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Abstract: Rapid developments in Internet of Things (IoT) systems have led to a wide integration of
such systems into everyday life. Systems for active real-time monitoring are especially useful in areas
where rapid action can have a significant impact on outcomes such as healthcare. However, a major
challenge persists within IoT that limit wider integration. Sustainable healthcare supported by the
IoT must provide organized healthcare to the population, without compromising the environment.
Security plays a major role in the sustainability of IoT systems, therefore detecting and taking timely
action is one step in overcoming the sustainability challenges. This work tackles security challenges
head-on through the use of machine learning algorithms optimized via a modified Firefly algorithm
for detecting security issues in IoT devices used for Healthcare 4.0. Metaheuristic solutions have
contributed to sustainability in various areas as they can solve nondeterministic polynomial time-hard
problem (NP-hard) problems in realistic time and with accuracy which are paramount for sustainable
systems in any sector and especially in healthcare. Experiments on a synthetic dataset generated
by an advanced configuration tool for IoT structures are performed. Also, multiple well-known
machine learning models were used and optimized by introducing modified firefly metaheuristics.
The best models have been subjected to SHapley Additive exPlanations (SHAP) analysis to determine
the factors that contribute to occurring issues. Conclusions from all the performed testing and
comparisons indicate significant improvements in the formulated problem.

Keywords: healthcare 4.0; metaheuristics optimization; firefly algorithm; intrusion detection;
sustainable healthcare

1. Introduction

Healthcare 4.0 [1] is essentially a concept that can be considered to be a part of the
Fourth Industrial Revolution, and it can be implemented by utilizing technologies such as
artificial intelligence (AI), IoT, data analytics, and many others. This concept is crucial for
overall improvement in the healthcare industry, enabling better accessibility, enhancing
quality, and ensuring high efficiency in healthcare treatment [1]. By using this concept,
the integration of personalized medicine is achieved, and smart patient care devices can be
implemented, along with remote healthcare delivery solutions which are all paramount to
achieving a sustainable healthcare system. Advanced technologies like Healthcare 4.0 can
have certain challenges, particularly in terms of data security and privacy [2], which hinder
its adoption rate. The primary concern revolves around protecting user data [3], which
contains sensitive information about the service user or patient. The data stored in the
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database is of an extremely sensitive nature, encompassing personal information such as the
user’s genetic code, medical history, identification details, and many others. Additionally,
the lack of standards within this concept poses integration issues with various systems.
Introducing standards can improve the mechanism of data exchange among different
device levels and facilitate resource sharing among relevant healthcare institutions.

An important aspect of the Healthcare 4.0 concept which heavily influences sustain-
ability is the provision of real-time information, aiming to enable faster and more efficient
responses from medical staff and doctors, thereby achieving more effective patient di-
agnoses [1]. At any given moment, doctors have access to data indicating the current
condition of the patient. It is also noteworthy that vital patient parameters can be moni-
tored live, in real time [4]. In the event of deviations from the defined parameters set by the
doctor, the medical staff and the doctor can immediately change the therapy and provide
the appropriate treatment. Additionally, the Healthcare 4.0 concept facilitates the efficiency
of detecting emergency cases, such as a heart attack in a patient. In such cases, appropriate
measures are taken to save the patient’s life. The technology of Healthcare 4.0 can facilitate
consultations with doctors in relevant medical fields, allowing for a more efficient exchange
of necessary information with relevant medical institutions. This enables faster medical
decision-making based on real-time diagnostics. The influence on sustainable cities is
present in Healthcare 4.0 as well. Route optimization is important for sustainable health
service providing which intertwines with other concepts like smart and sustainable cities.
There is more on this topic in Section 2, which provides the literature review.

Every technology in the world has its vulnerabilities, and Healthcare 4.0 [3], with the
use of the IoT, also faces issues regarding data protection and integrity. One of the attack
techniques present in this technology is the man-in-the-middle attack, where patient data
are intercepted. Furthermore, due to the use of weaker data encryption techniques [5] in the
exchange of data between patients and relevant institutions on IoT devices, unauthorized
access to sensitive and personal patient information can occur. Computer networks and
systems that have IoT devices and integrated Healthcare 4.0 technology on their servers
can be susceptible to potential attacks on the network infrastructure, where attackers
intentionally attempt to disrupt the use of active services. Such attacks can cause damage
to the network infrastructure or render it completely incapacitated [6,7]. As a result of such
attacks, the attacker can install malicious software on devices, aiming to target IoT devices
that interact with patients. The reason for these attacks is unauthorized access to patient
data, where even solutions like blockchain are combined with IoT structures [8]. In addition
to the proper training of employees regarding potential data leaks, where the human
factor often plays a significant role, possible protection against such attacks can be the
implementation and integration of hardware and software firewall mechanisms, as well as
the implementation of the intrusion detection system (IDS) and intrusion prevention system
(IPS) [9]. The implementation of IDS/IPS systems is of great importance to detect any
suspicious activity in computer networks or cloud systems where Healthcare 4.0 technology
is implemented in a timely manner [9]. Conclusively, a sustainable health system is not
possible without ensuring a stable and secure infrastructure which is challenging as is due
to a large number of device types and devices in general.

Healthcare 4.0 technology requires the implementation of mechanisms that can adapt
to new potential vulnerabilities. In addition to the previously mentioned systems, other
technologies can be utilized, such as automated incident response systems, security analyt-
ics systems, and identity and access management systems. Furthermore, a vulnerability
management system can be employed to identify issues and detect vulnerabilities within
the infrastructure of computer networks or cloud systems.

Artificial intelligence holds great potential in addressing numerous vulnerabilities and
overall security challenges faced by Healthcare 4.0 technology. AI can utilize advanced
machine learning algorithms to analyze large datasets and draw conclusions about potential
threats or attacks. From such data sets, it is possible to identify patterns that may indicate
a threat or attack. Moreover, based on such analyses, AI can discover and detect new
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potential system vulnerabilities that may appear unusual to the implemented systems.
By leveraging known vulnerabilities, AI can even predict or anticipate attacks in advance.

Advanced machine learning algorithms can predict or take preventive measures before
an actual infrastructure attack occurs. Through automation, efficiency can be achieved by
implementing automated incident response in the infrastructure [9]. In the event of an
attack or the introduction of malicious code into the infrastructure, AI can recognize attack
patterns and automatically respond to them [9].

When it comes to data within the infrastructure where user data are stored, AI can
enhance encryption mechanisms using deep learning on existing encryption algorithms.
This improves the existing data encryption technique, and through deep learning, vulnera-
bility detection mechanisms and systems can be enhanced, resulting in more modern data
encryption systems being produced automatically.

To achieve sustainable environments and higher quality of life, it is paramount to
take into account all the different aspects of the healthcare systems that are not universal
around the globe. Researchers explore topics like the supply chains of pharmaceuticals [10],
combine technologies like blockchain with IoT infrastructure for the optimized road health
assistance [11], and even topics that do not affect the patient directly but electricity manage-
ment in a hospital can bring other types of quality of service improvements and increase
the well-being of patients leading the society to a more sustainable world [12].

Extreme gradient boosting (XGBoost) is an algorithm that has proven to be the best
optimizer for competition. It is a gradient-boosting-based approach that increases the
learner’s performance and reduces bias and even variance. It is considered a tree-based
algorithm due to its foundation being strongly related to it. Due to the complicated process
of hyperparameter optimization, XGBoost is paired with an optimizer.

Metaheuristic optimization is recognized to be on the rise because of the high-performance
outputs that can be achieved. The advantage of such solutions comes from their NP hard-
solving capabilities. The need for extensive experimentation in this field comes from the no
free lunch (NFL) theorem, and according to it, no single solution is equally good for solving
all problems [13].

The authors have chosen the firefly algorithm (FA) metaheuristic based on swarm
behavior as a method for optimization due to its history of high performance for NP-
hard optimization. Even though they are powerful optimizers, swarm intelligence (SI)
algorithms are not without shortcomings. Where one algorithm excels, another fails. Hence,
the authors apply modifications to the original solution, proposing a modified firefly
algorithm (MFA) with superior performance to the original solution as well as to all the
compared metaheuristics. The predictions were performed with the XGBoost technique,
which is optimized by the MFA. A synthetic dataset was used for testing, but note that
the dataset was generated by a powerful tool that allows for virtually any scenario setup.
Finally, to further elaborate on the performance of the proposed method, the authors
provide a SHAP analysis.

The main contributions of this work include a robust system for security breach
detection for the use case of IoT in healthcare, the proposition of a modified metaheuristic
algorithm with improved performance, and a study case on the generated IoT traffic dataset.

