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Abstract: The inclusion of photovoltaics (PV) in electric power supply systems continues to be a
significant factor in global interest. However, solar power exhibits intermittent uncertainty and is
further unpredictable. Accurate solar generation prediction and efficient utilization are mandatory
for power distribution management and demand-side management. Peak demand management
and reducing energy costs can be effectively tackled through the implementation of a reliable solar
power forecasting system and its efficient utilization. In this regard, the proposed work is related to
efficiently managing solar PV power and optimizing power distribution using an enhanced reinforced
binary particle swarm optimization (RBPSO) technique. This DSM (demand-side management)
strategy involves utilizing a forecast of solar PV generation for the upcoming day and adjusting the
consumption schedule of the load to decrease the highest energy demand. The proposed approach
improves user comfort by adjusting the non-interruptible and flexible institutional load through
clipping and shifting techniques. To evaluate the effectiveness of this approach, its performance is
assessed by analyzing the peak demand range and PAR (peak-to-average ratio). It is then compared
to the conventional genetic algorithm to determine its effectiveness. Simulation results obtained using
MATLAB show that the PAR peak demand before DSM was found to be 1.8602 kW and 378.06 kW,
and after DSM, it was reduced to 0.7211 kW and 266.54 kW. This indicates a 29% reduction in Peak
demand and performance compared to the conventional genetic algorithm (GA).

Keywords: smart grid; demand response; prediction; educational load; peak shaving; load scheduling;
demand side management; BPSO; GA

1. Introduction

Supplying power for emerging loads and appliances is a crucial factor of concern for
every nation. The expansion of power generation to meet demand is extremely challeng-
ing [1]. However, it is essential to contend with certain problems, including substantial
load variations, a surge in demand that is happening quickly, and a geographic spread of
clients [2]. The distribution-side issues include significant load changes, a spike in demand
that occurs quickly, and traditional demand management and problem-solving methods
that make existing networks more complex [3]. The inclusion of energy storage systems
(ESS), renewable energy sources (RES), and distributed generation (DG) systems are ex-
cellent means by which to expand the power system network. Consecutively, microgrid
technology provides an effective solution for accommodating ESS, RES, and DG. The micro-
grid (MG) built on distributed energy resources (DERs) and an energy storage unit (ESU)
increases the locality’s flexibility and dependability of the electrical supply. It is widely
acknowledged that the current electricity grids have become increasingly overloaded due
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to rising daily demand. However, the operation of MGs is affected by uncertainties caused
mainly by RES [4]. Energy systems face several challenges as intermittent RES are increas-
ingly integrated with the power grid. RES intermittently harms the power system network,
making it challenging to ensure a constant and consistent supply of electricity to consumers
and endangering grid operations from an operational and technical perspective [5]. The
utilization and optimization of sporadic and unpredictable sources of renewable energy,
such as photovoltaic and wind power, is crucial to making the most of their availability
when they are present [6]. The smart microgrid is a cutting-edge electricity system that
enhances the traditional grid network’s sustainability, security, and economics [7]. Hence,
utilities must perform accurate short-term load predictions and RES forecasting when
planning infrastructure capacity [8]. Further, load management strategies provide crucial
aid in distribution management. According to a research study [9], the implementation
of DSM techniques to change building load profiles imparts flexibility. The institutional
lab equipment is efficiently controlled [10] to conserve energy and calculate the energy
effectiveness of instructional loads. A bi-level approach was developed in [11], in which
each customer modifies their loads to reduce their bill and the utility collects their ag-
gregated schedules. Typically, electricity is more expensive during peak hours or when
there is high demand. Time-of-use (TOU) traffic aims to reduce demand during these
peak times to prevent grid overload. The tariff flag system, which operates as a TOU
tariff and allows for prepaid electricity, categorizes the cost of electricity into different
periods: off-peak; mid-peak; and on-peak hours [12]. The study [13] developed a heuristic
peak load management method based on generated electricity and anticipated market
clearing prices that considers the unpredictable characteristics of spontaneous resources
and load demand. In the existing literature, heuristic algorithms have been proposed as
a means of addressing the challenge of load scheduling in order to meet various client
objectives [14]. Article [15] outlines a home energy management (HEM) system that uses
equipment management to minimize overall energy usage and peak demand, benefiting
both the utility and consumers. The implementation of intelligent search methods [16] for
reliability assessment, along with the consideration of uncertainty related to RER units, has
led to the successful accomplishment of the private sector’s objectives of increased partici-
pation and efficiency. Battery technology and load shedding are used to compensate for
energy shortages during periods of decreased RES production when the energy produced
is inadequate to the increasing demand [17]. Charging and discharging batteries is waste-
ful and expensive, consuming a lot of electricity. The integral approach that the authors
employ in study [18] to avoid these problems is to schedule home appliances. To satisfy
non-shiftable needs at a fair cost structure, PSO determines the most effective breakpoints
and the peak demand schedule [19]. The energy utilization from power networks was
managed using two algorithms, GA and PSO [20,21]. The concept of demand response, as
introduced in the paper [22], involves the ability to adapt electricity consumption flexibly
in response to variations in grid conditions or pricing signals using GA. To determine the
best strategy for cost optimization in HEMS using GA, BA, and HBGA, the study compares
the performance of several optimization methods. For the adequate dispatch issue, the
MG configuration and unit commitment are considered concurrently. Scheduling a power
generation system to optimally coordinate energy demand and generation to reduce costs
and conversion loss may be a fundamental difficulty in smart grid communications. In this
regard, the following DSM strategy is proposed.

Proposed Scheme for Demand Management

As the smart grid has grown in popularity, DR has been developed to bridge the
gap between supply and demand. The following is a summary of the most important
contributions of this paper:

1. MG-based residential power distribution is used in the demand management system;
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2. Considering the unpredictability of RERs, this study successfully uses the institution’s
solar photovoltaic power capacity—calculated by the climate and historical data—to
lower the need for utility power for an effective energy management system (EMS);

3. To manage energy efficiently, machine learning (ML) model-based RFA-RM is de-
veloped using weather information with mathematical models for PV to forecast a
generation profile of microgrids.

4. The college’s real-time load data is gathered, and the load consumption during
working hours and holidays is analyzed; the load data is divided into three groups
depending on user preference and operation priority;

5. The PSO algorithm is executed depending on the load pattern, using concepts such as
time of usage, peak clipping, and valley filling techniques;

6. The system evaluation is conducted by comparing the peak demand and PAR with
conventional GA.

The paper has been structured as per the framework shown in Figure 1. One of the
crucial factors of concern with respect to utility is peak demand management. On the other
hand, consumers are concerned about energy cost reduction. The novelty of this study
is attained via its proper scheduling of load to reduce the peak energy consumption by
(1) load classification; (2) flexible shifting; and (3) peak clipping. The proposed method is
performed by incorporating solar power to efficiently manage peak demand and balance
load during peak hours.
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Figure 1. The framework of the proposed method.

