Phenotypic, Geological, and Climatic Spatio-Temporal Analyses of an Exotic Grevillea robusta in the Northwestern Himalayas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Survey and Sampling Strategies
2.2. Size Class Distribution
2.3. Climatic and Geological Mapping for Current Distribution and Future Prediction
3. Results
3.1. Geographical Distribution and Stand Structure (SS)
3.2. Current Habitat Suitability Mapping through MaxEnt Modeling
3.3. Predicted Future (2050s and 2070s) Climatic Habitat Suitability Range
3.4. Geological Correlation to Predict Current Distribution and Future Habitat Suitability Range for G. robusta
4. Discussion
4.1. Geographical Distribution, Stand Structure, and Phenotypic Plasticity
4.2. Habitat Suitability Range through MaxEnt Modeling
4.3. Future Habitat Suitability Range
4.4. Geological Correlation to Current and Future Habitat Suitability Prediction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dodet, M.; Collet, C. When Should Exotic Forest Plantation Tree Species Be Considered as an Invasive Threat and How Should We Treat Them? Biol. Invasions 2012, 14, 1765–1778. [Google Scholar] [CrossRef]
- Gatto, F.; Katsanevakis, S.; Vandekerkhove, J.; Zenetos, A.; Cardoso, A.C. Evaluation of Online Information Sources on Alien Species in Europe: The Need of Harmonization and Integration. Environ. Manag. 2013, 51, 1137–1146. [Google Scholar] [CrossRef] [PubMed]
- Troup, R.S. The Silviculture of Indian Trees; Clarendon Press: Oxford, UK, 1921; Volume 3. [Google Scholar]
- Baggio, A.J.; Caramori, P.H.; Androcioli Filho, A.; Montoya, L. Productivity of Southern Brazilian Coffee Plantations Shaded by Different Stockings of Grevillea robusta. Agrofor. Syst. 1997, 37, 111–120. [Google Scholar] [CrossRef]
- Luna, R.K. Plantation Trees; International Book Distributors: Dehra Dun, India, 2005; pp. 397–399. [Google Scholar]
- Skene, K.R.; Kierans, M.; Sprent, J.I.; Raven, J.A. Structural Aspects of Cluster Root Development and Their Possible Significance for Nutrient Acquisition in Grevillea robusta (Proteaceae). Ann. Bot. 1996, 77, 443–452. [Google Scholar] [CrossRef] [Green Version]
- Harwood, C.E. Status of Grevillea robusta in Forestry and Agroforestry; ICRAF: Nairobi, Kenya, 1989. [Google Scholar]
- Harwood, C.E.; Lee, D.J.; Podberscek, M. Genetic Variation in Early Growth and Stem Form of Grevillea robusta in a Provenance-Family Trial in South-Eastern Queensland, Australia. For. Genet. 2002, 9, 55–61. [Google Scholar]
- Harwood, C.E. Grevillea Robusta: An Annotated Bibliography; International Council for Research in Agroforestry: Nairobi, Kenya, 1989; ISBN 9290590726. [Google Scholar]
- Harwood, C.E.; Moran, G.F.; Bell, J.C. Genetic Differentiation in Natural Populations of Grevillea robusta. Aust. J. Bot. 1997, 45, 669. [Google Scholar] [CrossRef]
- Kalinganire, A. Floral Structure, Stigma Receptivity and Pollen Viability in Relation to Protandry and Self-Incompatibility in Silky oak (Grevillea robusta A. Cunn.). Ann. Bot. 2000, 86, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Muchiri, M. Grevillea robusta in Agroforestry Systems in Kenya. J. Trop. For. Sci. 2004, 16, 396–401. [Google Scholar]
- Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Simons, A. Agroforestree Database: A Tree Reference and Selection Guide. Version 4; World Agroforestry Centre: Nairobi, Kenya, 2009. [Google Scholar]
- Leal, A.C.; Ramos, A.L.M. Desempenho de cinco procedências de Grevillea robusta no norte do paraná. Floresta 2011, 41, 287–294. [Google Scholar] [CrossRef]
- Mantello, C.; Kestring, D.R.; Sousa, V.A.; Aguiar, A.V.; Souza, A.P. Development and Characterization of Microsatellite Loci in Grevillea robusta. BMC Proc. 2011, 5, P16. [Google Scholar] [CrossRef]
- Branco, M.; Brockerhoff, E.G.; Castagneyrol, B.; Orazio, C.; Jactel, H. Host Range Expansion of Native Insects to Exotic Trees Increases with Area of Introduction and the Presence of Congeneric Native Trees. J. Appl. Ecol. 2015, 52, 69–77. [Google Scholar] [CrossRef]
- Fournier, A.; Barbet-Massin, M.; Rome, Q.; Courchamp, F. Predicting Species Distribution Combining Multi-Scale Drivers. Glob. Ecol. Conserv. 2017, 12, 215–226. [Google Scholar] [CrossRef]