• A robust healthcare security system based on the XGBoost technique optimized by
the proposed MFA.

• Modification proposals for the FA swarm metaheuristic.
• Improvements validated through extensive testing on a simulated dataset with com-

parison to eight other XGBoost-metaheuristic optimized solutions.
• Performance optimization based on the SHAP feature importance which clearly indi-

cates which features contribute to which predicted class.
• Best performance interpretation using SHAP analysis for better transparency.

The structure of the manuscript is as follows: Section 2 refers to the fundamentals of
this research and similar work, Section 3 provide the original algorithm and modifications
applied to it, Section 4 describes the used dataset, experimental setup, and employed
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metrics, Section 5 describes the obtained results, and Section 6 provides a summarization
of this work and future work propositions.

2. Background and Preliminaries
2.1. Literature Review

More and more devices IoT are being connected to traditional computer networks.
Such networks are commonly referred to as IoT networks. The security of the IoT ecosystem
is based on safeguarding sensitive user data, given that IoT devices are finding increasing
applications in all spheres of modern life. Data are typically outsourced and stored on
remote cloud servers, which are also accessed by IoT devices. As these devices can generate
a large amount of sensitive data, it is essential to enhance comprehensive protection [14].

The latest advancements in the field of IoT are being analyzed, and it is necessary
to enhance them by utilizing AI and deep learning [15]. It has been emphasized that
technological challenges and gaps have been identified in the IoT-based cloud infrastructure,
and it is crucial to improve the entire domain [15].

Hathaliya et al. [2] conducted an interesting study, providing an overview of the
transformation from Healthcare 1.0 to 4.0. They emphasized that insecure Healthcare 4.0
techniques can lead to privacy breaches of health data. Attackers can gain access to sensitive
information such as user email accounts, patient health reports, exchanged messages with
relevant parties, and more. Additionally, the authors found that this technology can also
achieve success in terms of data exchange efficiency. Thamilarasu et al. [16] were able
to achieve high detection accuracy with minimal resource overhead through simulations.
They successfully contributed to improving the overall security of IoT devices used by
patients by using simulations to mitigate potential attacks.

The scientific paper [17] explores the problem of vulnerability and security in IoT de-
vices, with a focus on the healthcare domain. The authors have determined that, even with
a well-organized network infrastructure using traditional approaches, existing protection
mechanisms cannot directly guarantee the security of IoT devices against cyber-attacks
due to resource limitations and specific IoT protocols. The authors have proposed a new
framework for developing a novel solution for contextual security of IoT devices to fa-
cilitate the detection of attacks on the network infrastructure. For the purposes of the
study, the authors have utilized a newly developed open-source tool called IoT-Flock for
generating IoT data. This tool enabled the authors to develop scenarios that can generate
normal and malicious traffic. The outcome of the study resulted in the proposal of a new
framework for contextual security of IoT devices and highly sensitive scenarios, such as
the IoT healthcare environment.

Hussain et al. [18] focused on the impact of IoT on modern life in various domains.
Due to limited resources, IoT devices are attractive targets for cyber-attacks. The paper
highlights that traditional encryption methods are not sufficient to protect data integrity in
IoT networks, so the authors utilized machine learning and deep learning techniques to
enhance security. The authors of the paper [19] focused their research on the development
of intelligent components for the identification and profiling of IoT devices, as well as the
detection of intrusions in complex IoT network environments. For authentication purposes,
the authors proposed fingerprinting techniques. For the needs of the study, the authors
created a laboratory environment where they collected data based on four states of each
device: on, idle, active, and interaction. In addition to this, the authors simulated smart
home activities. Two sets of data were also generated: denial of service (DoS) attacks and
brute-force attacks on real time streaming protocol (RTSP) protocols. The authors aimed
to create a reference IoT dataset that is realistic and can contribute to and enhance future
research in terms of training and evaluating intelligent components of IoT systems, where
identification, profiling, and potential intrusion detection need to be performed. The re-
search of this paper revolves around the hypothesis that emphasizes the significance of
security in healthcare for sustainability, where data security and integrity play a crucial role.
Additionally, the datasets and algorithms used in this field are relatively new, and meta-
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heuristics have not been sufficiently tested for application. However, the contribution of
this study can be highly significant for the future development of healthcare as a whole.

2.2. Extreme Gradient Boosting

The modern and popular XGBoost algorithm is a powerful and accurate machine
learning algorithm [20,21]. To minimize the loss function, it is necessary to optimize the
model’s parameters, which have the most significant impact on the algorithm’s behavior.
The XGBoost combines several weak models to achieve a model with improved and more
precise predictions. This algorithm can achieve extremely high accuracy by utilizing
techniques such as gradient boosting, regularization, parameter optimization, and more. It
is based on the idea of providing accurate outcome predictions based on learned patterns
of complex dependencies between the input data and the target variable.

The XGBoost algorithm, like most modern machine learning (ML) methods, has nu-
merous specific parameters that can be adjusted to achieve optimal results. Depending
on the problem at hand, the parameters being optimized and adjusted directly affect the
configuration of different model characteristics. When it comes to parameter tuning in the
XGBoost, it allows for more precise control during the learning process. The underlying
idea is to achieve consistency across factors such as accuracy, speed, and model generaliza-
tion. To achieve better and more optimal results, an iterative parameter tuning process is
sometimes necessary to perform accurate and precise data validation based on previous
evaluations [21]. Below is the objective function for the XGBoost [21]:

obj(Θ) = L(θ) + Ω(Θ), (1)

The presented equation represents the combined sum of the loss function and reg-
ularization. In this equation, Θ represents the set of XGBoost hyperparameters, L(Θ)
corresponds to the loss function, and Ω(Θ) denotes the regularization term. The regular-
ization term is employed to manage the complexity of the model. Specifically, the loss
function is defined as the mean squared error.

L(Θ) = ∑i (yi − ŷi)
2, (2)

The mathematical notation represents yi as the predicted value, while ŷi represents
the predicted value for the target variable, given for each i iteration.

L(Θ) = ∑i[ yi ln (1 + e−ŷi ) + (1 − yi) ln (1 + eŷi )], (3)

The function aims to find the difference between observed values, i.e., actual and
predicted values. The idea and outcome of the function are to minimize the overall loss
function value, resulting in improved classification results.

A correlation can be made between the XGBoost algorithm and Healthcare 4.0 tech-
nology [22,23]. It is used to gather, analyze, and predict events, thereby improving the
decision-making mechanism. In the mentioned work, there is a connection between the
XGBoost algorithm and Healthcare 4.0, where it can be concluded that XGBoost is pri-
marily superior compared to the support vector machine (SVM), random forest (RF), and
K-nearest neighbors (KNN) algorithms in predicting the risk of type 2 diabetes. It has been
found that XGBoost has a robust generalization mechanism and predictive ability [23].
It can also predict appropriate preventive measures in the future based on a patient’s
previous conditions.

2.3. Metaheuristics Approaches and Applications

The challenges of NP-hard nature are common with computing which requires the
use of stochastic solutions as deterministic methods are not practical. Different families
of metaheuristics are recognized based on the natural phenomena of influence for them,
which can be insect behavior or evolution [24–26]. The most influential ones are nature-



Sustainability 2023, 15, 12563 6 of 28

inspired algorithms [27], which are further grouped into genetic and swarm algorithms.
The inspiration for such solutions comes from physical phenomena (e.g., gravity, storm),
human behavior (e.g., brainstorming, teaching, and learning), and mathematical laws
(e.g., trigonometric functions).

Large groups of usually modest units cooperating represent the main inspiration
for swarm intelligence algorithms. Birds or insects moving in swarms are capable of
manifesting sophisticated behavior patterns that can be translated to algorithms [28,29].
The results of these algorithms indicate their high capability of solving NP-hard solutions
for real-world problems. Notable algorithms include ant colony optimization (ACO) [30],
particle swarm optimization (PSO) [31], the bat algorithm (BA) [32,33], as well as the FA [34].
A recent group of mathematical-based algorithms proved high-performing as they apply
trigonometry to direct the search process like the sine-cosine algorithm (SCA) [35] and the
arithmetic optimization algorithm (AOA) [36].

The variety of metaheuristic solutions is a result of the NFL, as new solutions always
have to be explored for new problems [37]. No single method can be the optimal solution
for all optimization problems. Hence, one algorithm can be the best for one problem
but provide the worse results for another. Different approaches are suitable for different
applications, and optimization algorithms have been applied to tackling several real-world
challenges with some notable recent examples, including COVID-19 case predictions [38]
as well as challenges associated with supply and demand in the energy sector [39,40].