Considering all three major load categories: interruptible, non-interruptible, and
flexible load, as well as RES prediction for optimal DSM- the rest of the study, is organized
as follows: Section 2 briefly describes challenges in power distribution and demand side
management; Section 3 discusses the methodology and background of the study; Section 4
discusses the proposed distribution management strategy; and Section 5 discusses load
categorization for demand management, concluding the study with results and discussion.
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2. Challenges in Power Distribution and Demand-Side Management

Many developing nations continue to address supply and demand mismatches using
conventional load-shedding strategies [23]. With recent advancements in industries, EV
technologies have further increased electricity demand. Additionally, during peak times,
the need for power is very high. Most residential and commercial loads still employ
frequency-controlled automation, a traditional approach for load shedding that operates
on a frequency rate or decrease. They may be simple to construct, but time delays slow
their response and cause DG sources to trip. Programmable logic controllers (PLC)-based
shedding is preferred over the under-frequency approach, which has certain drawbacks,
including the lack of dual communication capability and predetermined or non-flexible
power limits [24]. Controllable and non-controllable loads are considered in most research
projects where consumer scheduling is carried out. The consideration of flexible load is
minimal in the research area, and the institution-based load scheduling is even less than
the residential load. Meeting peak demand is difficult for the utility, low-tension line
(LT), high-tension line (HT), and other sectors. DR has established itself as an effective
technique throughout the period by enabling the shedding and shifting of loads in response
to grid demands while considering electricity imbalances and peak demand challenges [21].
Incorporating variable renewable energy sources such as solar and wind power into the
power grid poses significant challenges. Renewables are not always available, and their
power output can fluctuate rapidly due to weather conditions [14]. The study [25] proposes
a scheme that utilizes probabilistic techniques to model the uncertainties associated with
renewable energy sources, load forecasting errors, and other stochastic factors. To maintain
stability in the face of disturbances, it is crucial to take the power system’s dynamic response
into consideration. As a result, power distribution systems need to balance supply and
demand effectively to ensure an uninterrupted power supply. Energy consumption and
expenses are reduced by using more renewable energy sources. It is crucial to maintain
adequate grid balancing to avoid problems such as overloading and blackouts as the
integration of renewable energy sources continues to expand. This requires sophisticated
forecasting and control systems that can anticipate changes in supply and demand and,
based on this, adjust them accordingly.

2.1. Challenges in Peak Demand Management

Power-generating system scheduling is a vital topic in smart grids for successfully
coordinating energy demand and generation. DR has been identified as a critical strategy
for enhancing the efficiency of today’s power systems. Due to MGs’ low capacity, random
power exchanges between the supplier and the loads may occur during regular operation,
making maintaining operational capability and power quality challenging. Operating loads
randomly and utilizing unexpected equipment may cause peak demand to be exceeded.
Balancing the demand for electricity during peak periods against a limited supply requires
careful planning and management. With many consumers demanding power at the same
time, power distributors must work to reduce demand through demand response or
other measures.

Expanding a power generation plant is costly and requires much investment and
planning. In this regard, proper categorization of the load is necessary in order to execute
DSM (i.e., peak clipping and valley filling). Peak demand poses significant challenges for
power distribution and DSM, requiring careful planning, investment in infrastructure, and
balancing supply and demand. Addressing peak demand is crucial for ensuring a reliable
and sustainable power supply while minimizing environmental impacts. The prevailing
intermittent characteristics of the RES have an impact on the planning and operation of
electricity systems.

2.2. Consequences of Peak Demand and Need for Scheduling

The peak demand issue refers to the phenomenon when the demand for electricity
reaches its maximum level during certain periods of the day, usually from morning to
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evening in the case of commercial loads. To maintain power balance at peak demand, the
generation sector needs to increase the generation potential by expanding the plant capacity
or installing new generation plants with increased demand. The need for power generation
also increases. Numerous studies have examined the ideal day-ahead strategy for MGs,
and a review of the literature shows that various quantitative and perceptual methods have
been developed to address this issue [26]. The consideration of flexible load is minimal in
the research area, and the institution-based load scheduling is even less than the residential
load [27]. This sudden spike in demand can lead to strain on the power grid and supply
system, which may cause power outages, brownouts, or even blackouts. Predicting peak
demand can be challenging as it is affected by several factors, such as weather conditions,
population growth, and consumer behavior, which are hard to anticipate. Despite the
availability of energy storage solutions such as batteries, the amount of energy that can be
stored during off-peak hours might not be sufficient to satisfy the demand during peak
hours. In areas with inadequate infrastructure or an aging grid, it may be difficult to meet
peak demand without overloading and damaging the network. Smart grid technologies are
used to automatically balance energy supply as well as demand over peak hours. To address
the peak demand issue, utility and energy companies must carefully manage the power grid
and encourage energy conservation during peak hours [28]. Potential measures to address
this challenge include the implementation of variable pricing strategies that motivate
consumers to reduce electricity usage during peak periods, promoting the adoption of
energy-efficient appliances that consume less power, and harnessing renewable energy
sources that can provide clean and sustainable power during periods of high demand. In
many countries, tariff rates fluctuate according to peak demand, resulting in higher power
costs. Encouraging energy consumers to shift their usage to off-peak hours can prove to
be challenging, as consumers may not be willing to change their behavior, especially if it
disrupts their daily routines.

3. Methodology and Background of the Study

The energy infrastructure used in this research comprises RES (solar) with a primary
grid and a backup generator. Figure 2 shows how current electricity is distributed in
the microgrid. They may be simple to build, but deploying energy management and
renewable energy sources can be costly, making it challenging to implement such solutions
on a wide scale. Appliances can be classified into three categories—interruptible, non-
interruptible, and flexible—based on their energy consumption, end-user preferences, and
operational hours. Interruptible loads can be adjusted or turned off without impacting
their performance. Flexible loads can change their operating hours to off-peak times, which
helps reduce energy consumption and costs, considering the availability of solar power.
MPP charge control is used to harness maximum power from the solar panels and store it
in the battery. Table 1 shows the system parameters of solar panels made of TCE considered
in this study [29].

Table 1. The main parameter of PV panel rating.

Parameter Specification

Maximum power Rating (Wp) 310 W
Short circuit current (Isc) 8.90 A
Maximum power point current (Impp) 8.41 A
Maximum power point voltage (Vmpp) 37.0 V
Open circuit voltage (Voc) 44.9 V
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3.1. Microgrid Pilot for Demand-Side Management

The smart grid is envisioned as a future energy infrastructure using several modern
technologies [30]. An MG power distribution system comprises different dispersed energy
resources. A microgrid is employed in [31], demonstrating that doing so not only boosts
power consumption but also makes it possible to create a complementing and efficient
network that may enhance dependability and voltage stability. It is now feasible to assure
efficient power performance from generation sources to consumption, thus managing
energy requirements. The ability to plan loads at the commercial level with the support of
smart grid technology allows for cost- and energy-saving energy conservation and grid
operating assistance in developing the best possible schedule out of the various options [28].
Thus, the smart grid provides consumers with a manual load scheduling system that is
easy to set up and maintain, enabling them to evaluate the costs and advantages of various
load plans. In an MG, the power consumption consists of the main load, controllable loads
that can be switched off, and loads that can tolerate delays, such as flexible loads that can
be postponed [32].

