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Abstract: The critical challenge of enhancing the resilience and sustainability of energy management
systems has arisen due to historical outages. A potentially effective strategy for addressing outages in
energy grids involves preparing for future failures resulting from line vulnerability or grid disruptions.
As a result, many researchers have undertaken investigations to develop machine learning-based
methodologies for outage forecasting for smart grids. This research paper proposed applying
ensemble methods to forecast the conditions of smart grid devices during extreme weather events
to enhance the resilience of energy grids. In this study, we evaluate the efficacy of five machine
learning algorithms, namely support vector machines (SVM), artificial neural networks (ANN),
logistic regression (LR), decision tree (DT), and Naive Bayes (NB), by utilizing the bagging ensemble
technique. The results demonstrate a remarkable accuracy rate of 99.98%, with a true positive rate
of 99.6% and a false positive rate of 0.01%. This research establishes a foundation for implementing
sustainable energy integration into electrical networks by accurately predicting the occurrence of
damaged components in the energy grid caused by extreme weather events. Moreover, it enables
operators to manage the energy generated effectively and facilitates the achievement of energy
production efficiency. Our research contributes to energy management systems using ensemble
methods to predict grid vulnerabilities. This advancement lays the foundation for developing resilient
and dependable energy infrastructure capable of withstanding unfavorable weather conditions and
assisting in achieving energy production efficiency goals.

Keywords: extreme events; resilience; energy management resilience; ensemble methods

1. Introduction

Energy is a vital resource that underpins modern cultural life, making efficient energy
management crucial for sustainability. Traditionally, energy grids have relied on fossil
fuels for generation, and the conventional grid faces numerous challenges, including
capacity limitations and vulnerability to power outages. Extreme weather events, such
as hurricanes, pose significant threats to the energy grid and the communities it serves,
resulting in substantial damage to critical infrastructure and industries. Resilience, a
system’s ability to absorb and respond to external events, is an essential quality sought
after in vital lifeline systems like energy grids [1]. The rise in power shutdowns triggered
by severe weather conditions due to deteriorating climate change has spurred research
efforts to enhance community resilience [2]. The high consumption and ever-increasing
demand for electricity across commercial, residential, and industrial sectors have prompted
researchers to seek new technologies to predict damage to power system components
during adverse weather conditions and cyclones [3–7].

Building resilience in energy grids becomes paramount to cope with catastrophic
events, like extreme hurricanes. Consequently, this paper focuses on predicting the state of
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energy grid components in the face of cyclones and windstorms to enhance grid resilience.
Accurate prediction of hurricane consequences can significantly improve grid resilience.
By anticipating potential impacts and identifying vulnerable parts, the energy system can
more effectively prepare for and respond to cyclones and windstorms. This enables better
prevention planning and more efficient post-event recovery procedures. Blackouts are
becoming increasingly prevalent, with extreme weather events occurring more frequently
and severely due to climate change [8]. Several studies have addressed grid resilience and
post-disaster restoration in the context of extreme events like hurricanes [9–15]. Three-
dimensional SVM was proposed for component classification into damaged, operational,
and uncertain categories in response to hurricanes [16]. However, this paper introduces a
novel approach based on ensemble machine learning methodologies to predict energy grid
component outages during cyclones and windstorms.

In this paper, we employ an ensemble of five machine learning models: logistic regres-
sion (LR), support vector machines (SVM), decision trees (DT), artificial neural networks
(ANN), and Naive Bayes. The bagging technique is utilized for voting and real-time deploy-
ment, classifying energy system components into two classes: damaged and operational,
in response to impending hurricanes. While machine learning applications in energy
grids have been explored before [17–21], our study distinguishes itself by using ensemble
methods to enhance prediction accuracy and address the specific challenges posed by
hurricane-induced outages. The primary objective of this paper is to present a power
outage prediction model for energy grid components using practical machine learning
algorithms. By incorporating ensemble methodologies, we aim to improve prediction
accuracy and contribute to the overall resilience of energy grids in the face of extreme
weather events. In the subsequent sections, we provide details of our methodology, dataset,
experimental setup, and results. Furthermore, we compare the performance of our pro-
posed ensemble model against individual machine learning algorithms, showcasing the
superiority of our approach.

This paper contributes to the field of energy grid resilience by introducing an inno-
vative ensemble-based prediction model for hurricane-induced outages. By accurately
identifying vulnerable components, our approach enables more effective pre- and post-
event planning, ultimately enhancing the resilience of energy grids in the face of extreme
weather events.

The rest of the paper is organized as follows: Section 2 presents the problem statement.
Section 3 presents the proposed ensemble methods for component outage prediction.
Section 4 presents the outcomes of a test system, and Section 6 concludes the paper.