- Heersink, D.K.; Caley, P.; Paini, D.; Barry, S.C. When Exotic Introductions Fail: Updating Invasion Beliefs. Biol. Invasions 2020, 22, 1097–1107. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stohlgren, T.J. Maxent Modeling for Predicting Suitable Habitat for Threatened and Endangered Tree Canacomyrica monticola in New Caledonia. J. Ecol. Nat. Environ. 2009, 4, 094–098. [Google Scholar]
- Adhikari, D.; Barik, S.K.; Upadhaya, K. Habitat Distribution Modelling for Reintroduction of Ilex khasiana Purk., a Critically Endangered Tree Species of Northeastern India. Ecol. Eng. 2012, 40, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Peterson, A.T.; Papes, M.; Kluza, D.A. Predicting the Potential Invasive Distributions of Four Alien Plant Species in North America. Weed Sci. 2003, 51, 863–868. [Google Scholar] [CrossRef]
- Thuiller, W.; Richardson, D.M.; Pyšek, P.; Midgley, G.F.; Hughes, G.O.; Rouget, M. Niche-based Modelling as a Tool for Predicting the Risk of Alien Plant Invasions at a Global Scale. Glob. Chang. Biol. 2005, 11, 2234–2250. [Google Scholar] [CrossRef]
- Graham, C.H.; Moritz, C.; Williams, S.E. Habitat History Improves Prediction of Biodiversity in Rainforest Fauna. Proc. Natl. Acad. Sci. USA 2006, 103, 632–636. [Google Scholar] [CrossRef]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; de Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction Risk from Climate Change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef] [Green Version]
- Saran, S.; Joshi, R.; Sharma, S.; Padalia, H.; Dadhwal, V.K. Geospatial Modeling of Brown Oak (Quercus semecarpifolia) Habitats in the Kumaun Himalaya under Climate Change Scenario. J. Indian Soc. Remote Sens. 2010, 38, 535–547. [Google Scholar] [CrossRef]
- Schnell, I.B.; Bohmann, K.; Gilbert, M.T.P. Tag Jumps Illuminated—Reducing Sequence-to-Sample Misidentifications in Metabarcoding Studies. Mol. Ecol. Resour. 2015, 15, 1289–1303. [Google Scholar] [CrossRef] [PubMed]
- MacFarlane, D.W. Potential Availability of Urban Wood Biomass in Michigan: Implications for Energy Production, Carbon Sequestration and Sustainable Forest Management in the U.S.A. Biomass Bioenergy 2009, 33, 628–634. [Google Scholar] [CrossRef]
- Kleinn, C. On Large-Area Inventory and Assessment of Trees Outside Forests. Unasylva 2000, 51, 3–10. [Google Scholar]
- Ahmed, P. Trees Outside Forests (TOF): A Case Study of Wood Production and Consumption in Haryana. Int. For. Rev. 2008, 10, 165–172. [Google Scholar] [CrossRef]
- Dogra, A.S. Contribution of Trees Outside Forests toward Wood Production and Environmental Amelioration. Indian J. Ecol. 2011, 38, 1–5. [Google Scholar]
- Singh, K.; Chand, P. Above-Ground Tree Outside Forest (TOF) Phytomass and Carbon Estimation in the Semi-Arid Region of Southern Haryana: A Synthesis Approach of Remote Sensing and Field Data. J. Earth Syst. Sci. 2012, 121, 1469–1482. [Google Scholar] [CrossRef] [Green Version]
- Archana, G.P.; Mathi Kumar, K.E. Trees Outside Forest (TOF) in Pinjore Block of Panchkula District, Haryana. Int. J. Eng. Sci. Res. Technol. 2013, 2, 612–615. [Google Scholar]
- Das, T.; Das, A.K. Mapping and Identification of Homegardens as a Component of the Trees Outside Forests Using Remote Sensing and Geographic Information System. J. Indian Soc. Remote Sens. 2014, 42, 233–242. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S.; Kumar, K.E.M.; Hooda, R.S. Mapping of Tree Outside Forest in Kalesar Block (Yamunanagar District, Haryana) Using Geo-Informatics Techniques. Int. J. Sci. Environ. Technol. 2014, 3, 1835–1842. [Google Scholar]
- Pujar, G.S.; Reddy, P.M.; Reddy, C.S.; Jha, C.S.; Dadhwal, V.K. Estimation of Trees Outside Forests Using IRS High Resolution Data by Object Based Image Analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-8, 623–629. [Google Scholar] [CrossRef] [Green Version]
- Chhabra, S.S. Modelling the Effects of Scale on Mapping Trees Outside Forests. Available online: https://webapps.itc.utwente.nl/librarywww/papers_2004/msc/gfm/chhabra.pdf (accessed on 12 February 2020).