2.4. Shapley Additive Explanations

To present the performance of the model clearly, the SHAP method was performed.
The method is considered to provide meaningful and straightforward interpretations of the
model-derived decision and avoids the trade-off of accuracy and interpretability. The game
theory approach is applied to improve individual predictions for feature importance
calculation based on Shapley values [41]. With a delegation of difference from prediction to
prediction average [42] every cooperating party (feature) receives a joint payout depending
on their contribution and the payments distributed in such a manner are considered Shapley
values. If a feature takes a baseline value (mean) the SHAP interprets the impact compared
to a model’s prediction and gives each feature a measure of importance according to their
individual contributions to a specific prediction. By doing so, valuable insights are obtained,
the possibility of underestimation of a feature’s importance is minimized, Shapley value
generalization-based interaction effects are captured, and the global behavior of the model
is interpreted with retention of local faithfulness [43,44].

3. Materials and Methods

The original implementation of the FA is shown in this section, followed by the descrip-
tions of known and observed flaws of the original FA. This section suggests improvements
to the original algorithm to address the described flaws.

3.1. Original Firefly Algorithm

The FA [45] is a popular metaheuristic algorithm inspired by the natural behavior of
fireflies when searching for their mate. The performs according to the following steps:

1. Initialization,
2. Brightness calculation,
3. Firefly movement,
4. Brightness update,
5. Steps 3 and 4 are repeated until satisfactory convergence or a defined number of

iterations is reached.

Initialization is the process of generating a population of fireflies with randomly
determined positions within a defined search range. Then, the brightness calculation is
performed, where a rule is defined so that each firefly has a specific brightness intensity,
which can be calculated using a function [45]. It is important to note that higher function
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values result in brighter fireflies. The intensity of firefly brightness is determined by
the formula:

Fi = f (Xi), (4)

where Xi represents the position of firefly i, and f (Xi), illustrates the value of the objective
function for the corresponding position.

Generally, each firefly can move in the search space toward regions with higher
brightness levels—i.e., toward brighter fireflies. The movement of fireflies can be performed
using an attraction model based on the correlation between fireflies and their brightness
intensity [45]. The idea is that each firefly tends to approach other fireflies with higher light
intensity. The movement can be calculated as:

Xi(t + 1) = Xi(t) + β e−γ r2
ij (Xj(t) − Xi(t)) + α εi(t), (5)

where β0 represents the attractiveness at r = 0. However, Equation (5) is commonly
swapped for Equation (6) [34]:

β(r) = β0
/ (

1 + γ × r2
)

(6)

where Xi(t) represents the current position of firefly i in the corresponding iteration t, rij
represents the current position of firefly j in the relevant iteration t,

β represents the distance between fireflies defined as i and j,
β is the attraction factor of fireflies,
γ represents the absorption factor of light,
α determines the randomness factor,
while εi(t) represents the random vector.

After the corresponding movements, the light intensity is automatically updated. This
updating is performed based on the obtained results from the previously defined fitness
function. The concept relies on the idea that if the last (new) value of the function is higher,
or better than the previous one, the light intensity is increased; otherwise, it is decreased.

The MFA [46] is a version of the original FA algorithm that incorporates additional
modifications aimed at improving performance and convergence. The modifications are
often based on specific characteristics of the problem to be optimized. Changes can be
observed in the movement of the fireflies, such as a different way of attraction or movement
within the search space. The modified algorithm [46] also includes changes in algorithm
parameters. These modified parameters can be related to various factors, such as firefly
attraction, randomness, or light absorption.

A different strategy can be employed for initializing the population of fireflies, where
the parameters influencing the initialization strategy can better cover the search space.
Additionally, by adjusting the parameters, a more diverse and improved positioning of
fireflies in the search space can be achieved.

The modified algorithm also incorporates mutation operators, which involve various
changes in firefly positions that are not solely based on attraction to other fireflies [46].
These mutation operators help avoid local optima. The modified FA algorithm can employ
different strategies for selecting the best firefly as a result, which can then be used in
the next iteration. In this context, the best result is considered to be the selection of the
best individuals.

3.2. Proposed Modified Firefly Algorithm

The FA base version performance is still considered among the top optimizers but the
CEC functions [47,48] indicate low performance in certain runs. The FA prioritized less
promising regions of the search space. The proposed modifications mitigate the impact of
such problems resulting in enhanced exploration.

Upon iteration completion, a fresh solution is made by merger of the current best and a
random one from the population. Uniform crossover control parameter shown as pc is used
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to combine all attributes of both solutions and is determined empirically to pc = 0.1. Every
parameter is subject to mutation regulated by the mutation parameter mp, empirically set
to mp = 0.1. The mutation is performed by selecting a pseudo-random number from range
[ lb

2 , ub
2 ], where the boundaries are represented as ub and lb for upper and lower boundaries,

respectively. If the value that will be added or subtracted from the solution parameter
is determined by md, the direction of mutation is another control parameter. Uniform
distribution in range [0, 1] produces a pseudo-random number ψ, which for values ψ < md
applies subtraction, and otherwise addition. The value of is set to md = 0.5.

The worst-performing solution is replaced by the newly generated individual, but the
new solution is not evaluated until the next iteration. This results in the modified solution
staying equivalent to the elementary version in terms of computation complexity. The new
method is called the MFA. The pseudocode of the MFA is given in Algorithm 1.

Algorithm 1 Pseudocode of the suggested MFA

1: Metaheuristics parameter’s values initial setting
2: Population P production
3: P evaluation with regard to the fitness function
4: for i = 1 to max iteration count do
5: for every individual do
6: for every better individual do
7: if individual is better then
8: Obtain attraction in terms of distance
9: Adjust position toward the better individual

10: end if
11: end for
12: Evaluate and update individuals in population P
13: Produce novel solution by applying genetic crossover mechanism
14: Subject novel solution to mutation
15: Replace the worst-performing individual with a novel generated solution
16: end for
17: Return top-performing solution
18: end for

4. Experiments
4.1. Datasets

The applied IoT healthcare security dataset [49] is a dataset generated by a tool
proposed by the authors of the referenced work [17]. This research aims to recreate the ex-
periments from the [17] to establish the basis for comparison. The dataset is publicly avail-
able at https://www.kaggle.com/datasets/faisalmalik/iot-healthcare-security-dataset
(accessed on 14 July 2023).

The authors [17] applied an open-source IoT traffic generator tool IoT-Flock to create
a test case for a healthcare problem. IoT-Flock is a versatile tool for creating simulation
environments of normal and malicious devices assigned with IP addresses. It is noteworthy
that not many such tools support the attacking capabilities of simulation. This results in
traffic containing regular communication as well as attacking patterns that are paramount
for better IDS and IPS design. The application supports the generation of messages that
adhere to two protocols either message queuing telemetry transport (MQTT) or constrained
application protocol (COAP). MQTT-generated devices require device information includ-
ing the username, password, broker’s IP address, and subscribing or publishing indicators.
COAP devices require the IP address of the server and the COAP command. Additionally,
XML output alongside a GUI and console mode is supported by the application.

The author [49] dataset is an intensive care unit (ICU) use case that simulates an ICU
with two beds each with nine sensors and one control unit labeled according to the scheme:
Bedx-Control-unit, where x represents the number of each bed. This unit is responsible
for time profile settings, infusion pump dosages, and the emergency alarm that shows
if a patient is in need according to sensors. The dataset is created with an additional

https://www.kaggle.com/datasets/faisalmalik/iot-healthcare-security-dataset
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unit for environment control which sets the temperature and humidity, can detect smoke,
and activate the alarm as well. Considering that the data are transmitted by sensors in
certain intervals, the authors introduce two additional characteristics, the data and time
profiles. Range and data type transmitted are specified by the data counterpart, while the
time profile defines the intervals in which the communication between the sensors and the
control unit is performed.

The process of data generation for the applied ICU dataset results in two separate
networks. The first network represents a model of the described ICU unit, and the second
is the network of the attacker. The targeted network consists of MQTT devices that transmit
and receive data alongside an MQTT broker. These devices include the patient and envi-
ronment monitors that communicate under usual circumstances. IoT-Flock creates a virtual
network interface for each device on a single physical machine running Linux. The MQTT
broker and COAP server were running on a different machine. The network of the invader
supports the execution of various attack types on the target network. The attacker network
consists of ten devices that can perform four different attack types which are the MQTT
distributed denial-of-service, MQTT publish flood, brute force, and SlowITE [50]. More
details on the dataset are available in the referenced work [17].