The study was conducted at Thiagarajar College of Engineering (TCE) in Tamil Nadu,
Madurai district, at 9.8821◦ N and 78.0816◦ E. The area has a semi-arid tropical climate with
hot, dry weather for eight months and average annual rainfall. From March through July,
it becomes scalding. In February and March, there are cold winds. The city experiences
pleasant weather from August to October, which includes frequent thunderstorms and
heavy rain, and a somewhat wintry environment from November to February. The power
distribution system on campus comprises various sources, including grid electricity, diesel
generators, and solar photovoltaics. On the institution’s roof are installed SPV panels with
a capacity of about 450 kW.

Thus, we have considered our institution for the execution of this proposed scheme
as a pilot project. This can be employed in public, private, and residential/domestic
premises to realize the DSM successfully. In contrast, the flexible loads in this work are
scheduled with an available SPV system according to consumer satisfaction. Peak clipping
tries to reduce supply during peak traffic. Utility companies accomplish this control by
incentivizing consumers to avoid using power at peak times, actively managing rates,
or imposing increased expenses. The approach is practical when there is no chance of
establishing or upgrading existing power plants. This study demonstrates the necessity of
SPV power for scheduling. The research site features a 450kW solar power system; however,
only 30% of the PV electricity is used for consumption and utility. The peak demand can
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be decreased by using solar power and boosting consumption by just 10% of solar energy.
Total load consumption in the institution during August (15-min dataset for accurate peak
detection), where the overall peak demand reached around 570 kW on 10 August 2018 at
12:15:00 PM and the utility was unable to fulfill the total energy consumption. The details
have been furnished in Figures 3 and 4.
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3.2. Realization of Peak Demand Management

Implementing a loaded schedule should be the first step in the electrical system design
phase since it offers organization for reducing demand and conserving energy. Power
monitoring and gathering all the data necessary to measure energy usage over time are
essential to establishing a successful load-scheduling operation. Load shedding and load
shaving are distinct strategies employed to regulate the supply and demand of electricity
effectively. Load shedding intentionally interrupts the power supply to a certain area or
group of customers during peak demand periods. This is usually conducted as a last resort
to prevent the entire grid from collapsing. Conversely, load shaving entails decreasing or
repositioning electricity usage during peak periods to circumvent the necessity for load
shedding. This is achieved by using smart technology and flexible load scheduling. The user
can identify massive burdens that are active at once. The EMS design is trained by utilizing
past data, and the ideal solution was the load pattern of the daily curve [33]. A thorough
knowledge of load variation is necessary to evaluate the effects of load management
techniques, which are required for effectively and dependably scheduling energy usage.
Based on the guidelines of the PSO algorithm, every identified member and particle
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continuously traverses a multi-dimensional search space that is regularly refreshed with
the unique information possessed by each particle and its neighboring counterparts. The
PSO method starts by analyzing a swarm of potential solutions. The particles that make up
this swarm each offer an iterative solution, and this process continues until the objective
function’s superior value is identified [32]. This optimization can resolve issues in an
n-dimensional domain by utilizing points or surfaces as solutions. The peak demand
reaches around 570 kW, but the utility demand is around 420 kW. Hence, the proper DSM
is essential for the appropriate peak demand reduction. Controlled energy usage and
comfort in a manner that modifies it by the actual pricing signal while considering human
preferences [34]. Thus, in this scheduling, the SPV is implemented with accurate prediction,
and to efficiently utilize this solar, the load is a category, and the peak shaving is conducted
from peak hours to non-peak hours.

3.3. Role of Solar PV Systems in Peak Demand Management

The deployment of solar power is an excellent renewable waste alternative for power
generation expansion resources. In DSM, random SP utilization will neither benefit peak
demand reduction nor cost reduction. Therefore, the efficient prediction of solar power
and its effective utilization during peak demand hours can lead to a reduction in energy
consumption and peak demand. A DC–DC converter connects a solar-producing unit to a
DC bus, allowing the system to function at full power. As they might leave a power system
with inadequate capacity to satisfy load, the generator’s main benefit is its capability value
to attain demand dependably. One of the critical benefits of PV systems in load scheduling
is that they generate electricity during the day when energy demand is often highest [35].
The analysis determines a solar PV system’s electricity capacity [36] using the mathematical
solution shown below in Equation (1).

SPV(t) = ηPV aPVSI(t)[1 − 0.005(T(t)− 25] (1)

SPPV =
1
n

[
n

∑
s=1

Ys − Ys
ˆ

]
(2)

Real-time information on SPV projections is collected using Equation (1) and energy
management for appropriate microgrid concerns is assessed.This can lessen the probabil-
ity of outages or other disturbances because power can be obtained locally rather than
from centralized power facilities. SPV stands for solar PV power, η for efficiency of the
panel, a for the area, and SI for Solar irradiation at time T. Ys stands for actual value, and
Ys

ˆ predicted value.
The maximum solar radiation is experienced from January through April, with a

cumulative average value of 6.532015 (kWh/m2/day). The lowest value was observed
for November at 3.10132647 kWh/m2/day. Irradiance is an essential component of PV
performance, and inaccurate irradiance predictions directly impact the forecast’s accuracy
and the availability of temperature. Figure 5 shows the variation in solar power production
compared to wind speed and atmospheric temperature. Thus, the high temperature on the
plane array results in a high PV output throughout the day. The prediction of natural solar
energy with the above-mentioned equation is vital for the DSM. The availability of solar
PV energy is necessary for variable load scheduling, which has advantages in terms of cost
and utility sources. Figure 5 illustrates the solar irradiation and wind speed data of SPV
utilized for the prediction process in the MLA, as described by Equation (2).
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The current generated by the panel is almost constant. The voltage varies with respect
to the irradiance and temperature, as shown in Figure 6. The voltage is operated at MPPT
(maximum power point tracking). So, voltage is a continuously varying parameter. Hence,
considering voltage and current separation for forecasting does not give appropriate results.
Forecasting is conducted with power as a reference, with the power fluctuating with respect
to weather conditions. Thus, the voltage is maintained as per the specification. The rated
voltage of the solar panel considered in this work is 37.0 volts. The grid-tied inverter
synchronizes the solar power with the grid for integration. The inverter switching control
maintains the frequency profile. The frequency, as per the Indian standard, is 50 Hz [37].
Since voltage and frequency are not variable and have to be maintained as constants
according to grid voltage and frequency, they have not been included in the constraint.