- Mcroberts, R.; Tomppo, E. Remote Sensing Support for National Forest Inventories. Remote Sens. Environ. 2007, 110, 412–419. [Google Scholar] [CrossRef]
- Doubrawa, B.; Dalla Corte, A.P.; Sanquetta, C.R. Using Different Satellite Imagery and Classification Techniques to Assess the Contribution of Trees Outside Forests in the Municipality of Maringá, Brazil. Rev. Ceres 2013, 60, 480–488. [Google Scholar] [CrossRef] [Green Version]
- Rossi, J.-P.; Rousselet, J. Orman Dışında Geniş Bir Açık Tarlada Yer Alan Ağaçların Uzamsal Dağılımı ve Orman Böceklerinin Habitat Bağlantıları Üzerindeki Etkisi. Turk. J. For.|Türkiye Orman. Derg. 2016, 17, 62. [Google Scholar] [CrossRef]
- Salam, M.A.; Pramanik, A.T.M. Mapping Trees Outside of Forests Using Remote Sensing. Int. J. Sci. Res. Publ. 2017, 2, 27–35. [Google Scholar]
- Tuemay, T. Assessing and Mapping Ecosystem Services of Trees Outside Forest. J. Ecol. Nat. Environ. 2017, 9, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Islam, M.; Pramanik, M. Monitoring of Changes in Woodlots Outside Forests by Multi-Temporal Landsat Imagery. iForest—Biogeosci. For. 2018, 11, 162–170. [Google Scholar] [CrossRef]
- Mønness, E. The Power-Normal Distribution: Application to Forest Stands. Can. J. For. Res. 2011, 41, 707–714. [Google Scholar] [CrossRef] [Green Version]
- Morris, D.W. Adaptation and Habitat Selection in the Eco-Evolutionary Process. Proc. R. Soc. B Biol. Sci. 2011, 278, 2401–2411. [Google Scholar] [CrossRef]
- McElhinny, C.; Gibbons, P.; Brack, C.; Bauhus, J. Forest and Woodland Stand Structural Complexity: Its Definition and Measurement. For. Ecol. Manag. 2005, 218, 1–24. [Google Scholar] [CrossRef]
- Moss, I. Stand Structure Classification, Succession, and Mapping Using Lidar; University of British Columbia: Vancouver, BC, Canada, 2012; p. 170. [Google Scholar]
- Pond, N.C.; Froese, R.E. Interpreting Stand Structure through Diameter Distributions. For. Sci. 2015, 61, 429–437. [Google Scholar] [CrossRef]
- Marchelli, P.; Pastorino, M.J.; Gallo, L.A. Temperate Subantarctic Forests: A Huge Natural Laboratory. In Low Intensity Breeding of Native Forest Trees in Argentina; Springer International Publishing: Cham, Switzerland, 2021; pp. 27–54. [Google Scholar]
- Mazer, S.J.; Schick, C.T. Constancy of Population Parameters for Life History and Floral Traits in Raphanus sativus l. I. Norms of Reaction and the Nature of Genotype by Environment Interactions. Heredity 1991, 67, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Sultan, S.E. Phenotypic Plasticity and Plant Adaptation. Acta Bot. Neerl. 1995, 44, 363–383. [Google Scholar] [CrossRef]
- Rocchini, D.; Hortal, J.; Lengyel, S.; Lobo, J.M.; Jiménez-Valverde, A.; Ricotta, C.; Bacaro, G.; Chiarucci, A. Accounting for Uncertainty When Mapping Species Distributions: The Need for Maps of Ignorance. Prog. Phys. Geogr. Earth Environ. 2011, 35, 211–226. [Google Scholar] [CrossRef] [Green Version]
- Akinyemi, O.M. Pests and Diseases. In Agriculture Production; CRC Press: Boca Raton, FL, USA, 2020; pp. 105–128. [Google Scholar] [CrossRef]
- Koyshibayev, M.; Muminjanov, H. Guidelines for Monitoring Diseases, Pests and Weeds in Cereal Crops. Available online: https://mel.cgiar.org/reporting/download/hash/442ac425f94f898ee83ca09502c72b58 (accessed on 15 February 2020).