The KNN algorithm with the number of neighbors set to K = 5 was applied for feature
selection from the datasets, as the original dataset consists of 50 features in total. The best
10 features were selected for maximization of the proposed methods’ performance and this
experiment confirms that the same 10 features are selected as in the referenced work [17].
The features are described in detail in [17] and include:

• frame.time_delta,
• tcp.time_delta,
• tcp.flags.ack,
• tcp.flags.push,
• tcp.flags.reset,
• mqtt.hdrflags,
• mqtt.msgtype,
• mqtt.qos,
• mqtt.retain, and
• mqtt.ver.

Due to the format of mqtt.hdrflags being hexadecimal, its values had to be converted
to decimal format so that the ML method could process them.

The research that is the basis of comparison for this work [17], employs only binary
classification for the problem with two types of data. The first is the regular communication
without attackers and represents class 0, while the second one represents the attacking case
and class 1. The performed experiments are an extension of a previous study from [17] in
the form of three classes given below:

• Class 0—No attack, environment monitoring,
• Class 1—No attack, patient monitoring, and
• Class 2—Attack.

Figure 1 displays the binary and multiclass distribution of the applied datasets with
pie and bar charts. The heatmap of the features is provided in Figure 2.
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Figure 1. Binary and multi-class test cases dataset distribution plots.

Figure 2. The heatmap of selected features.

4.2. Experimental Setup

Optimization of XGBoost hyperparameters is performed by the proposed MFA algo-
rithm in the case of the ICU dataset. The optimized hyperparameters along their boundaries
and variable types are given in the following list:

• learning rate (η), search limits: [0.1, 0.9], continuous variable,
• min_child_weight, search limits: [1, 10], continuous variable,
• subsample, search limits: [0.01, 1], continuous variable,
• collsample_bytree, search limits: [0.01, 1], continuous variable,
• max_depth, search limits: [3, 10], integer variable and
• gamma, search limits: [0, 0.8], continuous variable.
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The provided boundaries were obtained empirically by the trial and error method.
The proposed method is made with Python programming language alongside scipy,

numpy, and pandas, standard Python libraries. The XGBoost model was provided by the
sci-kit learn package.

The optimized hyperparameter number is given in the following text as l, and it is
used to set the length of an array that represents a single encoded solution. The value of
l is 6.

The split of the dataset was performed randomly of which 70% is for training, while
the other 30% is used for the test set. The data were not normalized.

The goal of the proposed hybrid XGBoost MFA optimized method performance
validation is performed by comparing with eight other optimizers including the original
FA, for the same problem. The algorithms included in the comparison are the FA [34],
genetic algorithm (GA) [51,52], PSO [31], artificial bee colony (ABC) algorithm [53], chimp
optimization algorithm (ChOA) [54], differential evolution linear population size reduction
constrained optimization with levy flights (COLSHADE) algorithm [55], and self-adapting
spherical search (SASS) [56]. The tests consist of every listed algorithm performing the
same test with recommended values for control parameters. All solutions have been
implemented and independently tested. The same setup was established for all tested
solutions with a population of 10 solutions over 10 iterations per run, over 30 runs.

4.3. Performance Metrics

The evaluation of performance was performed as in [17], due to firm comparison
grounds. Accuracy, precision, recall, and F1-score are derived from confusion matrixes
generated by each compared solution. It is important to emphasize that the accuracy can
vary from one scenario to another as the dataset is imbalanced. Standard terminology is
applied in descriptions of the measured values. True and false predictions are indicated
as true positive (TP) and false positive (FP) for positive predictions, while the negative
predictions are shown as false negative (FN) and true negative (TN).

The ratio of correct predictions to missed ones is accuracy [57].

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision represents the ratio of correct predictions to all predicted positives.
Correct predictions and all predictions (wrong and correct) ratio is the precision [57].

Precision =
TP

FP + TP
(8)

Correct predictions and positive cases ratio represent recall [57].

Recall =
TP

FN + TP
(9)

Recall and precision are combined to provide F1-score [57].

F1-score =
(2 × Precision × Recall)
(Precision + Recall)

(10)

Cohen’s kappa coefficient is an agreement measure for two sets of classification while
taking into account the classification randomness [58]. Odds of an event happening due to
a particular factor [59] compared to the probability of the same event occurring without
that factor is the odd ratio calculated by the following equation:

( TP
FP )

( TN
FN )

(11)
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Odds of an event happening due to a particular factor [59] compared to the probability
of the same event occurring without that factor is the odd ratio that represents the kappa
coefficient [60] calculated by the following equation:

K =
Pobs − Pexp

1 − Pexp
(12)

where the observed agreements (TP + TN) are represent as Pobs, while the expected
agreements [(TP + FN)× (TP + FP) + (FP + TN)× (FN + TN)] [61] are given as Pexp.
The value of K is in the range [0, 1], while lower values indicate less agreement. Different
levels of agreement are recognized: no agreement K ≤ 0, slight agreement 0.01–0.20, fair
agreement 0.21–0.40, moderate agreement 0.41–0.60, substantial agreement 0.61–0.80, and
near to perfect agreement 0.81–1.00 as described in [61].

5. Simulation Results, Comparative Analysis, Validation, and Interpretation
5.1. Experimental Findings and Comparative Analyssis

The Table 1 provides overall results for binary classification for error minimization
experiment. The results of precision, recall, and F1-score are provided in Table 2. XG-MFA
obtains the highest F1-scores for both classes, macro average, and the weighted average
for all other metrics besides the F1-score unlike the previously stated. XG-GA had the
best 0 class precision, XG-SSA the best recall for class 0 and macro average, XG-ChOA the
best precision for macro average, while the XG-SASS provides the best class 1 precision
along the best class 0 recall. Confirming the proposed method’s performance on the binary
classification error minimization optimization the XG-MFA obtained the highest results in
accuracy terms. The best obtained results are indicating with bold font.

Table 1. Overall results binary classification—error minimization experiment.

Classification Error (Objective) Cohen’s Kappa
Method Best Worst Mean Median Std Var Best Worst Mean Median Std Var

XG-MFA 0.003003 0.003091 0.003036 0.003030 3.24 × 10−5 1.05 × 10−9 0.993852 0.993672 0.993785 0.993798 6.63 × 10−5 4.40 × 10−9

XG-FA 0.003038 0.003303 0.003153 0.003153 7.85 × 10−5 6.16 × 10−9 0.993780 0.993236 0.993545 0.993544 1.61 × 10−4 2.60 × 10−8

XG-GA 0.003038 0.003197 0.003096 0.003091 4.82 × 10−5 2.32 × 10−9 0.993781 0.993454 0.993662 0.993671 9.87 × 10−5 9.75 × 10−9

XG-PSO 0.003074 0.003215 0.003125 0.003109 4.79 × 10−5 2.30 × 10−9 0.993708 0.993418 0.993604 0.993635 9.82 × 10−5 9.64 × 10−9

XG-ABC 0.003109 0.003374 0.003213 0.003171 8.49 × 10−5 7.21 × 10−9 0.993636 0.993092 0.993422 0.993508 1.74 × 10−4 3.03 × 10−8

XG-SSA 0.003038 0.003233 0.003138 0.003144 5.99 × 10−5 3.58 × 10−9 0.993781 0.993381 0.993576 0.993563 1.23 × 10−4 1.52 × 10−8

XG-ChOA 0.003038 0.003180 0.003105 0.003100 4.21 × 10−5 1.77 × 10−9 0.993780 0.993490 0.993644 0.993653 8.65 × 10−5 7.49 × 10−9

XG-COLSHADE 0.003021 0.003215 0.003102 0.003091 5.85 × 10−5 3.43 × 10−9 0.993817 0.993419 0.993649 0.993671 1.19 × 10−4 1.44 × 10−8

XG-SASS 0.003021 0.003162 0.003105 0.003118 4.65 × 10−5 2.16 × 10−9 0.993815 0.993526 0.993644 0.993616 9.53 × 10−5 9.09 × 10−9

Table 2. Detailed results per classes for best performing binary classification models—error mini-
mization experiment.

Method Metric 0 1 Macro Avg Weighted Avg

XG-MFA precision 0.996567 0.997582 0.997074 0.996998
recall 0.998219 0.995341 0.996780 0.996997
f1-score 0.997392 0.996460 0.996926 0.996996

XG-FA precision 0.996628 0.997416 0.997022 0.996962
recall 0.998096 0.995424 0.996760 0.996962
f1-score 0.997362 0.996419 0.996890 0.996961

XG-GA precision 0.996780 0.997208 0.996994 0.996962
recall 0.997943 0.995632 0.996787 0.996962
f1-score 0.997361 0.996420 0.996890 0.996961

XG-PSO precision 0.996536 0.997457 0.996997 0.996927
recall 0.998127 0.995299 0.996713 0.996926
f1-score 0.997331 0.996377 0.996854 0.996927
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Table 2. Cont.

