Fair Development Transition of Lignite Areas: Key Challenges and Sustainability Prospects
Abstract
:1. Introduction
2. Methodological Framework
2.1. Data Acquisition and Bibliometric Analysis
2.2. Comparative Analysis and Clustering
3. Results and Discussion
3.1. Trends in Publications, Clusters and Comparative Analysis
3.2. Policymaking Drivers
3.2.1. Social Implications
3.2.2. Stakeholders
3.2.3. Land-Use Change
3.2.4. Sustainability
3.2.5. Limitations of the Study
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD. OECD Environmental Performance Reviews: Greece 2020, OECD Environmental Performance Reviews; OECD Publishing: Paris, France, 2020. [Google Scholar] [CrossRef]
- EC. Analysis of the Recovery and Resilience Plan of Greece Accompanying the Document Proposal for a Council Implementing Decision on the Approval of the Assessment of the Recovery and Resilience Plan for Greece; Commission Staff Working Document, SWD/2021/155 Final; European Union: Brussels, Belgium, 2021; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021SC0155 (accessed on 22 July 2023).
- Greek Ministry of Environment and Energy. Just Transition Development Plan of Lignite Areas, Just Development Transition Plan; European Commission: Brussels, Belgium, 2020; Available online: https://www.sdam.gr/sites/default/files/consultation/Master_Plan_Public_Consultation_ENG.pdf (accessed on 22 July 2023).
- Vatalis, K.I.; Avlogiaris, G.; Tsalis, T.A. Just Transition Pathways of Energy Decarbonization Under the Global Environmental Changes. J. Environ. Manag. 2022, 309, 114713. [Google Scholar] [CrossRef] [PubMed]
- Charalampides, G.; Arvanitidis, N.; Vatalis, K.; Platias, S.; Savvidis, S. Non-Energy Raw Materials in Greece: A Tool for Sustainable Development. J. Environ. Protect. Ecol. 2014, 15, 580–588. [Google Scholar]
- Sovacool, B.K.; Martiskainen, M.; Hook, A.; Baker, L. Decarbonization and its Discontents: A Critical Energy Justice Perspective on Four Low-Carbon Transitions. Clim. Chang. 2019, 155, 581–619. [Google Scholar] [CrossRef] [Green Version]
- Snell, D. ‘Just transition’? Conceptual Challenges Meet Stark Reality in a ‘Transitioning’ Coal Region in Australia. Globalizations 2018, 15, 550–564. [Google Scholar] [CrossRef]
- Spanidis, P.-M.; Roumpos, C.; Pavloudakis, F. Evaluation of Strategies for the Sustainable Transformation of Surface Coal Mines Using a Combined SWOT–AHP Methodology. Sustainability 2023, 15, 7785. [Google Scholar] [CrossRef]
- Vögele, S.; Govorukha, K.; Mayer, P.; Rhoden, I.; Rübbelke, D.; Kuckshinrichs, W. Effects of a Coal Phase-Out in Europe on Reaching the UN Sustainable Development Goals. Environ. Dev. Sustain. 2023, 25, 879–916. [Google Scholar] [CrossRef]
- Siontorou, C.G.; Batzias, F.A. A Methodological Combined Framework for Roadmapping Biosensor Research: A Fault Tree Analysis Approach Within a Strategic Technology Evaluation Frame. Crit. Rev. Biotechnol. 2014, 34, 31–55. [Google Scholar] [CrossRef]
- Siontorou, C.G.; Georgopoulos, K.N. Boosting the Advantages of Biosensors: Niche Applicability and Fitness for Environmental Purpose. Trends Environ. Anal. Chem. 2021, 32, e00146. [Google Scholar] [CrossRef]
- Batzias, F.A.; Siontorou, C.G. Creating a Specific Domain Ontology for Supporting R&D in Science-Based Disciplines—The Case of Biosensors. Expert Syst. Appl. 2012, 39, 9994–10015. [Google Scholar] [CrossRef]