PV (photovoltaic) uncertainty can prevail due to various factors, including wind,
shadows, cloudy conditions, etc. Thick cloud cover or cloudy conditions reduce the solar
irradiance reaching the panels, resulting in lower energy production. The extent and
duration of cloud cover can vary, making it difficult to predict solar power generation
during cloudy periods accurately. Shadows cast on PV panels can significantly affect
energy production. When shadows from nearby objects (such as buildings, trees, or other
structures) fall on solar panels, they create variations in sunlight exposure across the panel
surface. This causes partial shading, reducing the overall power output. The presence
of shadows and clouds can introduce uncertainty in energy generation as it becomes
challenging to predict the exact extent and duration of shading events. Accurate solar
power prediction helps in estimating the available solar generation during peak demand
periods. This PV uncertainty problem is solved by predicting solar power using the machine
learning algorithm (MLA). In the RF algorithm-based selection technique, Figure 7 shows
the solar power prediction with several inputs that result in an R-square value equal to 0.9.
Figure 8 shows the solar power forecast at TCE with high prediction accuracy. By knowing
the unexpected solar energy output, grid operators and utilities can better anticipate the
level of available renewable generation and plan for the necessary balance between supply
and demand as illustrated in Figure 9. The algorithm performs best compared to another
neural network since the MLA algorithm is considered the most important feature to
predict solar power under various meteorological conditions.
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There is a connection between the primary grid and the AC bus. The AC and DC
buses are interconnected via a bidirectional converter. Power converters work as inverters,
converting power from DC to AC when the DC panel’s output exceeds the DC loads. It is
analyzed that the peak consumption of the collected data goes beyond the limit, as shown
in Figure 9; thus, flexible loads that are run during peak demand must be rescheduled to
decrease their peak power usage.

4. Proposed Distribution Management Strategy
Load Model

Given the current tariff structure and load factors with predicted solar power data, the
goal is to identify an ideal schedule to reduce the consumer’s power cost. A consumer’s
premises are expected to run a variety of non-interruptible, flexible, and interruptible loads.
Here, it is presumed that the utilities set the tariff so that users would change their load as
the institution needed it, reducing the system’s maximum peak demand by implementing
both solar power forecasting and the DSM algorithm, as illustrated by Figure 10. Demand
policy solutions include implementing different tariff systems, such as time-of-use, high
demand fees, and real-time tariffs. The tariff rate is peak consumption from 10 a.m. to
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8 p.m., off-peak consumption from 11 p.m. to 7 a.m., and mid-peak consumption from 7 a.m.
to 10 a.m. and 8 to 11 p.m. The individual load is represented as L = [cr1, . . ., cr5, nc1, nc2,
fl1, fl2]. Because each day is partitioned into 24 equal time slots that begin at midnight with
24 h, where L represents the load operating during this period commencing at midnight for
each hour represented by k (i.e., in slot k = 1 to slot k = 24), starting at midnight, with this
time slot along with the available solar power, load scheduling is performed to minimize
the peak demand. The problem relies on determining the best period in which for all loads
to operate while meeting different limitations. The ON duration of the load is denoted as
one by using BPSO to schedule the load to run on SPV power, as shown in Table 2.
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Table 2. Main variables for configuring optimization algorithms.

Parameter GA PSO

Population size 100 100
Generation/Iteration 100 100
Number of Variables 2 2
Weight - 0.5
Mutation 0.8 -

The electrical supply in Figure 11 incorporates sustainable AC/DC sources and de-
mands. To restrict the number of inverse conversions in a single AC or DC grid, this
research recommended an AC/DC microgrid. Since a hybrid AC/DC grid’s energy man-
agement controls and operation are more complex than those of an individual AC/DC grid,
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researchers have looked at several operating modes for hybrid AC/DC grids. Coordination
control strategies among numerous converters have been devised to maximize the energy
generated from RES, limit the power transmission between AC and DC networks, and
preserve the efficiency of both grids in the presence of fluctuating supply and demand.
Consequently, one can successfully manage demand if the solar prediction is known before
the high peak load scenario occurs. One could also save money by collecting electricity
from the utility when needed and putting the rest of the time into a shutdown. PV energy
resources aid customers’ participation in the electricity sector. Ref. [38] states that depend-
ing on the DR terms and conditions between the utility and the consumer, PV’s electricity
can be used to power consumer electronics or sent back into the grid. Depending on the
weather conditions, it is possible to schedule the load and receive information on solar DC
power generation. Here, the study explores the available solar power and how to use it
efficiently, minimizing the need for a utility under such circumstances. This study aims to
analyze the available solar power, how to use it efficiently, and how to lessen the demand
for energy in such cases. The essential item in prediction analysis is to help categorize
learning data by detailing historical failures and performance and how much power may be
saved by reducing convective loss. The load pattern model is adjusted after the generation
prediction is completed. Our objectives and prerequisites areas follows:

1. Classified loads and solar power generation are considered inputs;
2. To categorize the load as interruptible, non-interruptible, and flexible;
3. To find the peak demand duration and schedule the loads to the threshold limit;
4. To integrate RER to satisfy load demand and meet peak demand;
5. Load management and scheduling are conducted successfully using the predicted

renewable energy data;
6. To provide seamless power transfer across AC and DC lines under various generating

and load scenarios.
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5. Load Classification for Demand Management

Data classification categorizes information into numerous sorts, groups, or other
unique categories. The total college demand is 700 kVA, a cumulative of two building
blocks where one needs 400 kVA and the other has an order of 300 kVA. This study
aims to lessen the 300 kVA demand peak, contributing to the institution’s overall peak
demand. The division and dissemination of knowledge connected with dataset claims for
different organizations or distinct aims are made possible by competence classification.
Data concerning load in the research area (college) are gathered and examined. Non-
interruptible loads, interruptible loads, and flexible loads are the types of loads collected.
Figure 12 shows the graphical representation of the load categorization, where the three
loads are operating without any DSM implemented.
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(1) Non-Interruptible Loads

A non-interruptible load refers to appliances or devices that cannot be easily adjusted,
shifted, or turned off without affecting performance or causing disruptions. These loads
require a continuous power supply and typically operate throughout the day without
significant changes in their energy consumption patterns. Unlike interruptible or flexible
loads, non-interruptible loads cannot be easily modified to reduce energy consumption or
adjust operating hours. Even if the industry’s power supply has fallen, special measures
are taken to preserve the stability of the power supply to these loads. The electrical lab, TCE
main, ECE department, auditorium, and MCA are grouped as critical loads. The energy
consumption of the non-interruptible load CNIL(k) is given by the following:

CNIL(k) =
24

∑
k=1

SNIL(k)× ANIL(k)× EP(k) (3)

CNIL(k) = ∑24
k=1 ENIL(k)× EP(k), (4)

where SNIL(k) denotes the ON/OFF condition for the time k, ANIL(k) denotes the entire
consumed of non-interruptible load, and ENIL(k) denotes the overall power consumed of
non-interruptible load.