Method Metric 0 1 Macro Avg Weighted Avg

XG-ABC precision 0.996506 0.997415 0.996960 0.996892
recall 0.998096 0.995258 0.996677 0.996891
f1-score 0.997300 0.996335 0.996818 0.996891

XG-SSA precision 0.996841 0.997125 0.996983 0.996962
recall 0.997882 0.995715 0.996798 0.996962
f1-score 0.997361 0.996420 0.996890 0.996961

XG-ChOA precision 0.996293 0.997872 0.997083 0.996964
recall 0.998434 0.994966 0.996700 0.996962
f1-score 0.997362 0.996417 0.996890 0.996961

XG-COLSHADE precision 0.996719 0.997333 0.997026 0.996980
recall 0.998035 0.995549 0.996792 0.996979
f1-score 0.997377 0.996440 0.996908 0.996979

XG-SASS precision 0.996020 0.998288 0.997154 0.996983
recall 0.998741 0.994592 0.996667 0.996979
f1-score 0.997379 0.996437 0.996908 0.996979

support 32,571 24,038 56,609 56,609

The settings of hyperparameters for the binary classification for error minimization
are provided in Table 3.

Table 3. Best obtained models’ hyper-parameters binary classification—error minimization experiment.

Method Learning Rate Min Child Weight Subsample Colsample by Tree Max Depth Gamma

XG-MFA 0.826864 1.781749 0.801824 0.663691 10 0.120070
XG-FA 0.900000 1.128921 0.793675 0.871647 10 0.800000
XG-GA 0.788252 1.000000 1.000000 1.000000 10 0.000000
XG-PSO 0.602643 1.000000 0.680449 1.000000 10 0.800000
XG-ABC 0.900000 1.000000 0.673743 1.000000 7 0.323973
XG-SSA 0.748588 1.216229 1.000000 1.000000 10 0.023409
XG-ChOA 0.774825 1.000000 1.000000 1.000000 10 0.567155
XG-COLSHADE 0.900000 2.324410 0.826696 0.781224 10 0.259289
XG-SASS 0.900000 1.000000 0.980985 0.632832 8 0.149104

The Figure 3 displays multiple plots for the binary minimization experiment. The ob-
jective convergence and box plot are provided with a swarm plot displaying diversity, along
the precision recall curve, receiver operating characteristics curve, and the confusion matrix.

Secondly, the problem of binary classification for Cohen’s kappa coefficient maxi-
mization problem is tested due to the imbalanced dataset that is used. Table 4 provides
general metrics like Table 1, in which the XG-MFA once again dominates only this time the
shortcomings are recorded as the XG-ABC provides the best results for class 0 best, worst,
mean, median, and standard deviation. The rest of the results are in favor of XG-MFA.

Furthermore, a similar performance is recorded with kappa maximization metrics as
in Table 2, where the proposed method obtains the best results except for precision and
recall for class 0, class 1, and macro average. The details are provided in Table 5.

The settings of hyperparameters for the binary classification for kappa maximization
are provided in Table 6.

The plots for the Cohen’s kappa experiment are provided in the Figure 4 in the same
manner as for the error minimization experiments as in Figure 3.
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Figure 3. Binary error minimization plots. (a) Objective box plot, (b) Objective convergence, (c) Area
under precision recall, (d) Area under receiver operating characteristic, (e) Data diversity, (f) Confu-
sion matrix.
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Table 4. Overall results binary classification—Cohen’s kappa coefficient maximization experiment.

Cohen’s Kappa (Objective) Classification Error
Method Best Worst Mean Median Std Var Best Worst Mean Median Std Var

XG-MFA 0.993817 0.993707 0.993780 0.993780 3.64 × 10−5 1.33 × 10−9 0.003021 0.003074 0.003038 0.003038 1.77 × 10−5 3.12 × 10−10

XG-FA 0.993746 0.993345 0.993577 0.993581 1.36 × 10−4 1.84 × 10−8 0.003056 0.003250 0.003138 0.003136 6.61 × 10−5 4.36 × 10−9

XG-GA 0.993707 0.993454 0.993621 0.993635 7.47 × 10−5 5.57 × 10−9 0.003074 0.003197 0.003116 0.003109 3.64 × 10−5 1.32 × 10−9

XG-PSO 0.993744 0.993526 0.993644 0.993689 8.44 × 10−5 7.12 × 10−9 0.003056 0.003162 0.003105 0.003083 4.12 × 10−5 1.70 × 10−9

XG-ABC 0.993707 0.993200 0.993413 0.993381 1.72 × 10−4 2.97 × 10−8 0.003074 0.003321 0.003217 0.003233 8.40 × 10−5 7.06 × 10−9

XG-SSA 0.993745 0.993562 0.993690 0.993707 5.46 × 10−5 2.99 × 10−9 0.003056 0.003144 0.003083 0.003074 2.65 × 10−5 7.02 × 10−10

XG-ChOA 0.993744 0.993164 0.993585 0.993617 1.68 × 10−4 2.86 × 10−8 0.003056 0.003339 0.003133 0.003118 8.24 × 10−5 6.78 × 10−9

XG-COLSHADE 0.993780 0.993164 0.993545 0.993581 1.91 × 10−4 3.67 × 10−8 0.003038 0.003339 0.003153 0.003136 9.35 × 10−5 8.74 × 10−9

XG-SASS 0.993781 0.993345 0.993604 0.993617 1.30 × 10−4 1.69 × 10−8 0.003038 0.003250 0.003125 0.003118 6.33 × 10−5 4.01 × 10−9

Table 5. Detailed results per classes for best performing binary classification models—Cohen’s kappa
coefficient maximization experiment.

Method Metric 0 1 Macro Avg Weighted Avg

XG-MFA precision 0.996811 0.997208 0.997010 0.996980
recall 0.997943 0.995674 0.996808 0.996979
f1-score 0.997376 0.996440 0.996908 0.996979

XG-FA precision 0.996780 0.997167 0.996973 0.996944
recall 0.997912 0.995632 0.996772 0.996944
f1-score 0.997346 0.996399 0.996872 0.996944

XG-GA precision 0.996080 0.998080 0.997080 0.996929
recall 0.998588 0.994675 0.996631 0.996926
f1-score 0.997332 0.996376 0.996853 0.996926

XG-PSO precision 0.996475 0.997581 0.997028 0.996945
recall 0.998219 0.995216 0.996718 0.996944
f1-score 0.997347 0.996397 0.996872 0.996943

XG-ABC precision 0.996262 0.997830 0.997046 0.996928
recall 0.998403 0.994925 0.996664 0.996926
f1-score 0.997332 0.996375 0.996854 0.996926

XG-SSA precision 0.996780 0.997167 0.996973 0.996944
recall 0.997912 0.995632 0.996772 0.996944
f1-score 0.997346 0.996399 0.996872 0.996944

XG-ChOA precision 0.996597 0.997415 0.997006 0.996945
recall 0.998096 0.995382 0.996739 0.996944
f1-score 0.997346 0.996398 0.996872 0.996944

XG-COLSHADE precision 0.996323 0.997831 0.997077 0.996963
recall 0.998403 0.995008 0.996706 0.996962
f1-score 0.997362 0.996417 0.996890 0.996961

XG-SASS precision 0.996719 0.997291 0.997005 0.996962
recall 0.998004 0.995549 0.996777 0.996962
f1-score 0.997361 0.996419 0.996890 0.996961

support 32,571 24,038 56,609 56,609

Table 6. Best obtained models’ hyper-parameters binary classification—Cohen’s kappa coefficient
maximization experiment.