- Curtis, J.T.; McIntosh, R.P. The Interrelations of Certain Analytic and Synthetic Phytosociological Characters. Ecology 1950, 31, 434–455. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very High -Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A Statistical Explanation of MaxEnt for Ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Young, N.; Carter, L.; Evangelista, P.A. MaxEnt Model v3.3.3e Tutorial (ArcGIS V10); Colorado State University: Fort Collins, CO, USA, 2011; pp. 1–30. [Google Scholar]
- Flory, A.R.; Kumar, S.; Stohlgren, T.J.; Cryan, P.M. Environmental Conditions Associated with Bat White-Nose Syndrome Mortality in the North-Eastern United States. J. Appl. Ecol. 2012, 42, 680–689. [Google Scholar] [CrossRef]
- Yang, X.-Q.; Kushwaha, S.P.S.; Saran, S.; Xu, J.; Roy, P.S. Maxent Modeling for Predicting the Potential Distribution of Medicinal Plant, Justicia adhatoda L. in Lesser Himalayan Foothills. Ecol. Eng. 2013, 51, 83–87. [Google Scholar] [CrossRef]
- Stohlgren, T.J.; Ma, P.; Kumar, S.; Rocca, M.; Morisette, J.T.; Jarnevich, C.S.; Benson, N. Ensemble Habitat Mapping of Invasive Plant Species. Risk Anal. 2010, 30, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Babar, S.; Amarnath, G.; Reddy, C.S.; Jentsch, A.; Sudhakar, S. Species Distribution Models: Ecological Explanation and Prediction of an Endemic and Endangered Plant Species (Pterocarpus santalinus L.F.). Curr. Sci. 2012, 102, 1157. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Fielding, A.H.; Bell, J.F. A Review of Methods for the Assessment of Prediction Errors in Conservation Presence/Absence Models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the Accuracy of Species Distribution Models: Prevalence, Kappa and the True Skill Statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Nahum, S.; Inbar, M.; Ne’eman, G.; Ben-Shlomo, R. Phenotypic Plasticity and Gene Diversity in Pistacia lentiscus L. along Environmental Gradients in Israel. Tree Genet. Genomes 2008, 4, 777–785. [Google Scholar] [CrossRef]
- Soolanayakanahally, R.Y.; Guy, R.D.; Silim, S.N.; Drewes, E.C.; Schroeder, W.R. Enhanced Assimilation Rate and Water Use Efficiency with Latitude through Increased Photosynthetic Capacity and Internal Conductance in Balsam Poplar (Populus balsamifera L.). Plant Cell Environ. 2009, 32, 1821–1832. [Google Scholar] [CrossRef]
- Kerr, G. The Potential for Sustainable Management of Semi-Natural Woodlands in Southern England Using Uneven-Aged Silviculture. Forestry 2002, 75, 227–243. [Google Scholar] [CrossRef]
- Miyajima, Y.; Takahashi, K. Changes with Altitude of the Stand Structure of Temperate Forests on Mount Norikura, Central Japan. J. For. Res. 2007, 12, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Sharma, C.M.; Mishra, A.K.; Tiwari, O.P.; Krishan, R.; Rana, Y.S. Effect of Altitudinal Gradients on Forest Structure and Composition on Ridge Tops in Garhwal Himalaya. Energy Ecol. Environ. 2017, 2, 404–417. [Google Scholar] [CrossRef] [Green Version]
- Behera, M.D.; Kushwaha, S.P.S. An Analysis of Altitudinal Behavior of Tree Species in Subansiri District, Eastern Himalaya. Biodivers. Conserv. 2007, 16, 1851–1865. [Google Scholar] [CrossRef]
- Azrag, A.G.A.; Pirk, C.W.W.; Yusuf, A.A.; Pinard, F.; Niassy, S.; Mosomtai, G.; Babin, R. Prediction of Insect Pest Distribution as Influenced by Elevation: Combining Field Observations and Temperature-Dependent Development Models for the Coffee Stink Bug, Antestiopsis thunbergii (Gmelin). PLoS ONE 2018, 13, e0199569. [Google Scholar] [CrossRef] [PubMed]
- Duflot, R.; Avon, C.; Roche, P.; Bergès, L. Combining Habitat Suitability Models and Spatial Graphs for More Effective Landscape Conservation Planning: An Applied Methodological Framework and a Species Case Study. J. Nat. Conserv. 2018, 46, 38–47. [Google Scholar] [CrossRef]
- Wei, B.; Wang, R.; Hou, K.; Wang, X.; Wu, W. Predicting the Current and Future Cultivation Regions of Carthamus tinctorius L. Using MaxEnt Model under Climate Change in China. Glob. Ecol. Conserv. 2018, 16, e00477. [Google Scholar] [CrossRef]