(2) Interruptible Load

“Interruptible load outlets” refer to redundant devices such as monitors and peripher-
als. They should be linked to non-essential load outlets so they may be turned off early to
save battery life and allow for a steady shutdown of vital loads. Interruptible loads are loads
of the ladies’ hostel and men’s hostel, which consider only the interruptible entertainment
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loads such as washing machines, pressing irons, vacuum cleaning, toasters, electric coffee,
electric cookers, cloth dyers, and entertainment loads (i.e., stabilizers, television), excluding
the essential loads such as lighting, fans, scanners, air conditioning, printers, photocopiers,
and desktop computers. The consumption of the interruptible load CIL(k): (CIL(k)):

CIL(k) =
24

∑
k=1

SIL(k)× AIL(k)×EP(k) (5)

CIL(k) = EIL(k)× EP(k), (6)

where k is time, AIL(k) is the consumption of the equipment for time t, EP(k) is the
electricity power of the interruptible load for time slot t, EIL(k) is consideredto be the total
consumption of interruptible load, and SIL(k) is the ON/OFF condition of the load status.

(3) Flexible Loads

Flexible or intermittent loads often operate for less than 24 h. The precise time usually
needs to be stated or acknowledged. The Pump House and STP Plant 2 are considered
flexible loads.

CFL(k) =
9

∑
k=1

SFL(k)× AFL(k)× EP(k) (7)

CFL(k) =
9

∑
k=1

EFL(k)× EP(k) (8)

where SFL(k) denotes the ON/OFF status of the load for time slot of k (according to
our study, the time slot considered for the flexible load to operate is 9 h based on lar
power availability), AFL(k) is the consumption of flexible load appliances, and EFL(k) total
consumption of the flexible load.

5.1. Objective Function

The proposed DSM schedules strive to optimize energy consumption by effectively
shifting and adjusting loads to align the energy usage curve as closely as possible to an
optimal state. The primary emphasis is on taking into account time slots and flexible loads
as factors, trying to reduce the user’s power expenditure, particularly during times of peak
demand when electricity rates are high. This approach seeks to enhance grid efficiency by
optimizing energy consumption patterns.

Minimize :
24

∑
k=1

(ENIL(k) + EIL(k) + EFL(k) =
24

∑
k=1

E(k)× PR(k) (9)

where PR denotes the price of electricity at time slot(k), and E is the total consumption.

5.2. Energy Balance Constraints

This ensures that the energy consumed by appliances, devices, or processes within the
system is accounted for and balanced with the energy supply. Through the establishment
of an energy balance, it becomes feasible to efficiently manage energy resources, prevent
energy waste, and maintain stability and efficiency within the broader energy system. It is
crucial to make sure that overall consumption does not surpass the sum of all electricity
generated by solar panels combined with power imported from utilities.

n

∑
i=1

Pn
PVi + Pn

UT + Pn
DG =

n

∑
i=1

Pn
TL (10)

n

∑
i=1

Pn
G ≥ Pn

TL + PL (11)
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where PPVi stands for the solar power sources, PUT stands for the utility grid, PDG stands
for the diesel generator, and PTL stands for total load.

5.3. Capacity Constrains

This constraint ensures that the utilization of resources remains within their predefined
capacity limits to maintain system stability, efficiency, and sustainability. It helps prevent the
overutilization or overloading of resources, which could lead to performance degradation,
inefficiencies, or even failures. By considering the capacity constraint for resources, decision-
makers and planners can appropriately allocate and manage resources to ensure their
optimal utilization while avoiding any potential bottlenecks or constraints that may arise
due to exceeding capacity limits.

Pn
PVi,min ≤ Pn

PV ≤ Pn
PVi,max (12)

Pn
UT,min ≤ Pn

UT ≤ Pn
UT,max (13)

Pn
DG,min ≤ Pn

DG ≤ Pn
DG,min (14)

where Pn
G is the total generation capacity at time n, and PL is the total line loss at time n.

Equations (12)–(14) represents the generation capacity constraints of PV, Utility and, DG.

5.4. Operation Constraints

1. It is observed that flexible loads operate during peak demand, and rescheduling the
loads is crucial for lowering peak power usage;

2. The load consumption shall not exceed the 300 KVA maximum load limit;
3. A threshold of 270 kW is considered, at which all interruptible loads are clipped, and

flexible loads are rescheduled to run at different times;
4. The overall consumption is then computed, and an optimal solution is identified that

minimizes the utility’s usage.

It is imperative to meet the power balance constraint in Equations (10) and (11) when
scheduling different distributed power and non-dispatchable DER units. The surplus and
deficit of electricity will be exported and imported to the utility to ensure that load and
power generation are balanced at any given moment. It should exist within the minimum
generation constraints to achieve the optimal schedule power levels. The DSM algorithm is
constrained until convergence is conducted and its minimum value is attained, as shown
in Figure 13. If the highest and lowest power constraints are exceeded, they are modified
accordingly, as shown in Figure 14, where the flowchart and algorithm 1 explain the entire
process of how the constraints and the DSM are implemented for this study.
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5.5. Load Scheduling for Peak Power Reduction

Kennedy and Eberhart introduced PSO as a computer strategy for solving issues by
repeatedly attempting to enhance a proposed solution in terms of a performance measure.
Fish or birds’ schooling or flocking behavior served as the basis for the metaheuristic
algorithm known as PSO [38]. The PSO method has a quicker convergence time, even
though this issue comprises several facets and objective functions. However, it is incredibly
flexible to circumstances with several objectives and purposes. Thus, the problem has
several aspects and factors [39]. PSO stands out from other evolutionary systems in
that it keeps every member of the population throughout the search phase and refrains
from employing filtering processes such as crossover and mutation. The primary concept
underlying PSO is that information is shared socially among people in a population—the
PSO technique searches using an individual-corresponding population of particles, similar
to evolutionary algorithms. In contrast to GA, no natural evolution operator is employed
to provide novel solutions for the next generation. PSO, however, relies on individual
knowledge exchange, which is why it is referred to as swarm intelligence. Every particle
adjusts its place in the swarm through prior experience and the most superficial previous
position. The particle accumulates knowledge by keeping track of its ideal personal
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circumstance, exhibiting both a local and a global search depending on nearby expertise
or the prowess of the swarm. Global neighbor and local neighbor iterations were used in
constructing the PSO algorithm. The algorithm 1is provided below for a clear process of
load scheduling.

The gbest model represents the best particle in the whole swarm, and each particle’s
best prior location migrates toward the global neighborhood model. In the local variant
known as the Pbest model, each particle seeks the best place from its previous visit and
the finest particle in its small neighborhood. PSO has been successfully used in several
applications, including task management, variable spring systems, and power and voltage
regulation. It is possible to represent problem-solving using swarms of particles. In the
beginning, the particles are scattered randomly over the solution space. The particles are
first dispersed arbitrarily throughout the global area. The ideal location and the position of
the best-performing particle affect how they move across the solution space.

