csv formats and text-based annual reports for data pro-
cessing, geocoding, and visualization in GIS. Future studies should empower and model
waste stream optimization through trend analysis with spatiotemporal data visualization,
even short-term prediction analytics in the waste stream through machine learning at the
neighbourhood level.

6. Conclusions

This paper aimed to address the gap in developing an innovative visualization for
analysing household waste tonnage related to known social-economic metrics over space
and time. The paper demonstrated how methodical data pre-processing could be used
for visualizing the relationship among several variables affecting the amount of waste
generated over the years. The analytical tool was supported by a large dataset of original
data, including the RRO waste tonnages and various variables, such as the metrics from
IELPD. The variables were examined to connect the socio-economic metrics in local govern-
ment areas. The paper contributes to the body of knowledge by developing and utilizing
an innovative method in waste management for spatial relationship maps that is critical
information for monitoring waste tonnage and potential socio-economic factors in local
communities over the years.

The results of the present exploratory investigation, through extensive data pre-
processing of urban waste, demonstrate areas with a high correlation between RRO waste
and social metrics in the selected LGAs around NSW’s regions.

6.1. Relationship Map and Correlation Analysis

Through the annual and three-year gap data, this study uses ESRI to generate a re-
lationship map with RRO waste tonnage, land value, personal income, the ratio among
earner numbers, ERP, and ERP density. The relationship map reveals the four metrics’
locational information through spatial visualization, which makes a great difference by
supporting the decision-maker with insights. Meanwhile, with the implementation of Pear-
son correlation, the outcome of the correlation matrix indicates the potential relationship
between two metrics, providing a background of correlation within this study.

The spatial relationships in the map and regression analysis provide a potential
solution about disadvantaged areas and whether they have any comparison to high-density
CBD areas, especially regarding residual and recyclable waste. These outcomes can be
considered for strategic planning to decrease the tonnage of household waste in local
government areas, especially improving the percentage of recyclable waste in household
waste. According to the outcome of the analysis, the main highly correlated parameter is
ERP compared to other metrics, with a weak correlation in recyclable and residual waste.
For instance, land value is more significant than personal income for recyclable and residual
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waste tonnage. On the other hand, population and land values were stressed as important
in relation to recyclable and residual waste generation.

6.2. Dashboard Development

Through the ecosystem of ESRI, this study works through data pre-processing in
ArcGIS Pro and Python, finalizing the accessible datasets from the raw datasets of waste
authorities. Moreover, ArcGIS Online played a significant role in storing spatial datasets
as a cloud-based mapping tool. All the analysis in this tool can be imported into ArcGIS
Experience Builder for interactive visualization with relationship maps as one SWVD.

In the meantime, a smart waste interactive dashboard was developed with a spatial
relationship embracing waste data trends from 2014/2015 to 2019/2020. Furthermore, the
selected IELPD metrics are land value, earner number, personal income, and population in
regional areas. In the dashboard, there is a data table that includes these metrics variation
from 2014 to 2019. In addition, there is a significant metric for ERP relationship map with
RRO waste collection.

This research paper provides valuable insight for waste practitioners and urban plan-
ners to recognize the GIS-based relationship based on the local community at the social
and economic level, especially population development, land value, and housing. Above
all, the value of the presented methodology for cross-spatial visualization and SWVD
development is that the regional development in household waste plays a significant part
in catering to Net Zero plan [62], especially optimizing the ratios of organics waste. It will
support decision-makers in achieving this initiative’s target, especially in reducing carbon
emissions step by step.
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