- Stotsky, J.G.; Phelps, P.; Mu, Y. Bond Markets in Africa. Sabinet Afr. J. 2013, 3, 121–135. [Google Scholar]
- Belda, M.; Holtanová, E.; Halenka, T.; Kalvová, J. Climate Classification Revisited: From Köppen to Trewartha. Clim. Res. 2014, 59, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Khanum, R.; Mumtaz, A.S.; Kumar, S. Predicting Impacts of Climate Change on Medicinal Asclepiads of Pakistan Using Maxent Modeling. Acta Oecologica 2013, 49, 23–31. [Google Scholar] [CrossRef]
- Padalia, H.; Srivastava, V.; Kushwaha, S.P.S. Modeling Potential Invasion Range of Alien Invasive Species, Hyptis suaveolens (L.) Poit. in India: Comparison of MaxEnt and GARP. Ecol. Inform. 2014, 22, 36–43. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, B.; Bai, C.; Li, G.; Mao, M. Predicting Suitable Cultivation Regions of Medicinal Plants with Maxent Modeling and Fuzzy Logics: A Case Study of Scutellaria baicalensis in China. Environ. Earth Sci. 2016, 75, 361. [Google Scholar] [CrossRef]
- Gebrewahid, Y.; Abrehe, S.; Meresa, E.; Eyasu, G.; Abay, K.; Gebreab, G.; Kidanemariam, K.; Adissu, G.; Abreha, G.; Darcha, G. Current and Future Predicting Potential Areas of Oxytenanthera abyssinica (A. Richard) Using MaxEnt Model under Climate Change in Northern Ethiopia. Ecol. Process. 2020, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159. [Google Scholar] [CrossRef] [PubMed]
- Somodi, I.; Lepesi, N.; Botta-Dukát, Z. Prevalence Dependence in Model Goodness Measures with Special Emphasis on True Skill Statistics. Ecol. Evol. 2017, 7, 863–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Tang, J.; Ren, G.; Zhao, K.; Wang, X. Global Potential Distribution Prediction of Xanthium Italicum Based on Maxent Model. Sci. Rep. 2021, 11, 16545. [Google Scholar] [CrossRef]
- Chen, K.; Wang, B.; Chen, C.; Zhou, G. MaxEnt Modeling to Predict the Current and Future Distribution of Pomatosace filicula under Climate Change Scenarios on the Qinghai–Tibet Plateau. Plants 2022, 11, 670. [Google Scholar] [CrossRef]
- Ouko, E.; Omondi, S.; Mugo, R.; Wahome, A.; Kasera, K.; Nkurunziza, E.; Kiema, J.; Flores, A.; Adams, E.C.; Kuraru, S.; et al. Modeling Invasive Plant Species in Kenya’s Northern Rangelands. Front. Environ. Sci. 2020, 8, 69. [Google Scholar] [CrossRef]
- Nautiyal, H.; Thapliyal, M. Impact of Micro-Climatic Variation on Floral Diversity of Garhwal Himalaya along Altitu-Dinal Gradients. Int. J. Res. Sci. Technol. 2011, 1, 1–10. [Google Scholar]
- Kalinganire, A. Performance of Grevillea robusta in Plantations and on Farms under Varying Environmental Conditions in Rwanda. For. Ecol. Manag. 1996, 80, 279–285. [Google Scholar] [CrossRef]
- Trabucco, A.; Achten, W.M.J.; Bowe, C.; Aerts, R.; van Orshoven, J.; Norgrove, L.; Muys, B. Global Mapping of Jatropha curcas Yield Based on Response of Fitness to Present and Future Climate. GCB Bioenergy 2010, 2, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Webber, B.L.; Yates, C.J.; Le Maitre, D.C.; Scott, J.K.; Kriticos, D.J.; Ota, N.; McNeill, A.; Le Roux, J.J.; Midgley, G.F. Modelling Horses for Novel Climate Courses: Insights from Projecting Potential Distributions of Native and Alien Australian Acacias with Correlative and Mechanistic Models. Divers. Distrib. 2011, 17, 978–1000. [Google Scholar] [CrossRef]
- Salmón Rivera, B.; Barrette, M.; Thiffault, N. Issues and Perspectives on the Use of Exotic Species in the Sustainable Management of Canadian Forests. Reforesta 2016, 1, 261–280. [Google Scholar] [CrossRef] [Green Version]
- Furey, C.; Tecco, P.A.; Perez-Harguindeguy, N.; Giorgis, M.A.; Grossi, M. The Importance of Native and Exotic Plant Identity and Dominance on Decomposition Patterns in Mountain Woodlands of Central Argentina. Acta Oecologica 2014, 54, 13–20. [Google Scholar] [CrossRef]