The repeatedly evaluated performance of the particles is assessed using a fitness
function. If the particle arrives at its ideal location, indicated by Pbest, and the position of
the lightest particle, designated by gbest, the velocity and position are updated using the
following equation at each iteration step. The following equation then updates the position
and velocity at all iteration phases.

V(k+1)
i = wVk

i + c1∗rand()
(

pbeatk
i − xk

i

)
+ c2∗rand()

(
gbestk

i − xk
i

)
(15)

x(k+1)
i = xk

i + V(K+1)
I (16)

where c1 and c2 denote the acceleration coefficient (i.e., they maintain a balance between
individual and neighboring behavior).

5.6. Binary Particle Swarm Optimization

For separate particles, the fundamental PSO algorithm employs continuous values.
Particle specifications in discrete space are required to organize the loading procedure. The
velocity update equation is used in the discrete version of BPSO, and the velocity is limited
to a range. Then, each particle’s present location and velocity are updated. Evaluation is
once again conducted to determine the fitness of the particles in the swarm. A sigmoid
function with the following definition is then used to transfer the velocity to [0, 1].

S
(

V(k+1)
i

)
=

1

1 + (e−V(k+1)
i )

(17)

x(k+1)
i =

 1, i f S
(

V(k+1)
i

)
> rand()

0, Otherwise
(18)

5.7. Load Scheduling Algorithm

Step 1: Initialization of the algorithm parameters such as the decision variable (DV),
weight coefficient, and population size (Pop), and data on solar prediction, maxi-
mum demand limit, and load details;

Step 2: Loading of the data and electricity traffic rate for the considered categories;
Step 3: The new particle is generated by updating the velocity;
Step 4: The position of the particle is updated by Equation (15);
Step 5: The best particle position (pbest) and the global best position (gbest) are updated;
Step 6: The ith particle’s fitness is determined;
Step 7: If fitness(i) is less than pbest(i) and the peak load limit is not exceeded for the

present position, pbest is equal to fitness and saves the particle’s location;
Step 8: The global best particle position is saved if pbest(i) is smaller than gbest and

gbest = pbest(i);
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Step 9: We establish a maximum and lowest range for the velocity values, and then use a
sigmoid function to map the velocity with s(vi);

Step 10: We set the new particle location only inside the allowed subset;
Step 11: We continue from step 3 until the allotted iterations have been achieved (Algorithm 1).

Algorithm 1: Proposed particle swarm optimization (PSO)

1: Initialization of algorithm parameters
2: Initialization of population size
3: Pop = 1:tp
4: Initialization of load data

5: L =



NILK=1 . . . . . . ILK=1 . . . . . . FLk=1
: : :
: : :
: : :
: : :
: : :

NILk=24 . . . . . . ILk=1 . . . . . . FLk=1


6: Uc (: ,: ,pop)=[cr1 cr2 cr3 cr4 cr5 nc1 nc2 f1 f2];
7: Objective function is calculated
8: Peakconsumption (pop) = sum(eb(tp,:,pop)) + sum(eb(tp,:,pop))
9: Offpeakconsumption(pop) = sum(eb(tp,:,pop)) + sum(eb(tp,:,pop));
10: Midpeakconsumption(pop) = sum(eb(tp,:,pop));
11: sol(pop,49) = (peakconsumption(pop)*PR*H) + ((offpeakcon sumtion(pop))*PR*H) +

(midpeakconsumption(pop)*PR*H);
12: Check the threshold limit
13: if eb(i,:,pop) >= 280
14: count = count + 1;
15: sol(pop,50) = count;
16: Update the velocity and position

17: V(k+1)
i = wVk

i + c1∗rand()
(

pbestk
i − xk

i

)
+ c2∗rand()

(
gbestk

i − xk
i

)
18: x(k+1)

i = xk
i + V(K+1)

I
19: Update best position particle
20: if

21: fitness (x(k+1)
i ) < f itness

(
pbestk

i

)
then,

22: pbestk
i = x(k+1)

i
23: End
24: Update global best position
25: if

26: f itness
(

pbestk
i

)
< gbestk

i then,

27: gbestk
i = pbestk

i
28: Checking the stopping criteria, for iteration count, go to step 9,
29: End

6. Result and Discussion
6.1. Role of Solar Power Prediction and Utilization

The high-accuracy prediction of solar power using the MLA (regression) is considered
for the scheduling of loads calculated from Equation (2). The average irradiation normally
increases at about 11 a.m. before declining, and energy consumption during these hours
witnesses an increasing trend [17]. Solar irradiance and ambient temperature affect how
much power a PV system can create. These two factors can change at any moment. The
irradiation-based solar power drawn from TCE is depicted in Figure 15 [26]. The upcoming
average hourly prediction series is based on past data collection. Figure 8 displays the
modeling findings of solar power prediction. For the increasing power demand to avoid the
harshest effects of peak electricity cost minimization, the solar power generation forecast
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is a crucial requirement. This prediction of solar power in the past would result in the
reduced utilization of utility power and cutting bills by using the renewable energy source
to its benefit. Effective utilization of solar PV power optimizes usage during time off traffic
to reduce energy costs. Based on the proposed method, the peak demand is achieved to
reduce the utility’s power, thereby minimizing peak power costs.
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6.2. Effect of DSM on Consumption

Utilizing load shifting allows customers to change their consumption habits to off-peak
times based on affordable rates. It consists of both peak clipping and peak shaving [39].
Critical equipment can only be stopped or turned off after operating. Users’ comfort will
be adversely affected if they are delayed or moved after the procedure has begun since
they function at set power ratings. The inputs comprise load statistics from institutions cat-
egorized based on priority and solar power generation with load prioritization techniques.
Flexible loads are only used occasionally; non-critical loads should have an intermittent
power source, and critical loads should have a continuous power source. The loads have
been assigned according to their priority.

A load curve or load profile graph depicts the change in demand or energy load
over time. Figure 16 illustrates the power consumption without DSM implementation.
As described in Figure 12 and Table 3, the model’s measurements include information on
temperature and solar energy prediction, and the threshold limit and base load profiles are
used to determine the pattern of dispatchable loads.

Table 3. DSM scheduling based on the appliance categories for commercial load consideration.

Category of Appliance Name of Appliance Scheduling Criteria

Non-interruptible load (non-shiftableload) All college load (electrical lab, TCE main block,
ECE department, Auditorium, and MCA). Operating for all hours without any interruption

Interruptible load (considering only
shiftable load)

Lady’s and Men’s hostel (entertainment loads
washing machines, pressing iron, vacuum cleaning,
toasters, electric coffee, cooker, cloth dyers,
entertainment loads i.e., stabilizers, television, etc.,).

Initially on for all hours. On the peak demand
condition, the peak clipping is performed.

Flexible load Pump house and STP Plant2 (pumps in water
supply, wastewater treatment)

Randomly operating based on solar power
availability.
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Figure 16. The actual power consumption before applying the DSM technique.