- Mogoutov, A.; Kahane, B. Data Search Strategy for Science and Technology Emergence: A Scalable and Evolutionary Query for Nanotechnology Tracking. Res. Policy 2007, 36, 893–903. [Google Scholar] [CrossRef]
- Lee, P.C.; Su, H.N. Quantitative Mapping of Scientific Research-The Case of Electrical Conducting Polymer Nanocomposite. Technol. Forecast. Soc. Chang. 2011, 78, 132–151. [Google Scholar] [CrossRef]
- Wang, H.; Luo, Z.; Yu, R.; Yan, C.; Zhou, S.; Xing, B. Tire Wear Particles: Trends from Bibliometric Analysis, Environmental Distribution with Meta-Analysis, and Implications. Environ. Pollut. 2023, 322, 121150. [Google Scholar] [CrossRef]
- Cheng, J.; Greiner, R.; Kelly, J.; Bell, D.; Liu, W. Learning Bayesian Networks from Data: An Information-Theory Based Approach. Artif. Intell. 2002, 137, 43–90. [Google Scholar] [CrossRef] [Green Version]
- Toumbourou, T.; Muhdar, M.; Werner, T.; Bebbington, A. Political Ecologies of the Post-Mining Landscape: Activism, Resistance, and Legal Struggles over Kalimantan’s Coal Mines. Energy Res. Soc. Sci. 2020, 65, 101476. [Google Scholar] [CrossRef]
- Keenan, J.; Holcombe, S. Mining as a Temporary Land Use: A Global Stocktake of Post-Mining Transitions and Repurposing. Extr. Ind. Soc. 2021, 8, 100924. [Google Scholar] [CrossRef]
- Falck, W.E.; Spangenberg, J.H. Selection of Social Demand-Based Indicators: Eco-Based Indicators for Mining. J. Clean. Prod. 2014, 84, 193–203. [Google Scholar] [CrossRef]
- Karasmanaki, E.; Ioannou, K.; Katsaounis, K.; Tsantopoulos, G. The Attitude of the Local Community Towards Investments in Lignite Before Transitioning to the Post-Lignite Era: The Case of Western Macedonia, Greece. Res. Policy 2020, 68, 101781. [Google Scholar] [CrossRef]
- Spanidis, P.-M.; Roumpos, C.; Pavloudakis, F. A Multi-Criteria Approach for the Evaluation of Low Risk Restoration Projects in Continuous Surface Lignite Mines. Energies 2020, 13, 2179. [Google Scholar] [CrossRef]
- Macht, J.; Klink-Lehmann, J.L.; Simons, J. German Citizens’ Perception of the Transition Towards a Sustainable Bioeconomy: A Glimpse into the Rheinische Revier. Sustain. Prod. Consum. 2022, 31, 175–189. [Google Scholar] [CrossRef]
- Perdeli Demirkan, C.; Smith, N.M.; Duzgun, S. A Quantitative Sustainability Assessment for Mine Closure and Repurposing Alternatives in Colorado, USA. Resources 2022, 11, 66. [Google Scholar] [CrossRef]
- Frantál, B. Living on Coal: Mined-Out Identity, Community Displacement and Forming of Anti-Coal Resistance in the Most Region, Czech Republic. Res. Policy 2016, 49, 385–393. [Google Scholar] [CrossRef]
- Al Heib, M.M.; Franck, C.; Djizanne, H.; Degas, M. Post-Mining Multi-Hazard Assessment for Sustainable Development. Sustainability 2023, 15, 8139. [Google Scholar] [CrossRef]
- Kim, S.M.; Suh, J.; Oh, S.; Son, J.; Hyun, C.U.; Park, H.D.; Shin, S.H.; Choi, Y. Assessing and Prioritising Environmental Hazards Associated with Abandoned Mines in Gangwon-Do, South Korea: The Total Mine Hazards Index. Environ. Earth Sci. 2016, 75, 369. [Google Scholar] [CrossRef]
- Ackerman, M.; van der Waldt, G.; Botha, D. Mitigating the Socio-Economic Consequences of Mine Closure. J. S. Afr. Inst. Min. Metall. 2018, 118, 439–447. [Google Scholar] [CrossRef] [Green Version]