- Negi, G.C.S.; Sharma, S.; Vishvakarma, S.C.R.; Samant, S.S.; Maikhuri, R.K.; Prasad, R.C.; Palni, L.M.S. Ecology and Use of Lantana Camara in India. Bot. Rev. 2019, 85, 109–130. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.C. Challenges in Predicting the Future Distributions of Invasive Plant Species. For. Ecol. Manag. 2012, 284, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Bradley, B.A.; Mustard, J.F. Characterizing the Landscape Dynamics of an Invasive Plant and Risk of Invasion Using Remote Sensing. Ecol. Appl. 2006, 16, 1132–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarnevich, C.S.; Reynolds, L.V. Challenges of Predicting the Potential Distribution of a Slow-Spreading Invader: A Habitat Suitability Map for an Invasive Riparian Tree. Biol. Invasions 2011, 13, 153–163. [Google Scholar] [CrossRef]
- He, K.S.; Rocchini, D.; Neteler, M.; Nagendra, H. Benefits of Hyperspectral Remote Sensing for Tracking Plant Invasions. Divers. Distrib. 2011, 17, 381–392. [Google Scholar] [CrossRef]
- Dash, J.P.; Watt, M.S.; Paul, T.S.H.; Morgenroth, J.; Pearse, G.D. Early Detection of Invasive Exotic Trees Using UAV and Manned Aircraft Multispectral and LiDAR Data. Remote Sens. 2019, 11, 1812. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.I.; Park, I.K.; Bae, S.Y.; Fong, J.J.; Zhang, Y.P.; Li, S.R.; Ota, H.; Kim, J.S.; Park, D. Prediction of Present and Future Distribution of the Schlegel’s Japanese gecko (Gekko japonicus) Using MaxEnt Modeling. J. Ecol. Environ. 2020, 44, 5. [Google Scholar] [CrossRef]
- Barbet-Massin, M.; Rome, Q.; Villemant, C.; Courchamp, F. Can Species Distribution Models Really Predict the Expansion of Invasive Species? PLoS ONE 2018, 13, e0193085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, A.M.; Kumar, S.; Brown, C.S.; Stohlgren, T.J.; Bromberg, J. Field Validation of an Invasive Species Maxent Model. Ecol. Inform. 2016, 36, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Briscoe Runquist, R.D.; Lake, T.; Tiffin, P.; Moeller, D.A. Species Distribution Models throughout the Invasion History of Palmer Amaranth Predict Regions at Risk of Future Invasion and Reveal Challenges with Modeling Rapidly Shifting Geographic Ranges. Sci. Rep. 2019, 9, 2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahimian Boogar, A.; Salehi, H.; Pourghasemi, H.R.; Blaschke, T. Predicting Habitat Suitability and Conserving juniperus Spp. Habitat Using SVM and Maximum Entropy Machine Learning Techniques. Water 2019, 11, 2049. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Arunachalam, K.; Bhavsar, D.; Kala, R. Modeling Habitat Suitability of Perilla Frutescens with MaxEnt in Uttarakhand—A Conservation Approach. J. Appl. Res. Med. Aromat. Plants 2018, 10, 99–105. [Google Scholar] [CrossRef]
- Gavier-Pizarro, G.I.; Kuemmerle, T.; Hoyos, L.E.; Stewart, S.I.; Huebner, C.D.; Keuler, N.S.; Radeloff, V.C. Monitoring the Invasion of an Exotic Tree (Ligustrum lucidum) from 1983 to 2006 with Landsat TM/ETM+ Satellite Data and Support Vector Machines in Córdoba, Argentina. Remote Sens. Environ. 2012, 122, 134–145. [Google Scholar] [CrossRef] [Green Version]
- Somodi, I.; Čarni, A.; Ribeiro, D.; Podobnikar, T. Recognition of the Invasive Species Robinia pseudacacia from Combined Remote Sensing and GIS Sources. Biol. Conserv. 2012, 150, 59–67. [Google Scholar] [CrossRef]
- Liu, L.; Coops, N.C.; Aven, N.W.; Pang, Y. Mapping Urban Tree Species Using Integrated Airborne Hyperspectral and LiDAR Remote Sensing Data. Remote Sens. Environ. 2017, 200, 170–182. [Google Scholar] [CrossRef]
- Jiang, P.; Ding, W.; Yuan, Y.; Ye, W. Diverse Response of Vegetation Growth to Multi-Time-Scale Drought under Different Soil Textures in China’s Pastoral Areas. J. Environ. Manag. 2020, 274, 110992. [Google Scholar] [CrossRef]
- Nesper, M.; Kueffer, C.; Krishnan, S.; Kushalappa, C.G.; Ghazoul, J. Simplification of Shade Tree Diversity Reduces Nutrient Cycling Resilience in Coffee Agroforestry. J. Appl. Ecol. 2019, 56, 119–131. [Google Scholar] [CrossRef]
- Berhanu, A.; Tesfaye, G. The Prosopis Dilemma, Impacts on Dryland Biodiversity and Some Controlling Methods. J. Drylands 2006, 1, 158–164. [Google Scholar]
- Nichols, D.G. Nutrition and Fertiliser Materials. In Proceedings of the Seminar on Potting Mixes, Artarmon. The Australian Institute of Horticulture. 1988. Available online: https://anpsa.org.au/APOL1/mar96-2.html (accessed on 12 February 2020).