6.3. Effect of Load Shifting

Depending on the estimated horizon, equipment that can change its power capabilities
without compromising user comfort can be modified. Building demand flexibility and
managing a building’s adaptable resources shift the load pattern to accommodate different
needs without compromising end users’ interests [40]. The load rescheduling was intended
to use solar power and reduce peak demand when the solar irradiation is greater. The
simulation’s findings indicate that the flexible load shifts within a day’s 24 h.

Figure 17 illustrates how load shifting makes it possible to schedule devices from
peak hours 2 to 4 to non-peak hours between 9 and 1 h while achieving fewer energy
savings. Flexible load scheduling is carried out to reduce peak demand by shifting the
loads during the low-demand period by 22%. The flexible load scheduling was carried out
with GA, which resulted in 19%. The flexible load scheduling resulted from the conditions
in Figure 17a,b, where the peak demand was also reduced from 294.05 kW in the case of
PSO to 303.23 kW in GA.
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6.4. Effect of Peak Clipping

It has been stated that utilities deploy load shedding to stop the flow of electricity
when supply cannot keep up with the sharp spike in demand [41]. Despite having rated
power, the gadgets, including washing machines and dishwashers, are adaptable and may
be shut down, moved, or rescheduled as needed. The power consumption is reduced by
the DSM technique using peak clipping; thus, in Figure 18a,b, the performance of both
algorithms is similar, but PSO provides the best result. In the GA algorithm, the iteration
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time is too long compared to the PSO. The peak clipping process shows that the load
profile has significantly improved, as shown in Figure 18a of PSO with 24%, i.e., from
378.06 KW to 285.75 KW. Peak clipping was conducted utilizing BPSO and a significant
quantity of energy from an SPV source, and the results demonstrate greater applicability.
The particle swarm optimization approach is used under these presumptions, and an
optimal solution is obtained by activating flexible loads and altering the particle’s velocity.
The overall consumption is then computed, and an ideal solution that decreases utility
use is determined. Excess loads are switched off at peak hours in the clipping scheme
to reduce energy consumption. The microgrid oversees the delivery of non-interruptible
loads, which are regarded as non-shiftable loads.
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Power production companies use this information to predict how much energy they
will need at any given moment. Figure 16 illustrates a load curve, such as a load duration
curve. The usage of capacity over time is shown by the load curve. This graph indicates the
lower consumption during peak hours by rescheduling the flexible loads to non-peak hours
with PV (i.e., if the loads are run randomly during peak periods, it might lead to higher
usage), as seen in Figure 16. Scheduling is performed while adhering to the specified thresh-
old limit, as depicted in Figure 18c. The comparison between the graphs with and without
scheduling demonstrates that the flexible load is shifted, and the interruptible hostel load
is reduced during periods of peak demand. Additionally, peak shifting is implemented
to ensure that the peak remains within the prescribed limit. In a conventional scheme,
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the peak has violated the specified limit. This violation causes very big challenges for the
utilities. So, employing flexible and interruptible loads, MATLAB v. 2022a simulations
of load shifting and shedding, taking solar production into account, were run. The main
grid’s peak demand was reduced by around 29%. The results show that the total power
demand has decreased from 378.06 kW to 266.546 kW with solar power generation. The
maximum and minimum values of power consumed within 24 h per threshold limits are
displayed in Table 4. Table 4 summarizes the evaluation parameters before and after the
DSM approach with PSO and GA. A larger PAR denotes a bigger disparity between the
peak and average demand, suggesting a greater possibility for a decrease. By implementing
strategies that successfully lower the peak demand while maintaining an acceptable level
of average demand, the PAR can be reduced.

Table 4. Summary of the statistical value of comparing and evaluating PSO and GA.

Statistical Value Actual
Value

GA PSO

Load
Shifting

Peak
Clipping

Scheduling
with PV

Load
Shifting

Peak
Clipping

Scheduling
with PV

Maximum power (kW) 378.06 303.23 299.02 270.54 294.05 285.75 266.54
Minimum power(kW) 108 108 108 108 108 108 108

Peak-to-peak power(kW) 270 195.23 191.02 162.54 186.05 177.75 158.54
Mean power(kW) 326.45 302.745 290.64 281.51 302.745 378.96 156.42

Median (kW) 326.45 312.79 268.42 165.9 302.74 263.79 134.7
PAR 1.8602 1.002 1.0288 0.9608 0.9056 0.754 0.7211

There are more loads in commercial MGs, and they have a longer consumption period;
it involves the use of smart technology to monitor electricity usage, identify periods of
peak demand, and automatically shift energy consumption to times when demand is low.
Both utilities and customers may benefit from a more dependable and economical energy
system by employing DSM on a loaded schedule. To effectively implement DSM, the
loads are shifted from peak to non-peak hours. The loads in this study are categorized
according to consumption and usage time, respectively. As a result, the influence of DSM
and renewable energy sources such as SPV on the creation of MG and the acquisition of
power from the primary grid may be significantly reduced. Thus, using various population
sizes and several iterations, the model is run repeatedly, which results in scheduling within
the threshold limit, as shown in Table 5.

Table 5. Demonstration of percentage decrease during the demand peak.

Load Curve GA Peak Demand Reduction in
Percentage for GA PSO Peak Demand Reduction in

Percentage for PSO

Without scheduling 378.06 - 378.06 -
Scheduling flexible loads 303.23 19% 294.05 22%
Shedding interruptible loads 299.02 20% 285.75 24%
Scheduling with PV 270.54 27% 266.54 29%

Ensuring the stability and dependability of the grid is DSM’s main goal. By minimizing
the PAR, one method is used to accomplish this. Figure 19 shows a histogram that contrasts
the PAR of demand profiles created before and after the implementation of DSM using
two distinct methods. The PAR values for the demand profiles are presented visually in
the histogram and Table 5 to allow for a clear comparison between the two situations:
PSO and GA. The variations in PAR between the two procedures are easily understood
thanks to this graphical depiction from Figure 19. Prior to the implementation of DSM,
the original demand profile had a PAR of 1.8602. However, after applying the clipping
and shifting techniques in the DSM process, the PAR values decrease significantly to 0.905
and 0.754, respectively. The peak reduction from Table 5 results indicates that the GA also
performs well compared to PSO and the difference is also less, but PSO is able to attain the
threshold limits.



Sustainability 2023, 15, 12209 24 of 28

Sustainability 2023, 15, x FOR PEER REVIEW 25 of 29 
 

Median (kW) 326.45 312.79 268.42 165.9 302.74 263.79 134.7 

PAR 1.8602 1.002 1.0288 0.9608 0.9056 0.754 0.7211 

There are more loads in commercial MGs, and they have a longer consumption 

period; it involves the use of smart technology to monitor electricity usage, identify 

periods of peak demand, and automatically shift energy consumption to times when 

demand is low. Both utilities and customers may benefit from a more dependable and 

economical energy system by employing DSM on a loaded schedule. To effectively 

implement DSM, the loads are shifted from peak to non-peak hours. The loads in this 

study are categorized according to consumption and usage time, respectively. As a 

result, the influence of DSM and renewable energy sources such as SPV on the creation 

of MG and the acquisition of power from the primary grid may be significantly reduced. 

