Can Rural Human Capital Improve Agricultural Ecological Efficiency? Empirical Evidence from China
Abstract
:1. Introduction
2. Analytical Framework
2.1. Influence of Rural Human Capital on Agricultural Ecological Efficiency
2.1.1. The Role of Educational Human Capital
2.1.2. The Role of Healthy Human Capital
2.1.3. The Role of Migratory Human Capital
2.2. The Moderating Effect of Internet Popularization
3. Materials and Methods
3.1. Data Sources
3.2. Definition of Variables
3.2.1. Dependent Variable
3.2.2. Explanatory Variables
3.2.3. Moderating Variable
3.2.4. Control Variables
3.3. Model Setting
3.3.1. Tobit Model
3.3.2. Moderating Effects Mode
4. Results
4.1. Measurement of Agricultural Ecological Efficiency
4.2. The Impact of Rural Human Capital on Agricultural Ecological Efficiency
4.2.1. Overall Regression Analysis
4.2.2. Heterogeneity Analysis: Subregional Regression
4.3. Moderating Effect Analysis
4.4. Robustness Test
5. Discussion
6. Conclusions and Recommendations
6.1. Conclusions and Policy Recommendations
6.2. Limitations and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, M.S.; Yan, T.W.; Luo, S.X. The Impacts of Scale Management and Technological Progress on Green and Low-carbon Development of Agriculture: A Quasi-natural Experiment Based on the Establishment of Major Grain-producing Areas. Chin. Rural. Econ. 2023, 458, 41–65. [Google Scholar]
- Li, Z. The Green Development of Agriculture in China: Innovation and Evolution. Chin. Rural. Econ. 2023, 458, 2–16. [Google Scholar]
- Wu, G.; Xie, Y.; Li, H.; Riaz, N. Agricultural Ecological Efficiency under the Carbon Emissions Trading System in China: A Spatial Difference-in-Difference Approach. Sustainability 2022, 14, 4707. [Google Scholar] [CrossRef]
- Hou, M.Y.; Yao, S.B. Spatial-temporal evolution and trend prediction of agricultural eco-efficiency in China: 1978-2016. Acta Geogr. Sinica. 2018, 73, 2168–2183. [Google Scholar]
- Scuderi, A.; Cammarata, M.; Branca, F.; Timpanaro, G. Agricultural production trends towards carbon neutrality in response to the EU 2030 Green Deal: Economic and environmental analysis in horticulture. Agric. Econ. 2021, 67, 435–444. [Google Scholar] [CrossRef]
- Bethwell, C.; Sattler, C.; Stachow, U. An analytical framework to link governance, agricultural production practices, and the provision of ecosystem services in agricultural landscapes. Ecosyst. Serv. 2022, 53, 101402. [Google Scholar] [CrossRef]
- Thanawong, K.; Perret, S.R.; Basset-Mens, C. Eco-efficiency of paddy rice production in Northeastern Thailand: A comparison of rain-fed and irrigated cropping systems. J. Clean. Prod. 2014, 73, 204–217. [Google Scholar] [CrossRef]
- Guo, H.H.; Liu, X.M. Spatial and Temporal Differentiation and Convergence of China’s Agricultural Green Total Factor Productivity. J. Quant. Technol. Econ. 2021, 38, 65–84. [Google Scholar]
- Wu, G.; Riaz, N.; Dong, R. China’s agricultural ecological efficiency and spatial spillover effect. Environment. Dev. Sustain. 2022, 25, 3073–3098. [Google Scholar] [CrossRef]
- Li, G.; Tang, D.; Boamah, V.; Pan, Z. Evaluation and Influencing Factors of Agricultural Green Efficiency in Jianghuai Ecological Economic Zone. Sustainability 2022, 14, 30. [Google Scholar] [CrossRef]
- Liang, J.; Long, S.B. China’s Agricultural Green Total Factor Productivity Growth and Its Affecting Factors. J. South China Agric. Univ. Soc. Sci. Ed. 2015, 14, 1–12. [Google Scholar]
- Guo, X.; Huang, S.; Wang, Y. Influence of Agricultural Mechanization Development on Agricultural Green Transformation in Western China, Based on the ML Index and Spatial Panel Model. Math. Probl. Eng. 2020, 2020, 6351802. [Google Scholar] [CrossRef]