Method Learning Rate Min Child Weight Subsample Colsample by Tree Max Depth Gamma

XG-MFA 0.900000 1.000000 0.993956 0.790192 10 0.166214
XG-FA 0.900000 1.000000 1.000000 1.000000 10 0.000000
XG-GA 0.900000 1.929015 1.000000 0.821090 10 0.800000
XG-PSO 0.900000 1.000000 0.979482 1.000000 10 0.061248
XG-ABC 0.625776 1.000000 0.627028 0.970949 10 0.371569
XG-SSA 0.900000 1.000000 1.000000 1.000000 10 0.000000
XG-ChOA 0.876269 1.576144 0.660126 0.766469 10 0.800000
XG-COLSHADE 0.874638 1.584114 1.000000 1.000000 10 0.000000
XG-SASS 0.900000 1.298750 0.885388 1.000000 10 0.358750



Sustainability 2023, 15, 12563 16 of 28

XG-M
FA

XG-FA

XG-G
A

XG-P
SO

XG-A
BC

XG-S
SA

XG-C
hO

A

XG-C
OLS

HADE

XG-S
ASS

Algorithm

0.9932

0.9933

0.9934

0.9935

0.9936

0.9937

0.9938

O
bj

ec
tiv

e

Binary dataset (cohen kappa max) -  objective box plot diagram

(a)

0 2 4 6 8 10
Iterations

0.99200

0.99225

0.99250

0.99275

0.99300

0.99325

0.99350

0.99375

O
bj

ec
tiv

e

Binary dataset (cohen kappa max) -  objective convergence graphs

XG-MFA
XG-FA
XG-GA
XG-PSO
XG-ABC
XG-SSA
XG-ChOA
XG-COLSHADE
XG-SASS

(b)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

XG-MFA Binary dataset (cohen kappa max) -  PR curve

no attack AP:1.000
attack AP:1.000
micro AP: 1.000

(c)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

XG-MFA Binary dataset (cohen kappa max) -  macro-micro average ROC

micro-average ROC curve (area = 1.000)
macro-average ROC curve (area = 1.000)
ROC curve of class no attack (area = 1.000)
ROC curve of class attack (area = 1.000)

(d)

XG-M
FA

XG-FA

XG-G
A

XG-P
SO

XG-A
BC

XG-S
SA

XG-C
hO

A

XG-C
OLS

HADE

XG-S
ASS

Algorithm

0.986

0.988

0.990

0.992

0.994

O
bj

ec
tiv

e

Binary dataset (cohen kappa max) -  objective swarm plot diversity

(e)

no
 at

tac
k

att
ac

k

Predicted label

no attack

attack

Tr
ue

 la
be

l

0.997 0.003

0.003 0.997

XG-MFA Binary dataset (cohen kappa max) -  confusion matrix

0.2

0.4

0.6

0.8

(f)
Figure 4. Binary Cohen’s kappa coefficient maximization plots. (a) Objective box plot, (b) Objective
convergence, (c) Area under precision recall, (d) Area under receiver operating characteristic, (e) Data
diversity, (f) Confusion matrix.

Table 7 shows the multiclassification error of the metaheuristics methods. XG-MFA
performs the best on all performance indicators except for standard deviation and variance.
XG-COLSHADE shows the least variation in its performance, as indicated by having the
lowest values for both standard deviation and variance. This could be a significant factor
when looking for models with consistent results. XG-ABC seems to perform the worst.
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Table 7. Overall results multiclass classification—error minimization experiment.

Classification Error (Objective) Cohen’s Kappa
Method Best Worst Mean Median Std Var Best Worst Mean Median Std Var

XG-MFA 0.008232 0.008462 0.008322 0.008320 9.30 × 10−5 8.66 × 10−9 0.986843 0.986475 0.986699 0.96704 1.49 × 10−4 2.22 × 10−8

XG-FA 0.008320 0.008797 0.008473 0.008409 1.58 × 10−4 2.53 × 10−8 0.986704 0.985939 0.986458 0.986560 2.54 × 10−4 6.46 × 10−8

XG-GA 0.008356 0.008603 0.008446 0.008435 7.97 × 10−5 6.35 × 10−9 0.986645 0.986251 0.986499 0.986516 1.27 × 10−4 1.62 × 10−8

XG-PSO 0.008409 0.008727 0.008499 0.008444 9.73 × 10−5 9.47 × 10−9 0.986559 0.986052 0.986415 0.986502 1.55 × 10−4 2.41 × 10−8

XG-ABC 0.008426 0.008992 0.008687 0.008691 1.71 × 10−4 2.93 × 10−8 0.986532 0.985628 0.986114 0.986107 2.74 × 10−4 7.52 × 10−8

XG-SSA 0.008356 0.008550 0.008446 0.008426 7.77 × 10−5 6.04 × 10−9 0.986643 0.986334 0.986500 0.986532 1.25 × 10−4 1.56 × 10−8

XG-ChOA 0.008373 0.008568 0.008464 0.008462 7.20 × 10−5 5.18 × 10−9 0.986615 0.986305 0.986471 0.986474 1.15 × 10−4 1.33 × 10−8

XG-COLSHADE 0.008303 0.008479 0.008375 0.008364 5.55 × 10−5 3.08 × 10−9 0.986729 0.986445 0.986612 0.986629 8.89 × 10−5 7.91 × 10−9

XG-SASS 0.008391 0.008850 0.008515 0.008506 1.37 × 10−4 1.90 × 10−8 0.986588 0.985855 0.986391 0.986405 2.20 × 10−4 4.84 × 10−8

Table 8 shows the performance evaluation results using precision, recall, and f1-score
metrics for each class (0, 1, 2), as well as the macro average and weighted average across
classes. The support row at the bottom indicates the number of instances for each class in
the dataset. XG-MFA performs the best in terms of overall precision, recall, and f1-score
(weighted average). It also performs best for the precision and f1-score of class 2. XG-FA
has the highest recall for class 0 and the highest precision for class 1. However, it does not
lead to macro averages or weighted averages. XG-PSO has the highest recall for class 2,
indicating it is the best at correctly identifying positive instances of class 2. XG-SSA has
the highest precision for class 0 and achieves the highest macro average for precision,
which means it performs well at correctly predicting the positive class across the different
classes without taking class imbalance into account. The recall of class 1 is the highest for
XG-SSA, suggesting that this method is particularly effective in identifying instances of
class 1. In general, while some methods may excel in certain metrics, the XG-MFA method
appears to be the most balanced, performing very well across all metrics and classes. This
suggests that XG-MFA may be the best choice for applications where all classes and metrics
are equally important. Also, note that class distribution is imbalanced (Class 0: 9528,
Class 1: 23,043, Class 2: 24,038). This might affect the performance of these models, as they
could be biased toward the majority classes (classes 1 and 2). The weighted average metric,
which takes this imbalance into account, can provide a better overall evaluation of model
performance than the macro average.

The combined previous analysis of error metrics and precision, recall, and f1-score
reinforces the conclusion that XG-MFA generally performs the best among these algorithms.

Hyperparameter settings are provided for the multiclass classification for error mini-
mization in the Table 9.

Table 10 presents the results of Cohen’s kappa coefficient for different XGBoost-based
metaheuristic methods. Cohen’s kappa statistic is a measure of inter-rater reliability. It is
used to measure the agreement between two raters who each classify items into mutually
exclusive categories. In this case, it is being used to evaluate the performance of these
machine-learning models. From this table, it can be seen that XG-MFA has the highest mean
and median kappa coefficient, indicating that on average, this method tends to outperform
the others in terms of inter-rater reliability. It also has the highest best value, suggesting
that in the best case, this method has the highest agreement between predicted and actual
labels. On the other hand, XG-SASS has the lowest standard deviation and variance for the
kappa coefficient, indicating that the performance of this method is the most consistent.
The performance of this method varies the least from the mean performance.

The Figure 5 represents the same plots as Figures 3 and 4 for the multiclass experi-
ment of error minimization, while the Figure 6 does so for the Cohen’s kappa multiclass
maximization experiment.
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Table 8. Detailed results per classes for best performing multiclass classification models—error
minimization simulation.

Method Metric 0 1 2 Macro Avg Weighted Avg

XG-MFA precision 0.976150 0.992045 0.997705 0.988633 0.991773
recall 0.975126 0.995747 0.994550 0.988474 0.991768
f1-score 0.975638 0.993892 0.996125 0.988552 0.991768

XG-FA precision 0.974445 0.992598 0.997663 0.988235 0.991693
recall 0.976490 0.995140 0.994384 0.988671 0.991680
f1-score 0.975467 0.993867 0.996021 0.988451 0.991686

XG-GA precision 0.975531 0.992129 0.997580 0.988413 0.991650
recall 0.974916 0.995617 0.994467 0.988333 0.991644
f1-score 0.975223 0.993870 0.996021 0.988371 0.991645

XG-PSO precision 0.975925 0.992340 0.997082 0.988449 0.991591
recall 0.974286 0.995140 0.995050 0.988158 0.991591
f1-score 0.975105 0.993738 0.996065 0.988303 0.991590

XG-ABC precision 0.975525 0.991957 0.997580 0.988354 0.991579
recall 0.974706 0.995487 0.994509 0.988234 0.991574
f1-score 0.975115 0.993719 0.996042 0.988292 0.991574

XG-SSA precision 0.976835 0.991917 0.997247 0.988666 0.991642
recall 0.973657 0.995834 0.994758 0.988083 0.991644
f1-score 0.975243 0.993871 0.996001 0.988372 0.991640

XG-ChOA precision 0.976331 0.992086 0.997248 0.988555 0.991626
recall 0.974076 0.995573 0.994800 0.988150 0.991627
f1-score 0.975202 0.993827 0.996022 0.988350 0.991624

XG-COLSHADE precision 0.976441 0.992257 0.997206 0.988635 0.991697
recall 0.974391 0.995530 0.994883 0.988268 0.991697
f1-score 0.975415 0.993891 0.996043 0.988450 0.991695

XG-SASS precision 0.976028 0.992257 0.997164 0.988483 0.991609
recall 0.974286 0.995443 0.994600 0.988177 0.991609
f1-score 0.975156 0.993847 0.995981 0.988328 0.991607

support 9528 23,043 24,038 56,609 56,609

Table 9. Best obtained models’ hyper-parameters multiclass classification—error minimization experiment.