Thus, using various population sizes and several iterations, the model is run repeatedly, 

which results in scheduling within the threshold limit, as shown in Table 5. 

Table 5. Demonstration of percentage decrease during the demand peak. 

Load Curve GA 
Peak Demand Reduction in  

Percentage for GA 
PSO 

Peak Demand Reduction in  

Percentage for PSO 

Without scheduling 378.06 - 378.06 - 

Scheduling flexible loads 303.23 19% 294.05 22% 

Shedding interruptible loads 299.02 20% 285.75 24% 

Scheduling with PV 270.54 27% 266.54 29% 

Ensuring the stability and dependability of the grid is DSM’s main goal. By 

minimizing the PAR, one method is used to accomplish this. Figure 19 shows a 

histogram that contrasts the PAR of demand profiles created before and after the 

implementation of DSM using two distinct methods. The PAR values for the demand 

profiles are presented visually in the histogram and Table 5 to allow for a clear 

comparison between the two situations: PSO and GA. The variations in PAR between the 

two procedures are easily understood thanks to this graphical depiction from Figure 19. 

Prior to the implementation of DSM, the original demand profile had a PAR of 1.8602. 

However, after applying the clipping and shifting techniques in the DSM process, the 

PAR values decrease significantly to 0.905 and 0.754, respectively.  The peak reduction 

from Table 5 results indicates that the GA also performs well compared to PSO and the 

difference is also less, but PSO is able to attain the threshold limits.  

  
(a) (b) 

Figure 19. PAR value of load shifting, clipping before and after DSM for two approaches: (a) PAR 

value for GA; (b) PAR value for PSO. 
Figure 19. PAR value of load shifting, clipping before and after DSM for two approaches: (a) PAR
value for GA; (b) PAR value for PSO.

7. Conclusions

This research has mainly focused on modeling the use of DSM techniques and optimiz-
ing the operation of microgrids by defining optimization issues. An enhanced reinforced
binary particle swarm optimization (RBPSO)of the grid-connected PV system of an institu-
tional building by employing renewable energy resources has been proposed, implementing
peak clipping and valley filling methods. Considering the high penetration of PV systems,
this paper estimates renewable energy prediction using RFA-RM. Due to the difficulty of
having all the power sources available simultaneously, hybrid microgrid systems require
a continuous power supply to the grid. This integration can also enable demand-side
management programs that encourage consumer participation and engagement, leading
to more sustainable and efficient energy consumption patterns. Flattening the load pro-
file, reducing the impact of intermittent generation, and boosting system effectiveness
are all possible benefits of a successful demand-side management strategy. Flexible load
scheduling reduces the stress on the electrical grid during periods of high demand, thereby
reducing the risk of blackouts and other issues. By moving consumption to the time of day
when energy is cheapest, it also helps to lower the cost of power. Our experiments and
implementation show the necessity and importance of including PV prediction in DSM
scheduling. On the other hand, with this DSM approach, energy consumption is optimized,
with a peak demand reduction from 378.06 kW to 266.54 kW. The following conclusions
are summarized:

1. Utilizing on-site generation such as solar panels and implementing the BPSO to satisfy
the consumer with priority-based load scheduling during peak periods is minimized;

2. The DSM method has a lower peak demand compared to a system without DSM;
3. The peak demand reduction of 22% is obtained during flexible load shaving with

DSM based on a tariff;
4. The shedding of interruptible loads results in a significant peak demand reduction of 24%;
5. The scheduling of loads during peak demand, coupled with the utilization of solar

photovoltaic (PV) power, has led to a significant reduction of 29% in peak demand.

Load shifting in the DSM process resulted in a smaller reduction in the PAR compared
to other techniques. This can be observed from Figure 19, where the generated peak power
consumption after the DSM shows a relatively smaller decrease in PAR in the case of PSO
(0.721), which is better than 0.960 in the case of GA. The computational results show that the
suggested machine learning prediction approach combined with enhanced BPSO provides
an efficient solution for institutions regarding load scheduling, energy conservation, and
decreasing system expenses. The utility infrastructure is used to satisfy the energy demand
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in this situation (intermittent weather), and the recommended scheme’s anticipated SPV
power delivery strategy is used to reduce costs. When solar power production exceeds
demand, the utility compensates for the surplus energy. Hence, based on the availability
of solar power, the load is scheduled for where the utility cost at the time is not required,
which results in a cost reduction. Integrating solar prediction and PSO algorithms for load
scheduling presents a promising approach to enhancing the efficiency and effectiveness
of load-scheduling processes. Therefore, the government, utilities, and individuals need
to consider DSM as a viable strategy for managing energy consumption and promoting
sustainable energy practices. Reduced microgrid power usage ensures grid stability and,
as a result, reduces costs.
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Nomenclature

PV Photovoltaic
DR Demand Response
MLA Machine Learning Algorithm
BPSO Binary Particle Swarm Optimization
ESS Energy Storage System
ANFIS Adaptive Neuro-Fuzzy Inference System
HEM Home Energy Mange
RES Renewable Energy Resources
AC Alternating Current
DC Direct Current
MILP Mixed-integer linear programming
DSM Demand side management
TCE Thiagarajar college of engineering
Parameters and Constants
Parameter Description
ηPV Efficiency of solar power
aPV Area of solar power plant
SI(t) Solar irradiation
Ys Actual Solar data
Yˆ

s Predicted solar data
SNIL(k) ON/OFF condition for time k
ANIL(k) Entire consumed of non-interruptible load
ENIL(k) Overall power consumed of non-interruptible load
AIL(k) Consumption of the equipment for time k
EP(k) Electricity power of the interruptible load for time slot t
EIL(k) Total consumption of interruptible load
SIL(k) ON/OFF condition of the load status
AFL(k) Consumption of flexible load appliance
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SFL(k) ON/OFF status of the load for time slot of k
EFL(k) Total consumption of the flexible load
PR Price of electricity at time slot(k)
E Total consumption
PPVi solar power sources,
PUT Utility grid
PDG Diesel generator
c1, c2 Acceleration coefficients

Vk
i Velocity of i at kth iteration

xk
i Particle previous position

Vik Particle i velocity at iteration k
w Inertia constant
i Number of iterations
Functions and Variables
Variables Description
SPpv Solar photovoltaic power output
CNIL(k) Energy consumption of non-interruptible loads
CIL(k) Energy consumption of interruptible loads
CFL(k) Energy consumption of flexible loads
PTL Total load
PPVi,min Minimum value of PV
PPVi,max Maximum value of PV
Pbest Best local particular position
Gbest Best global position

Vk+1
i The velocity of a particle to the next position

x(k+1)
i Particle next position
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