- Goodwin, P.B. Nitrogen, Phosphorus, Potassium and Iron Nutrition of Australian Native Plants. In Proceeding of the National. Technical Workshop on Production and Marketing of Australian. Wild-Flowers for Export, Univ. Ext., Univ. West., Nedlands. 1983; pp. 85–97. Available online: https://www.jstor.org/stable/24123728 (accessed on 12 February 2020).
- Handreck, K.A. Iron Can Partly Prevent Phosphorus Toxicity; Australian Horticulture; Rural Press Victoria: Sydney, Australia, 1991. [Google Scholar]
- Handreck, K.A. Effective Iron Sources for Iron-Inefficient Plants; Australian Horticulture; Rural Press Victoria: Sydney, Australia, 1991. [Google Scholar]
- Gardner, W.K.; Barber, D.A.; Parbery, D.G. The Acquisition of Phosphorus by Lupinus albus L. Plant Soil 1983, 70, 107–124. [Google Scholar] [CrossRef]
Sl. No. | Category | Score | |
---|---|---|---|
Disease Severity | Insect/Pests Incidences | ||
1. | No infection | No incidence | 1 |
2. | 1–15% | 1–15% | 2 |
3. | 15–30% | 15–30% | 3 |
4. | 30–45% | 30–45% | 4 |
5. | >45% | >45% | 5 |
Time Period, Climate Change Scenario/ AUC Value (Percentage) | Labels | Bio 3 | Bio 6 | Bio 9 | Bio 14 | Bio 15 | Bio 17 | Slop | Asp |
---|---|---|---|---|---|---|---|---|---|
Variables | Iso-Thermality [(Bio 2/ Bio 7) × 100] | Min. Temperature of Coldest Month (Std. Deviation × 100) | Mean Temperature of Driest Quarter | Precipitation of Driest Month | Precipitation Seasonality (Coefficient of Variation) | Precipitation of Driest Quarter | Slope | Aspect | |
Scaling Factor | 100 | 100 | 10 | 1 | 1 | 1 | |||
Units | °C | C of V | °C | mm | mm | mm | 0 | 0 | |
Current/ 83.6 ± 0.8 | Percent contribution | 2.8 | 32.3 | 13.9 | 2.5 | 4.5 | 13.0 | 15.1 | 4.8 |
Permutation importance | 1.8 | 33.9 | 14.1 | 3.9 | 6.7 | 18.4 | 12.7 | 2.7 | |
RCP 2.6–50/ 82.9 ± 2.8 | Percent contribution | 6.7 | 49.4 | 11.7 | 3.9 | 6.6 | 10.0 | 9.5 | 2.2 |
Permutation importance | 6.0 | 17.2 | 48.8 | 2.8 | 8.1 | 10.0 | 6.4 | 0.6 | |
RCP 4.5–50/ 82.6 ± 2.6 | Percent contribution | 5.3 | 47.6 | 6.5 | 1.5 | 6.1 | 18.5 | 12.0 | 2.4 |
Permutation importance | 2.2 | 57.0 | 16.1 | 0.9 | 3.7 | 14.0 | 5.6 | 0.5 | |
RCP 6.0–50/ 82.8 ± 2.5 | Percent contribution | 8.0 | 51.5 | 3.0 | 2.5 | 4.4 | 16.1 | 11.8 | 2.7 |
Permutation importance | 6.3 | 49.7 | 5.0 | 5.1 | 5.5 | 19.2 | 8.2 | 5.1 | |
RCP 8.5–50/ 82.1 ± 2.7 | Percent contribution | 5.1 | 52.8 | 8.0 | 1.1 | 4.1 | 15.1 | 10.8 | 2.9 |
Permutation importance | 1.4 | 51.6 | 18.0 | 2.0 | 4.6 | 14.8 | 6.9 | 0.6 | |
RCP 2.6–70/ 83.3 ± 2.5 | Percent contribution | 6.8 | 52.5 | 11.4 | 5.2 | 6.9 | 5.5 | 9.6 | 2.1 |
Permutation importance | 4.8 | 35.2 | 30.8 | 6.9 | 8.9 | 6.6 | 6.1 | 0.7 | |
RCP 4.5–70/ 80.8 ± 2.9 | Percent contribution | 10.3 | 28.9 | 4.3 | 32.2 | 5.7 | 3.8 | 11.9 | 2.8 |
Permutation importance | 2.4 | 39.5 | 9.7 | 26.0 | 4.6 | 12.5 | 4.8 | 0.6 | |
RCP 6.0–70/ 79.3 ± 3.6 | Percent contribution | 9.8 | 31.9 | 31.9 | 34.9 | 2.5 | 1.3 | 12.6 | 3.3 |
Permutation importance | 5.4 | 57.4 | 57.4 | 3.9 | 4.0 | 4.9 | 9.4 | 1.0 | |
RCP 8.5–70/ 81.0 ± 3.7 | Percent contribution | 11.2 | 51.2 | 4.1 | 14.3 | 1.8 | 3.3 | 11.6 | 2.5 |