Method Learning Rate Min Child Weight Subsample Colsample by Tree Max Depth Gamma

XG-MFA 0.558224 1.390646 1.000000 0.754489 10 0.800000
XG-FA 0.900000 2.356392 1.000000 1.000000 7 0.800000
XG-GA 0.532608 1.671261 1.000000 1.000000 9 0.595526
XG-PSO 0.900000 1.209953 1.000000 0.965372 10 0.162178
XG-ABC 0.516726 1.000000 0.796465 0.842297 10 0.518501
XG-SSA 0.643381 1.000000 1.000000 0.864255 10 0.087284
XG-ChOA 0.650355 1.000000 1.000000 0.800611 10 0.000000
XG-COLSHADE 0.578265 1.981063 1.000000 0.761847 10 0.010795
XG-SASS 0.900000 2.028573 1.000000 1.000000 10 0.800000

Table 10. Overall results multiclass classification—Cohen’s kappa coefficient maximization experiment.

Cohen’s kappa (Objective) Classification Error
Method Best Worst Mean Median Std Var Best Worst Mean Median Std Var

XG-MFA 0.986785 0.986417 0.986670 0.986670 1.25 × 10−4 1.56 × 10−8 0.008267 0.008497 0.008339 0.008338 7.80 × 10−5 6.11 × 10−9

XG-FA 0.986646 0.986416 0.986585 0.986589 6.76 × 10−5 4.58 × 10−9 0.008356 0.008497 0.008393 0.008391 4.18 × 10−5 1.75 × 10−9

XG-GA 0.986646 0.985630 0.986348 0.986446 2.93 × 10−4 8.62 × 10−8 0.008356 0.008992 0.008541 0.008479 1.84 × 10−4 3.39 × 10−8

XG-PSO 0.986532 0.986136 0.986369 0.986405 1.55 × 10−4 2.41 × 10−8 0.008426 0.008674 0.008528 0.008506 9.71 × 10−5 9.42 × 10−9

XG-ABC 0.986502 0.986052 0.986224 0.986207 1.54 × 10−4 2.38 × 10−8 0.008444 0.008727 0.008618 0.008629 9.65 × 10−5 9.32 × 10−9

XG-SSA 0.986644 0.986078 0.986418 0.986460 1.65 × 10−4 2.75 × 10−8 0.008356 0.008709 0.008497 0.008470 1.04 × 10−4 1.08 × 10−8

XG-ChOA 0.986589 0.986303 0.986457 0.986460 8.53 × 10−5 7.27 × 10−9 0.008391 0.008568 0.008473 0.008470 5.29 × 10−5 2.80 × 10−9

XG-COLSHADE 0.986645 0.986277 0.986511 0.986546 1.18 × 10−4 1.41 × 10−8 0.008356 0.008585 0.008439 0.008417 7.38 × 10−5 5.44 × 10−9

XG-SASS 0.986702 0.986563 0.986603 0.986589 3.96 × 10−5 1.57 × 10−9 0.008320 0.008409 0.008382 0.008391 2.50 × 10−5 6.24 × 10−10
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Figure 5. Multiclass classification error minimization plots. (a) Objective box plot, (b) Objective
convergence, (c) Area under precision recall, (d) Area under receiver operating characteristic, (e) Data
diversity, (f) Confusion matrix.
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Table 11 presents a breakdown of precision, recall, and f1-score metrics for different
XGBoost-based metaheuristic methods for multi-classification tasks. These metrics are calculated
for each of the three classes (0, 1, 2) as well as their macro and weighted averages. The XG-MFA
method has the highest macro average and weighted average in precision, recall, and f1-score,
suggesting it tends to have the best overall performance among the methods. It is also interesting
to see the performance of the models on individual classes. For instance, the XG-GA method
achieves the best recall for class 0, XG-MFA for class 1, and XG-PSO for class 2.

Table 11. Detailed results per classes for best performing multiclass classification models—Cohen’s
kappa coefficient maximization simulation.

Method Metric 0 1 2 Macro Avg Weighted Avg

XG-MFA precision 0.976446 0.991833 0.997704 0.988661 0.991736
recall 0.974601 0.996094 0.994342 0.988346 0.991733
f1-score 0.975523 0.993959 0.996020 0.988501 0.991731

XG-FA precision 0.975333 0.992213 0.997580 0.988375 0.991651
recall 0.975231 0.995357 0.994592 0.988393 0.991644
f1-score 0.975282 0.993782 0.996084 0.988383 0.991646

XG-GA precision 0.975142 0.992085 0.997788 0.988338 0.991655
recall 0.975756 0.995400 0.994342 0.988499 0.991644
f1-score 0.975449 0.993740 0.996062 0.988417 0.991647

XG-PSO precision 0.975223 0.992467 0.997206 0.988300 0.991578
recall 0.974916 0.995226 0.994675 0.988272 0.991574
f1-score 0.975070 0.993846 0.995939 0.988285 0.991574

XG-ABC precision 0.976521 0.991830 0.997247 0.988533 0.991554
recall 0.973447 0.995704 0.994758 0.987970 0.991556
f1-score 0.974981 0.993763 0.996001 0.988247 0.991552

XG-SSA precision 0.976333 0.992086 0.997289 0.988570 0.991644
recall 0.974181 0.995617 0.994758 0.988186 0.991644
f1-score 0.975256 0.993849 0.996022 0.988376 0.991642

XG-ChOA precision 0.975126 0.992086 0.997704 0.988305 0.991617
recall 0.975126 0.995573 0.994342 0.988347 0.991609
f1-score 0.975126 0.993827 0.996020 0.988324 0.991611

XG-COLSHADE precision 0.975535 0.992086 0.997621 0.988414 0.991651
recall 0.975126 0.995573 0.994425 0.988375 0.991644
f1-score 0.975331 0.993827 0.996021 0.988393 0.991645

XG-SASS precision 0.975436 0.992173 0.997663 0.988424 0.991687
recall 0.975231 0.995704 0.994342 0.988426 0.991680
f1-score 0.975333 0.993935 0.996000 0.988423 0.991681

support 9528 23,043 24,038 56,609 56,609

Table 12 summarizes metaheuristics hyperparameters on which evaluation of Multi-
classification Cohen’s kappa coefficient was performed.

Table 12. Best obtained models’ hyper-parameters multiclass classification—Cohen’s kappa coeffi-
cient maximization experiment.

Method Learning Rate Min Child Weight Subsample Colsample by Tree Max Depth Gamma

XG-MFA 0.780152 1.000000 1.000000 1.000000 9 0.517589
XG-FA 0.900000 1.265482 1.000000 0.983060 9 0.222017
XG-GA 0.506328 1.000000 0.816145 0.945690 10 0.800000
XG-PSO 0.837106 1.000000 1.000000 1.000000 10 0.559077
XG-ABC 0.566515 2.084170 0.989990 1.000000 10 0.569104
XG-SSA 0.897294 1.103403 1.000000 1.000000 10 0.612487
XG-ChOA 0.900000 1.000000 1.000000 1.000000 9 0.800000
XG-COLSHADE 0.465601 3.091252 1.000000 1.000000 9 0.800000
XG-SASS 0.900000 1.107956 1.000000 1.000000 9 0.800000
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Figure 6. Multiclass classification Cohen’s kappa maximization plots. (a) Objective box plot, (b) Ob-
jective convergence, (c) Area under precision recall, (d) Area under receiver operating characteristic,
(e) Data diversity, (f) Confusion matrix.
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5.2. Statistical Validation

In order to further evaluate the experimental outcomes and establish their statistical
significance, the highest scores obtained from 30 independent runs of each algorithm under
consideration were collected and analyzed as a series of data. The initial step involves
determining the appropriate type of statistical tests, whether they should be parametric or
non-parametric. Initially, the suitability of parametric tests is assessed by examining the
independence, normality, and homoscedasticity of the variance in the data [62]. The inde-
pendence criterion is satisfied as every individual run of the metaheuristics begins with the
generation of a random set of solutions.