- Zhang, S.H. The Influence of Heterogeneous Rural Human Capital on Agricultural Green Total Factor Productivity: Based on Provincial Panel Data in China. J. Shanxi Univ. Philos. Soc. Sci. Ed. 2017, 40, 127–138. [Google Scholar]
- Liu, F.; Lv, N. The threshold effect test of human capital on the growth of agricultural green total factor productivity: Evidence from China. Int. J. Electr. Eng. Educ. 2021. [Google Scholar] [CrossRef]
- Ma, G.Q.; Tan, Y.W. Impact of Environmental Regulation on Agricultural Green Total Factor Productivity—Analysis Based on the Panel Threshold Model. J. Agrotech. Econ. 2021, 5, 77–92. [Google Scholar]
- Han, H.B.; Zhao, L.F.; Zhang, L. The Influence of Heterogeneous Human Capital on Agricultural Environmental Total Factor Productivity: Empirical Research Based on Rural Panel Data. J. Cent. Univ. Financ. Econ. 2014, 5, 105–112. [Google Scholar]
- Yang, H.; Wang, X.; Peng, B. Agriculture carbon-emission reduction and changing factors behind agricultural eco-efficiency growth in China. J. Clean. Prod. 2022, 334, 130193. [Google Scholar] [CrossRef]
- Chen, F.; Yang, M.J. Influence of International Trade in Agricultural Products on Agricultural Green Total Factor Productivity in China. J. South China Agric. Univ. Soc. Sci. Ed. 2021, 20, 94–104. [Google Scholar]
- Attanasio, O.; Meghir, C.; Nix, E.; Salvati, F. Human Capital Growth and Poverty: Evidence from Ethiopia and Peru. Rev. Econ. Dyn. 2017, 25, 234–259. [Google Scholar] [CrossRef]
- Yin, C.J. Agricultural R&D, Human Capital and Agricultural Total Factor Productivity. J. South China Agric. Univ. Soc. Sci. Ed. 2017, 16, 27–35. [Google Scholar]
- Li, Q.N.; Li, G.C. The Impact of Internet Development on Agricultural Total Factor Productivity Growth. J. Huazhong Agric. Univ. Soc. Sci. Ed. 2020, 4, 71–78+177. [Google Scholar]
- Zhang, Z.; Hou, L.; Qian, Y.; Wan, X. Effect of Zero Growth of Fertilizer Action on Ecological Efficiency of Grain Production in China under the Background of Carbon Emission Reduction. Sustainability 2022, 14, 15362. [Google Scholar] [CrossRef]
- Spielman, D.J.; Ekboir, J.; Davis, K.; Ochieng, C.M. An innovation systems perspective on strengthening agricultural education and training in sub-Saharan Africa. Agric. Syst. 2008, 98, 1–9. [Google Scholar] [CrossRef]
- Puskarova, P.; Piribauer, P. The impact of knowledge spillovers on total factor productivity revisited: New evidence from selected European capital regions. Econ. Syst. 2016, 40, 335–344. [Google Scholar] [CrossRef]
- Fei, H.M.; Chang, X.Y.; Jiang, H.M. Government Regulation, Social Norms, and Farmer’s Farmland Quality Protection Behavior: Based on Survey Data in the Black Soil Area of Jilin Province. Rural. Econ. 2021, 10, 53–61. [Google Scholar]
- Yang, Z.Q. How does Education affect Agricultural Green Agricultural Productivity?—An Empirical Study Based on Different Educational Forms in Rural China. China Soft Sci. 2019, 8, 52–65. [Google Scholar]
- Loureiro, M.L. Farmers’ health and agricultural productivity. Agric. Econ. 2010, 40, 381–388. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Chen, Y.Z. The Impacts of Labor Migration on Farm Households’ Cropping Structure. Issues Agric. Econ. 2016, 37, 41–48+111. [Google Scholar]
- Wang, Y.; Yin, Z.C. Capital accumulation of Healthy Human Resources and Growth of Farmers’ Income. Chin. Rural. Econ. 2009, 300, 24–31+66. [Google Scholar]
- Cheng, M.W.; Jin, Y.H.; Gai, Q.E.; Shi, Q.H. Department of Agricultural, Food and Resource Economics. Econ. Res. J. 2014, 49, 130–144. [Google Scholar]
- Lu, J.; Su, Y. Empirical Study on Human Capital, Economic Growth and the Difference of Regional Economic Development: Based on Semi-parametric Additive Mode. Popul. J. 2017, 39, 89–101. [Google Scholar]