Permutation importance | 2.0 | 36.3 | 9.4 | 31.8 | 1.1 | 14.6 | 4.4 | 0.4 |
Measures | Calculated Value |
---|---|
Overall accuracy | 0.822 |
Error rate | 0.177 |
Prevalence (P) | 0.037 |
Overall diagnostic power | 0.963 |
Correct classification rate | 0.822 |
Sensitivity (Sn) | 0.865 |
Specificity (Sp) | 0.821 |
False positive rate | 0.217 |
False negative rate | 0.135 |
Positive predictive power (PPP or TPR) | 0.157 |
Negative predictive power (NPP or TNR) | 0.994 |
Misclassification rate | 0.178 |
Odds ratio | 29.301 |
Kappa (K) | 0.216 |
Normalized mutual information (NMI) n (s) | 0.240 |
True skill statistic (TSS) | 0.686 |
Sl. No. | Districts | Geographical Area (km2) | Non-Forest Cover (km2) | Estimated Area (km2) | Estimated Area (%) in Respect to Total Geographical Area | Estimated Area (%) in Respect to Non-Forest Cover |
---|---|---|---|---|---|---|
1. | Almora | 3139 | 1426 | 317.4 | 5.87 | 1.09 |
2. | Bageshwar | 2246 | 980 | 56.26 | 4.20 | 0.19 |
3. | Chamoli | 8030 | 5321 | 113.97 | 15.01 | 0.39 |
4. | Champawat | 1766 | 542 | 21.78 | 3.30 | 0.07 |
5. | Dehradun | 3088 | 1483 | 257.56 | 5.77 | 0.88 |
6. | Haridwar | 2360 | 1772 | 84.53 | 4.41 | 0.29 |
7. | Nainital | 4251 | 1203 | 53.12 | 7.95 | 0.18 |
8. | Pauri | 5230 | 1935 | 320.86 | 9.78 | 1.10 |
9. | Pithoragarh | 7090 | 5012 | 52.38 | 13.26 | 0.18 |
10. | Rudraprayag | 1984 | 843 | 87.51 | 3.71 | 0.30 |
11. | Tehri | 3642 | 1577 | 50.55 | 6.81 | 0.17 |
12. | Udham Singh Nagar | 2641 | 2106 | 61.83 | 4.94 | 0.21 |
13. | Uttarkashi | 8016 | 4988 | 163.69 | 14.99 | 0.56 |
Total | 53,483 | 29,188 | 1641.44 | 3.07 | 5.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabral, A.; Shankhwar, R.; Martins-Ferreira, M.A.C.; Pandey, S.; Kant, R.; Meena, R.K.; Chandra, G.; Ginwal, H.S.; Thakur, P.K.; Bhandari, M.S.; et al. Phenotypic, Geological, and Climatic Spatio-Temporal Analyses of an Exotic Grevillea robusta in the Northwestern Himalayas. Sustainability 2023, 15, 12292. https://doi.org/10.3390/su151612292
Dabral A, Shankhwar R, Martins-Ferreira MAC, Pandey S, Kant R, Meena RK, Chandra G, Ginwal HS, Thakur PK, Bhandari MS, et al. Phenotypic, Geological, and Climatic Spatio-Temporal Analyses of an Exotic Grevillea robusta in the Northwestern Himalayas. Sustainability. 2023; 15(16):12292. https://doi.org/10.3390/su151612292
Chicago/Turabian StyleDabral, Aman, Rajeev Shankhwar, Marco Antonio Caçador Martins-Ferreira, Shailesh Pandey, Rama Kant, Rajendra K. Meena, Girish Chandra, Harish S. Ginwal, Pawan Kumar Thakur, Maneesh S. Bhandari, and et al. 2023. "Phenotypic, Geological, and Climatic Spatio-Temporal Analyses of an Exotic Grevillea robusta in the Northwestern Himalayas" Sustainability 15, no. 16: 12292. https://doi.org/10.3390/su151612292
APA StyleDabral, A., Shankhwar, R., Martins-Ferreira, M. A. C., Pandey, S., Kant, R., Meena, R. K., Chandra, G., Ginwal, H. S., Thakur, P. K., Bhandari, M. S., Sahu, N., & Nayak, S. (2023). Phenotypic, Geological, and Climatic Spatio-Temporal Analyses of an Exotic Grevillea robusta in the Northwestern Himalayas. Sustainability, 15(16), 12292. https://doi.org/10.3390/su151612292