- Vlassopoulos, C. Persistent Lignite Dependency: The Greek Energy Sector Under Pressure. Energy Policy 2020, 147, 111825. [Google Scholar] [CrossRef]
- Pollin, R.; Callaci, B. The Economics of Just Transition: A Framework For Supporting Fossil Fuel–Dependent Workers and Communities in the United States. Labor Stud. J. 2019, 44, 93–138. [Google Scholar] [CrossRef] [Green Version]
- Kemp, D. Mining and Community Development: Problems and Possibilities of Local-Level Practice. Community Dev. J. 2010, 45, 198–218. [Google Scholar] [CrossRef]
- Poudyal, N.C.; Gyawali, B.R.; Simon, M. Local Residents’ Views of Surface Mining: Perceived Impacts, Subjective Well-being, and Support for Regulations in Southern Appalachia. J. Clean. Prod. 2019, 217, 530–540. [Google Scholar] [CrossRef]
- Aggrey, J.J.; Ros-Tonen, M.A.F.; Asubonteng, K.O. Using Participatory Spatial Tools to Unravel Community Perceptions of Land-Use Dynamics in a Mine-Expanding Landscape in Ghana. Environ. Manag. 2021, 68, 720–737. [Google Scholar] [CrossRef] [PubMed]
- Seloa, P.; Ngole-Jeme, V. Community Perceptions on Environmental and Social Impacts of Mining in Limpopo South Africa and the Implications on Corporate Social Responsibility. J. Integr. Environ. Sci. 2022, 19, 189–207. [Google Scholar] [CrossRef]
- Mancini, L.; Sala, S. Social Impact Assessment in the Mining Sector: Review and Comparison of Indicators Frameworks. Res. Policy 2018, 57, 98–111. [Google Scholar] [CrossRef]
- Svobodova, K.; Vojar, J.; Yellishetty, M.; Janeckova Molnarova, K. A Multi-Component Approach to Conceptualizing the Reputation of the Mining Industry from a Stakeholder Perspective. Resour. Policy 2020, 68, 101724. [Google Scholar] [CrossRef]
- Hendrychová, M.; Svobodova, K.; Kabrna, M. Mine Reclamation Planning and Management: Integrating Natural Habitats into Post-Mining Land Use. Resour. Policy 2020, 69, 101882. [Google Scholar] [CrossRef]
- Arratia-Solar, A.; Svobodova, K.; Lèbre, É.; Owen, J.R. Conceptual Framework to Assist in the Decision-Making Process When Planning for Post-Mining Land-Uses. Extr. Ind. Soc. 2022, 10, 101083. [Google Scholar] [CrossRef]
- Skoczkowski, T.; Bielecki, S.; Kochański, M.; Korczak, K. Climate-Change Induced Uncertainties, Risks and Opportunities for the Coal-Based Region of Silesia: Stakeholders’ Perspectives. Environ. Innov. Soc. Transit. 2020, 35, 460–481. [Google Scholar] [CrossRef]
- Pavloudakis, F.; Karlopoulos, E.; Roumpos, C. Just Transition Governance to Avoid Socio-Economic Impacts of Lignite Phase-Out: The Case of Western Macedonia, Greece. Extr. Ind. Soc. 2023, 14, 101248. [Google Scholar] [CrossRef]
- Yaylacı, E.D.; Düzgün, H.S. Evaluating the Mine Plan Alternatives with Respect to Bottom-Up and Top-Down Sustainability Criteria. J. Clean. Prod. 2017, 167, 837–849. [Google Scholar] [CrossRef]
- Pactwa, K.; Woźniak, J.; Strempski, A. Sustainable Mining—Challenge of Polish Mines. Resour. Policy 2021, 74, 101269. [Google Scholar] [CrossRef]
- Zhao, A.; Tang, A. Land Subsidence Risk Assessment and Protection in Mined-Out Regions. Proc. Int. Assoc. Hydrol. Sci. 2015, 372, 145. [Google Scholar] [CrossRef] [Green Version]
- Evans, G.; Phelan, L. Transition to a Post-Carbon Society: Linking Environmental Justice and Just Transition Discourses. Energy Policy 2016, 99, 329–339. [Google Scholar] [CrossRef]