- Sun, Y.M. Rural Human Capital Accumulation under Rural Urban Labor Migration: Theoretical Analysis and Enlightenment. Jiang-Huai Trib. 2016, 1, 17–26. [Google Scholar]
- Blair, J.A.S. Migration of agricultural manpower in Sierra Leone. Tijdschr. Econ. Soc. Geogr. 2008, 68, 198–210. [Google Scholar] [CrossRef]
- De Brauw, A. Migration Out of Rural Areas and Implications for Rural Livelihoods. Annu. Rev. Resour. Econ. 2019, 11, 461–481. [Google Scholar] [CrossRef]
- Ma, W.W.; Yang, S.L. An Empirical Study on the Poverty Alleviation Effect of Multidimensional Human Capital in Rural China. Inq. Econ. Issues 2017, 8, 39–49. [Google Scholar]
- Zhu, X.K.; Hu, R.F.; Zhang, C.; Shi, G. Does internet use improve technical efficiency? Evidence from apple production in China. Technol. Forecast. Soc. Chang. 2021, 166, 120662. [Google Scholar] [CrossRef]
- Cheng, M.W.; Zhang, J.P. Internet Popularization and Urban-rural Income Gap: A Theoretical and Empirical Analysis. Chin. Rural. Econ. 2019, 2, 19–41. [Google Scholar]
- Li, G.C.; Cai, M.N.; Ye, F. Internet, human capital and the agricultural TFP growth. J. Hunan Agric. Univ. Soc. Sci. 2021, 22, 16–23. [Google Scholar]
- Wang, J.M. Research into Protection Mechanisms of Rural Water Environment in View of Ecological Civilization: A Case Study of Northern Area of Jiangsu Province. J. Hehai Univ. Philos. Soc. Sci. 2016, 18, 87–93, 96. [Google Scholar]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 49. [Google Scholar] [CrossRef] [Green Version]
- Ge, P.F.; Wang, S.J.; Huang, X.L. Measurement for China’s agricultural green TFP. China Popul. Resour. Environ. 2018, 28, 66–74. [Google Scholar]
- Huang, S.A.; Sun, S.M.; Gong, M.B. The Impact of Land Ownership Structure on Agricultural Economic Growth: An Empirical Analysis on Agricultural Production Efficiency on the Chinese Mainland (1949–1978). Soc. Sci. China 2005, 3, 38–47, 205–206. [Google Scholar]
- Tian, Y.; Zhang, J.B.; Luo, X.F. Regional Comparative Analysis on the Coordination Degree between Net Carbon Benefit and Economic Benefit of Plant Industry in China. Econ. Geogr. 2014, 34, 142–148. [Google Scholar]
- Wu, H.Y.; He, Y.; Huang, H.J.; Chen, W.K. Estimation and spatial convergence of carbon compensating rate of planting industry in China. China Popul. Resour. Environ. 2021, 31, 113–123. [Google Scholar]
- Li, B.; Zhang, J.B.; Li, H.P. Research on Spatial-temporal Characteristics and Affecting Factors Decomposition of Agricultural Carbon Emission in China. China Popul. Resour. Environ. 2011, 21, 80–86. [Google Scholar]
- Zhan, J.T.; Xu, Y.J.; Ge, J.H. Change in agricultural green productivity in China considering the cost of carbon emissions. Resour. Sci. 2019, 41, 884–896. [Google Scholar]
- Liu, Y.F.; Li, H.M.; Ma, H.Y. Evaluation of Agricultural Modernization of State Farms: Based on Entropy Weight Method and TOPSIS Method. Issues Agric. Econ. 2021, 2, 107–116. [Google Scholar]
- Fang, D.C.; Pei, M.D. Study on the Measurement of New and Old Driving Force Conversion and Its Influencing Factors. Contemp. Econ. Manag. 2021, 43, 26–32. [Google Scholar]
- Gao, W.L. The Effect and Its Mechanism of Agricultural Servitization on High-quality Development of Grain Industry. J. Guangdong Univ. Financ. Econ. 2021, 36, 61–76. [Google Scholar]
- Chen, Q. Advanced Econometrics and Stata Applications, 2nd ed.; Higher Education Press: Beijing, China, 2014. [Google Scholar]
- Reimers, M.; Klasen, S. Revisiting the Role of Education for Agricultural Productivity. Am. J. Agric. Econ. 2013, 95, 131–152. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Li, X. Is human capital investment necessary to modernization? The effect of rural polytechnic training in dual agriculture. Int. J. Financ. Econ. 2020, 26, 3028–3039. [Google Scholar] [CrossRef]