The normality assumption was assessed through the use of the Shapiro–Wilk test,
with individual problem analysis [63] for all four experiments that were conducted as part
of research: binary classification (error and Cohen’s kappa as objectives), and multiclass
classification (error and Cohen’s kappa as objectives). The Shapiro–Wilk test was indepen-
dently applied to each of the algorithms under consideration in all four regarded scenarios,
yielding p-values for each. In all instances, the resulting p-values were found to be smaller
than 0.05, indicating that the null hypothesis (H0) can be rejected. Therefore, it can be
concluded that the observed results are not originating from the normal distribution in all
four scenarios. The Shapiro–Wilk test scores for all four scenarios are provided in Table 13.

Table 13. Shapiro Wilk normality tests.

Problem XG-MFA XG-FA XG-GA XG-PSO XG-ABC XG-SSA XG-ChOA XG-COLSHADE XG-SASS

Binary Error 0.048 0.041 0.045 0.038 0.036 0.032 0.043 0.026 0.019
Binary Kappa 0.042 0.042 0.040 0.036 0.039 0.033 0.045 0.035 0.026
Multiclass Error 0.021 0.030 0.042 0.031 0.043 0.025 0.019 0.020 0.023
Multiclass Kappa 0.035 0.038 0.021 0.040 0.035 0.029 0.042 0.027 0.030

Since the normality condition was not fulfilled, it is not safe to apply the parametric
tests. Consequently, it was proceeded by applying the non-parametric Wilcoxon signed-
rank test [64] utilizing the identical data series containing the best values obtained in
each run.

The suggested MFA was utilized as the control method, and Wilcoxon signed-rank test
has been conducted over the above-mentioned data series. The calculated p-values were in
all cases lower than 0.05, for all four observed scenarios. These results clearly suggest that
the introduced MFA method performed statistically significantly better in comparison to
all contenders for both significance thresholds alpha = 0.1 and alpha = 0.05. The outcomes
of Wilcoxon singed-rank test have been provided within Table 14.

Table 14. Wilcoxon signed-rank test scores representing p-values for all four scenarios (XG-MFA
vs. others).

Problem/p-Values XG-FA XG-GA XG-PSO XG-ABC XG-SSA XG-ChOA XG-COLSHADE XG-SASS

Binary Error 0.016 0.037 0.028 0.008 0.025 0.031 0.034 0.031
Binary Kappa 0.025 0.036 0.026 0.027 0.031 0.029 0.040 0.039
Multiclass Error 0.034 0.035 0.030 0.019 0.035 0.035 0.041 0.027
Multiclass Kappa 0.040 0.026 0.028 0.024 0.042 0.036 0.038 0.033

5.3. Best Models Results Interpretation

SHAP analysis has been recognized as a method for bringing transparency to model
performance. Additionally, two different types of SHAP analysis are provided for the
performed experiments. First, XGBoost feature importance is established. The importance
is determined by considering the weights of the evaluated nodes, and in the case of
higher observation dependence on the subject node, the importance is considered higher.
The importance is calculated on a single decision tree and averaged over the rest of the
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trees. Determined feature importance for the best-attained models in both experiments are
shown in Figure 7.

(a) (b)

Figure 7. Feature importance. (a) Binary feature importance, (b) Multi-class feature importance.

Outcomes demonstrated in Figure 7a suggest that based on importance determined
by XGBoost, tcp.time_delta plays a high role in determining outcomes in binary clas-
sification, followed by the frame.time_detlta, mqtt.hdrflags and mqtt.msgtype features.
While additional features are considered they demonstrated lower importance. Similar
outcomes are demonstrated for multi-class classification in Figure 7b, with tcp.time_delta
showing high importance in determining outcomes. However, relative to the importance
of binary classification, the impact is somewhat lower. This feature is similarly followed by
frame.time_delta and mqtt.hdrflags features, which now show a higher impact relative to
binary classification.

Feature impact is calculated using SHAP similarly through the approximation ap-
proach. The process is performed with a given number of samples and the feature impor-
tance is calculated locally, on the current set. Analysis has been conducted for both binary
and multi-class experiments, and their outcomes are demonstrated in Figure 8.

(a) (b)

Figure 8. SHAP analysis. (a) Binary SHAP analysis, (b) Multi-class SHAP analysis.

Feature impact outcomes for binary classification shown in Figure 8a suggest that
tcp.time_delta contributes roughly equally to both classes, similarly to frame.time_delta
the second highest rated feature. However, outcomes for the mqtt.dfrflages suggest that
it plays a more signification role in class 1 classification. The remaining features show a
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high impact on class 0 decisions. Analysis outcomes for multi-class experiments shown in
Figure 8b mirror previous findings, with tcp.time_delta, mqtt.hdrflags, frame.time_delta
and tcp.flags.push showing the highest rate of impact. However, class-wise impacts are
interesting, indicating that class 1 decisions are mostly impacted by the first two features.

Lastly, nSHAP analysis was performed for the order of 2, 10, and the Shapley–Taylor
analysis. This allows us to determine to what extent features, including classification, count
toward a certain outcome away from a certain classification being made. In total, three
analyses were conducted that utilized nSHAP. Determined n-Shapley values up to the 10th
order are shown in Figure 9.

The outcomes of the nSHAP analysis help us observe that interactions between fea-
tures exist in the higher order for many of the features both for binary and multi-class
classification. Additionally, many of the higher-order interactions demonstrate interesting
outcomes, often contributing differently to what is experienced for the main contributions.

Table 15 displays the proposed model’s performance compared to the most used
machine-learning techniques for similar classification problems. The performance was
evaluated by the error minimization problem. The results confirm the performance of
the novel solution as it obtains the highest scores for all metrics, except recall where the
decision tree obtained the best score.

Table 15. IoT-Flock generated healthcare dataset commonly used machine learning classifier perfor-
mance for malicious and normal traffic prediction.

ML Classifier Precision Recall Accuracy F1-Score

NB 79.6712 99.7052 52.1821 68.5093
KNN 99.6501 99.6865 99.4872 99.5868
RF 99.7069 99.7954 99.5121 99.6534
AB 99.5547 99.4457 99.5037 99.4748
LogR 95.2879 90.3515 99.5036 94.7071
DT 99.6945 99.7992 99.4788 99.6389
XG-MFA 99.6998 99.6997 99.6997 99.6996

(a) (b)

Figure 9. nSHAP analysis of order 10. (a) Binary nSHAP analysis of order 10, (b) Multi-class nSHAP
analysis of order 10.
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The attained Shapley–Taylor interaction index outcomes can be observed in Figure 10.

(a) (b)

Figure 10. Shapley–Taylor analysis. (a) Binary Shapley–Taylor analysis, (b) Multi-class Shapley–
Taylor analysis.

Finally, faithful Shapley interaction index can be seen in Figure 11.

(a) (b)

Figure 11. nSHAP analysis of order 2. (a) Binary nSHAP analysis of order 2, (b) Multi-class nSHAP
analysis of order 2.
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6. Conclusions

The exploration of machine learning algorithms, particularly those optimized by the
modified firefly algorithm, has offered a profound perspective on addressing the security
challenges associated with the integration of IoT in Healthcare 4.0.

The models developed in this study have demonstrated impressive performance in
detecting security issues within IoT devices used in healthcare, emphasizing the efficacy
and potential of machine learning coupled with the modified firefly metaheuristics. Notably,
XG-MFA emerged as a highly accurate model, exhibiting an accuracy of 0.991733 in multi-
classification tasks, underlining its proficiency in addressing complex, real-world security
detection challenges.

Further, the application of SHAP enabled a deeper understanding of the factors
contributing to security issues in IoT devices. By identifying these key influencers, we can
enhance our prevention strategies and design more robust and secure systems, thereby
promoting the sustainability of IoT systems in healthcare.

Our results highlight the power and importance of using advanced, optimized machine
learning techniques in cybersecurity within the healthcare sector. Nevertheless, despite the
promising results achieved, this area still has vast untapped potential. We encourage future
work to further explore and enhance the use of machine learning algorithms in ensuring
the security of IoT devices in healthcare, especially in light of the rapid development and
integration of IoT systems in everyday life.

In conclusion, while challenges persist in the integration of IoT in healthcare, this
study proves that strategic use of machine learning algorithms, like the ones optimized by
the modified firefly algorithm, can significantly mitigate these issues. This paves the way
for sustainable, secure, and more effective healthcare supported by the Internet of Things.
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