- Wang, X.; Lo, K. Political Economy of Just Transition: Disparate Impact of Coal Mine Closure on State-Owned and Private Coal Workers in Inner Mongolia, China. Energy Res. Soc. Sci. 2022, 90, 102585. [Google Scholar] [CrossRef]
- Kleanthis, N.; Stavrakas, V.; Ceglarz, A.; Süsser, D.; Schibline, A.; Lilliestam, J.; Flamos, A. Eliciting Knowledge from Stakeholders to Identify Critical Issues of the Transition to Climate Neutrality in Greece, the Nordic Region, and the European Union. Energy Res. Soc. Sci. 2022, 93, 102836. [Google Scholar] [CrossRef]
- Krawchenko, T.A.; Gordon, M. How Do We Manage a Just Transition? A Comparative Review of National and Regional Just Transition Initiatives. Sustainability 2021, 13, 6070. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Damigos, D.; Mirasgedis, S. Towards a Comprehensive Framework for Climate Change Multi-Risk Assessment in the Mining Industry. Infrastructures 2019, 4, 38. [Google Scholar] [CrossRef] [Green Version]
- Ocelík, P.; Diviák, T.; Lehotský, L.; Svobodová, K.; Hendrychová, M. Facilitating the Czech Coal Phase-Out: What Drives Inter-Organizational Collaboration? Soc. Nat. Resour. 2022, 35, 705–724. [Google Scholar] [CrossRef]
- Fleisher, K.R.; Hufford, K.M. Monitoring Geomorphic and Traditional Post-Mine Reclamation using Digital Imagery: Vegetative Heterogeneity and Sampling Efficiency. Rangel. Ecol. Manag. 2020, 73, 584–593. [Google Scholar] [CrossRef]
- Doley, D.; Audet, P. Adopting Novel Ecosystems as Suitable Rehabilitation Alternatives for Former Mine Sites. Ecol. Process. 2013, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Lechner, A.M.; Yang, Y.; Baumgartl, T.; Wu, J. Mapping the Cumulative Impacts of long-Term Mining Disturbance and Progressive Rehabilitation on Ecosystem Services. Sci. Total Environ. 2020, 717, 137214. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Y.; Xiao, W.; Yellishetty, M.; Yang, D. Identifying Ecosystem Service Bundles and the Spatiotemporal Characteristics of Trade-Offs and Synergies in Coal Mining Areas with a High Groundwater Table. Sci. Total. Environ. 2022, 807, 151036. [Google Scholar] [CrossRef]
- Baumgärtner, F.; Letmathe, P. External Costs of the Dieselgate—Peccadillo or Substantial Consequences? Transp. Res. Part D Transp. Environ. 2020, 87, 102501. [Google Scholar] [CrossRef]
- Antoniadis, A.; Roumpos, C.; Anagnostopoulos, P.; Paraskevis, N. Planning RES Projects in Exhausted Surface Lignite Mines—Challenges and Solutions. Mater. Proc. 2021, 5, 93. [Google Scholar] [CrossRef]
- Palogos, I.; Galetakis, M.; Roumpos, C.; Pavloudakis, F. Selection of Optimal Land Uses for the Reclamation of Surface Mines by Using Evolutionary Algorithms. Int. J. Min. Sci. Technol. 2017, 27, 491–498. [Google Scholar] [CrossRef]
- Gerwin, W.; Raab, T.; Birkhofer, K.; Hinz, C.; Letmathe, P.; Leuchner, M.; Roß-Nickoll, M.; Rüde, T.; Trachte, K.; Wätzold, F.; et al. Perspectives of Lignite Post-Mining Landscapes Under Changing Environmental Conditions: What Can We Learn from a Comparison Between the Rhenish and Lusatian Region in Germany? Environ. Sci. Eur. 2023, 35, 36. [Google Scholar] [CrossRef]
- Tymchuk, I.; Malovanyy, M.; Shkvirko, O.; Chornomaz, N.; Popovych, O.; Grechanik, R.; Symak, D. Review of The Global Experience in Reclamation of Disturbed Lands. Ecol. Eng. Environ. Technol. 2021, 22, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Kozłowski, M.; Otremba, K.; Tatuśko-Krygier, N.; Komisarek, J.; Wiatrowska, K. The Effect of an Extended Agricultural Reclamation on Changes in Physical Properties of Technosols in Post-Lignite-Mining Areas: A Case Study from Central Europe. Geoderma 2022, 410, 115664. [Google Scholar] [CrossRef]