- Beugelsdijk, S.; Schaik, T.V. Social capital and growth in European regions: An empirical test. Eur. J. Political Econ. 2005, 21, 301–324. [Google Scholar] [CrossRef]
- Jia, S.S.; Xu, X. Community-level social capital and agricultural cooperatives: Evidence from Hebei, China. Agribusiness 2021, 37, 804–817. [Google Scholar] [CrossRef]
- Akçomak, I.S.; Ter Weel, B. Social capital, innovation and growth: Evidence from Europe. Eur. Econ. Rev. 2009, 53, 544–567. [Google Scholar] [CrossRef] [Green Version]
- Paula, P. Trust or bust: Growth effects of knowledge, human and social capital revisited. Econ. Syst. 2022, 46, 101036. [Google Scholar]
Indicators | Variables | Variable Description | Mean | SE |
---|---|---|---|---|
Input | Labor input | Number of agricultural employees (ten thousand people) | 475.963 | (355.061) |
Machinery input | Total power of agricultural machinery (ten thousand kilowatts) | 1715.799 | (1579.418) | |
Land input | The total sown area of crops (thousand hectares) | 5421.776 | (3704.716) | |
Fertilizer input | Fertilizer application amount (ten thousand tons) | 185.282 | (142.218) | |
Pesticide input | Pesticide application amount (ten thousand tons) | 5.445 | (4.199) | |
Agricultural film input | Agricultural film application amount (ten thousand tons) | 7.730 | (6.547) | |
Irrigation input | Effective irrigation area (thousand hectares) | 2115.313 | (1597.370) | |
Expected output | Carbon sink | Total agricultural carbon sink (ten thousand tons) | 2937.824 | (2192.307) |
Output value | Total agricultural output value (100 million yuan) | 1581.260 | (1257.544) | |
Unexpected output | Carbon emission | Carbon dioxide (CO2) emissions (ten thousand tons) | 278.734 | (194.776) |
Pollutant emission | TN (ten thousand tons) | 5.482 | (4.059) | |
TP (ten thousand tons) | 0.408 | (0.346) |
First Class Index | Second Class Index | Third Class Index | Mean | SE |
---|---|---|---|---|
RHC | EHC | The average education level of rural residents (years) | 7.673 | (0.666) |
The per capita education expenditure of rural residents (yuan) | 817.362 | (495.721) | ||
The proportion of agricultural workers’ training (%) | 9.462 | (14.183) | ||
HHC | The per capita medical care expenditure of rural residents (yuan) | 800.028 | (526.590) | |
The number of health technicians per thousand people in rural areas (people) | 3.911 | (1.660) | ||
The number of beds in medical institutions per thousand people in rural areas (beds) | 3.380 | (1.505) | ||
MHC | The per capita transportation and communication expenditure of rural residents (yuan) | 1093.424 | (771.273) |
Variables | Variable Description | Obs | Mean | SE |
---|---|---|---|---|
Dependent Variable | AEE | 480 | 0.440 | (0.199) |
Explanatory Variable | RHC (index) | 480 | 0.254 | (0.135) |
EHC (index) | 480 | 0.089 | (0.051) | |
HHC (index) | 480 | 0.113 | (0.058) | |
MHC (index) | 480 | 0.042 | (0.033) | |
Moderating Variables | IP (%) | 480 | 45.776 | (21.990) |
Control Variables | Agricultural disaster rate (%) | 480 | 18.383 | (14.352) |
Urbanization level (%) | 480 | 56.349 | (13.718) | |
Agricultural structure (%) | 480 | 52.410 | (8.609) | |
Agricultural productive service (100 million yuan) | 480 | 131.657 | (141.411) | |
Agricultural machinery density (kw/ha) | 480 | 3.141 | (1.235) |
Variables | Dependent Variable: AEE | ||||
---|---|---|---|---|---|
(1) Coefficients | (2) Coefficients | (3) Coefficients | (4) Coefficients | (5) Coefficients | |
RHC | 1.000 *** (0.040) | 1.118 *** (0.102) | |||
EHC | 1.617 *** (0.260) | ||||
HHC | 2.255 ***(0.217) | ||||
MHC | 3.057 ***(0.329) | ||||
lnDis | −0.030 *** (0.008) | −0.039 *** (0.009) | −0.033 *** (0.008) | −0.032 *** (0.008) | |
Ubr | −0.286 * (0.155) | 0.328 ** (0.160) | −0.117 (0.146) | 0.287 ** (0.139) | |
lnStr | −0.107 (0.079) | −0.096 (0.088) | −0.121 (0.079) | −0.067 (0.084) | |
lnSer | 0.001 (0.012) | 0.032 ** (0.013) | 0.004 (0.012) | 0.026 ** (0.012) | |
lnMac | −0.086 *** (0.030) | −0.081 ** (0.033) | −0.089 *** (0.030) | −0.088 *** (0.032) | |
cons | 0.186 *** (0.024) | 0.910 *** (0.321) | 0.542 (0.348) | 0.893 *** (0.321) | 0.481 (0.330) |
Log likelihood | 340.149 | 347.600 | 313.607 | 342.218 | 334.910 |
sigma_u | 0.118 *** (0.016) | 0.110 *** (0.015) | 0.124 *** (0.018) | 0.107 *** (0.015) | 0.125 *** (0.018) |
sigma_e | 0.108 *** (0.004) | 0.106 *** (0.004) | 0.113 *** (0.004) | 0.107 *** (0.004) | 0.108 *** (0.004) |
LR test | 281.550 *** | 248.630 *** | 229.500 *** | 237.090 *** | 266.100 *** |
Wald test | 613.450 *** | 678.780 *** | 521.810 *** | 649.980 *** | 620.520 *** |
Variables | Dependent Variable: AEE | |||
---|---|---|---|---|
Eastern China Coefficients | Central China Coefficients | Western China Coefficients | Northeastern China Coefficients | |
RHC | 1.226 *** (0.168) | 0.634 *** (0.099) | 0.987 *** (0.300) | 1.007 *** (0.273) |
EHC | 1.814 *** (0.395) | 1.144 *** (0.224) | 1.103 (0.680) | 1.673 ** (0.772) |
HHC | 2.051 *** (0.379) | 1.731 *** (0.243) | 1.982 *** (0.561) | 2.663 *** (0.532) |
MHC | 2.432 *** (0.464) | 2.203 *** (0.478) | 2.781 ** (1.146) | 3.863 *** (1.384) |
Control variables | yes | yes | yes | yes |
Variables | Dependent Variable: AEE | ||
---|---|---|---|
(6) Coefficients | (7) Coefficients | (8) Coefficients | |
0.768 *** (0.091) | 0.701 *** (0.084) | 0.499 *** (0.122) | |
0.168 *** (0.059) | 0.197 *** (0.054) | 0.116 * (0.069) | |
1.472 *** (0.159) | 1.658 *** (0.214) | ||
lnDis | −0.023 *** (0.008) | ||
Ubr | 0.313 (0.215) | ||
lnStr | −0.006 (0.077) | ||
lnSer | 0.033 ** (0.013) | ||
lnMac | −0.060 ** (0.030) | ||
cons | 0.440 *** (0.022) | 0.402 *** (0.023) | 0.230 (0.349) |
Log likelihood | 344.182 | 383.339 | 385.223 |
sigma_u | 0.115 *** (0.016) | 0.119 *** (0.016) | 0.120 *** (0.018) |
sigma_e | 0.108 *** (0.004) | 0.099 *** (0.003) | 0.097 *** (0.003) |
LR test | 266.410 *** | 320.350 *** | 263.230 *** |
Wald test | 630.550 *** | 837.970 *** | 891.450 *** |
Variables | Dependent Variable: AEE | |
---|---|---|
IV Coefficients | FE Coefficients | |
1.156 *** (0.115) | ||
RHC | 1.111 *** (0.119) | |
lnDis | −0.024 *** (0.008) | −0.028 ** (0.008) |
Ubr | −0.259 (0.165) | −0.230 (0.252) |
lnStr | −0.143 * (0.085) | −0.197 ** (0.099) |
lnSer | 0.013 (0.014) | −0.005 (0.020) |
lnMac | −0.054 * (0.032) | −0.064 * (0.036) |
cons | 0.951 *** (0.343) | 1.228 *** (0.378) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Yu, H.; Yang, X. Can Rural Human Capital Improve Agricultural Ecological Efficiency? Empirical Evidence from China. Sustainability 2023, 15, 12317. https://doi.org/10.3390/su151612317
Hu Y, Yu H, Yang X. Can Rural Human Capital Improve Agricultural Ecological Efficiency? Empirical Evidence from China. Sustainability. 2023; 15(16):12317. https://doi.org/10.3390/su151612317
Chicago/Turabian StyleHu, Yankang, Hongchao Yu, and Xinglong Yang. 2023. "Can Rural Human Capital Improve Agricultural Ecological Efficiency? Empirical Evidence from China" Sustainability 15, no. 16: 12317. https://doi.org/10.3390/su151612317
APA StyleHu, Y., Yu, H., & Yang, X. (2023). Can Rural Human Capital Improve Agricultural Ecological Efficiency? Empirical Evidence from China. Sustainability, 15(16), 12317. https://doi.org/10.3390/su151612317