- Hu, Z.; Li, C.; Xia, J.; Feng, Z.; Han, J.; Chen, Z.; Wang, W.; Li, G. Coupling of Underground Coal Mining and Mine Reclamation For Farmland Protection and Sustainable Mining. Resour. Policy 2023, 84, 103756. [Google Scholar] [CrossRef]
- Feng, Z.; Hu, Z.; Li, G.; Zhang, Y.; Zhang, X.; Zhang, H. Improving Mine Reclamation Efficiency for Farmland Sustainable Use: Insights from Optimizing Mining Scheme. J. Clean. Prod. 2022, 379, 134615. [Google Scholar] [CrossRef]
- Li, G.; Hu, Z.; Li, P.; Yuan, D.; Feng, Z.; Wang, W.; Fu, Y. Innovation for Sustainable Mining: Integrated Planning of Underground Coal Mining and Mine Reclamation. J. Clean. Prod. 2022, 351, 131522. [Google Scholar] [CrossRef]
- Espinoza, R.D.; Morris, J.W.F. Towards Sustainable Mining (Part II): Accounting for Mine Reclamation and Post Reclamation Care Liabilities. Resour. Policy 2017, 52, 29–38. [Google Scholar] [CrossRef]
- Asr, E.T.; Kakaie, R.; Ataei, M.; Mohammadi, M.R.T. A Review of Studies on Sustainable Development in Mining Life Cycle. J. Clean. Prod. 2019, 229, 213–231. [Google Scholar] [CrossRef]
- Gastauer, M.; Silva, J.R.; Caldeira, C.F., Jr.; Ramos, S.J.; Filho, P.W.M.S.; Neto, A.E.F.; Siqueira, J.O. Mine Land Rehabilitation: Modern Ecological Approaches for More Sustainable Mining. J. Clean. Prod. 2018, 172, 1409–1422. [Google Scholar] [CrossRef]
- Harford, A.J.; Bartolo, R.E.; Humphrey, C.L.; Nicholson, J.D.; Richardson, D.L.; Rissik, D.; Iles, M.; Dambacher, J.M. Resolving Ecosystem Complexity in Ecological Risk Assessment for Mine Site Rehabilitation. J. Environ. Manag. 2022, 319, 115488. [Google Scholar] [CrossRef] [PubMed]
- Pavloudakis, F.; Roumpos, C.; Karlopoulos, E.; Koukouzas, N. Sustainable Rehabilitation of Surface Coal Mining Areas: The Case of Greek Lignite Mines. Energies 2020, 13, 3995. [Google Scholar] [CrossRef]
- Kivinen, S. Sustainable Post-Mining Land Use: Are Closed Metal Mines Abandoned or Re-Used Space? Sustainability 2017, 9, 1705. [Google Scholar] [CrossRef] [Green Version]
- Pactwa, K.; Konieczna-Fuławka, M.; Fuławka, K.; Aro, P.; Jaśkiewicz-Proć, I.; Kozłowska-Woszczycka, A. Second Life of Post-Mining Infrastructure in Light of the Circular Economy and Sustainable Development—Recent Advances and Perspectives. Energies 2021, 14, 7551. [Google Scholar] [CrossRef]
- Kinnunen, P.; Karhu, M.; Yli-Rantala, E.; Kivikytö-Reponen, P.; Mäkinen, J. A Review of Circular Economy Strategies for Mine Tailings. Clean. Eng. Technol. 2022, 8, 100499. [Google Scholar] [CrossRef]
- Pavloudakis, F.; Roumpos, C.; Spanidis, P.M. Planning the Closure of Surface Coal Mines Based on Circular Economy Principles. Circ. Econ. Sust. 2023. [Google Scholar] [CrossRef]
- Smol, M.; Marcinek, P.; Duda, J.; Szołdrowska, D. Importance of Sustainable Mineral Resource Management in Implementing the Circular Economy (CE) Model and the European Green Deal Strategy. Resources 2020, 9, 55. [Google Scholar] [CrossRef]
- Palacios, L.T.; Rodríguez, J.A.E. In Mining, Not Everything is a Circular Economy: Case Studies from Recent Mining Projects in Iberia. Resour. Policy 2022, 78, 102798. [Google Scholar] [CrossRef]
- Jaeger, B.; Upadhyay, A. Understanding Barriers of Circular Economy: Cases from the Manufacturing Industry. J. Enterp. Inf. Manag. 2019, 33, 729–745. [Google Scholar] [CrossRef]
- Upadhyay, A.; Laing, T.; Kumar, V.; Kumar Dora, M. Exploring Barriers and Drivers to the Implementation of Circular Economy Practices in the Mining Industry. Resour. Pol. 2021, 72, 102037. [Google Scholar] [CrossRef]
Concept/Term | Centrality Value |
---|---|
Social aspects | 0.77 |
Sustainability | 0.65 |
Stakeholders | 0.63 |
Land-use change | 0.43 |
Transition | 0.32 |
Landscape form | 0.23 |
Management | 0.14 |
Geoenvironmental analysis | 0.09 |
Resource management | 0.07 |
Causal Driver | Frequency of Occurrence | Description 1 |
---|---|---|
Social risk mismanagement | 23.54% | Lack of timely and adequate community preparation for mine closure, resulting in economic and health stress. |
Inappropriate training for career changes | 21.22% | Lack of appropriate training programs to fit the existing or developed employment opportunities. |
Illegal occupation of abandoned mine structures | 21.08% | Devaluation of infrastructure that increases rehabilitation costs. |
Major environmental degradation | 21.03% | Severe consequences of natural capital (especially water and soil) that increase rehabilitation costs. |
Insufficient financial support and compensation | 17.11% | Lack of viable options, such as early retirement, debt counseling or long-term aid, resulting in rapid poverty increase. |
Long-time gap between mine closure and reclamation | 13.44% | Community disintegration due to unemployment and/or mobility of the workers; thus, any attempts made to build resilience into the community are doomed to fail. |
Ineffective measures and strategies to mine closure | 13.00% | Unrealistic timeline of the decommissioning plan that leads to unfair post-mine development, abrupt employment change and social disruption. |
Lack of regulation of post-mine landscapes | 8.08% | Insufficient legislative framework for the disposition of the rehabilitated mine areas that leads to increased opposition between the society and the government. |
Contested meanings of what is included in mine reclamation | 6.97% | Intervention plans that are not holistic lead to incomplete rehabilitation that lacks the required degree of specificity. |
Administrative and budget constraints complicate planning and timelines | 5.16% | Limited capacity to implement the planned changes, thus considerably increasing delivery times and deliverables. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siontorou, C.G. Fair Development Transition of Lignite Areas: Key Challenges and Sustainability Prospects. Sustainability 2023, 15, 12323. https://doi.org/10.3390/su151612323
Siontorou CG. Fair Development Transition of Lignite Areas: Key Challenges and Sustainability Prospects. Sustainability. 2023; 15(16):12323. https://doi.org/10.3390/su151612323
Chicago/Turabian StyleSiontorou, Christina G. 2023. "Fair Development Transition of Lignite Areas: Key Challenges and Sustainability Prospects" Sustainability 15, no. 16: 12323. https://doi.org/10.3390/su151612323
APA StyleSiontorou, C. G. (2023). Fair Development Transition of Lignite Areas: Key Challenges and Sustainability Prospects. Sustainability, 15(16), 12323. https://doi.org/10.3390/su151612323