2. Related Work

The energy grid resilience and outage prediction field has seen considerable research
in recent years. Various studies have explored different aspects of enhancing grid resilience
and dealing with the challenges of extreme weather events, such as hurricanes. This section
reviews the relevant literature that has addressed similar topics and methodologies.

2.1. Grid Resilience and Disaster Management

Several works have investigated the resilience of energy grids to extreme events,
like hurricanes. Hossain et al. (2021) explored metrics and enhancement strategies for
grid resilience and reliability during natural disasters, providing valuable insights into
addressing power system vulnerabilities in extreme weather events [2]. Judge et al. (2022)
provided an overview of smart grid implementation, highlighting frameworks, impacts,
performance, and challenges associated with enhancing grid resilience [3].

Wang et al. (2022) conducted a systematic review of power system resilience from
the perspective of generation, network, and load, identifying areas that require special
attention to enhance resilience against natural disasters [4]. Umunnakwe et al. (2021)
performed a quantitative analysis of power system resilience, highlighting the need for
standardization and categorization, and addressing challenges in building resilient power
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systems [5]. Zhang et al. (2021) proposed stochastic pre-event preparation to enhance the
resilience of distribution systems, providing valuable insights into improving the system’s
ability to withstand extreme weather events [6]. Wang et al. (2022) explored multi-stage
stochastic programming to enhance the resilience of integrated electricity and natural gas
distribution systems against typhoon natural disaster attacks, highlighting the significance
of proactive measures in mitigating damages [7]. Liu et al. (2022) proposed a sequentially
preventive model to enhance power system resilience against extreme-weather-triggered
failures, offering a systematic approach for minimizing the impact of extreme weather
events [8]. A case study on restoring the energy management system along the Gulf Coast
of the U.S. after Hurricane Katrina provided insights into post-disaster restoration and
telecommunications and power transmission [21]. Deterministic and stochastic models
have been proposed for managing resources before and after extreme events, focusing
on reducing load curtailment and optimizing restoration schedules [16,19–22]. While
machine learning has been applied to energy grid problems, ensemble methods have shown
promise in improving prediction accuracy. Three-dimensional SVM was proposed for
component classification into damaged, operational, and uncertain categories in response
to hurricanes [16]. However, applying ensemble techniques for predicting energy grid
component outages during storms still needs to be explored.

2.2. Resilience Index and Multi-Infrastructure Systems

Studies have introduced resilience indices to evaluate the resilience of power systems,
considering factors such as distribution efficiency, generation efficiency, and carbon inten-
sity [19]. A methodology for determining the power management systems’ resilience index
during infrastructure recovery has been proposed, analyzing multi-system networked
infrastructures [20]. Research has compared different modeling approaches and strategies
for resilience improvement in energy grids [22]. Moreover, predictive models for hurricane-
induced outages have been evaluated based on data-driven measurements, component
failures, potential customer impact, and outage durations [23].

2.3. Machine Learning Applications in Energy Grids

Machine learning algorithms have been increasingly utilized in energy grid applica-
tions. This paper [24] introduces an innovative approach to enhance power grid resilience
against wildfires using reinforcement learning (RL). By developing a proactive control
system, the study emphasizes the importance of anticipating and mitigating potential
damage caused by wildfires. When leveraging RL algorithms, the proposed system op-
timizes responses to wildfire threats, ensuring efficient actions to minimize disruptions
and downtime during fire incidents. The interdisciplinary collaboration between computer
science, power systems engineering, and industrial informatics enriches the research’s
real-world relevance. However, the paper would benefit from providing clearer details
on the RL algorithms used, a comprehensive performance evaluation, and a compara-
tive analysis against traditional control strategies or state-of-the-art approaches. Overall,
the study offers valuable insights into enhancing power grid resilience in wildfire-prone
regions through proactive measures. The authors of [25] presented a machine learning
(ML) energy management system to mitigate grid disasters. The study utilizes ML algo-
rithms to optimize the energy management process and enhance grid resilience during
disasters. The proposed energy management system can dynamically adapt and respond
to changing conditions by integrating ML techniques, ensuring efficient energy distri-
bution and consumption even in disaster scenarios. The interdisciplinary collaboration
between ML and energy management specialists enriches the research’s practical relevance
and applicability. However, the paper could benefit from providing more specific details
on the ML algorithms used and conducting a comprehensive performance evaluation to
demonstrate the system’s effectiveness in disaster mitigation. Overall, the study offers
valuable insights into employing ML for energy management in grid disaster scenarios
and showcases the potential for enhancing grid resilience through proactive measures. The
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authors of [26] introduce a novel approach for optimizing post-disaster control in islanded
microgrids using multi-agent deep reinforcement learning (MARL). The study focuses on
enhancing the resiliency of islanded microgrids after a disaster by leveraging advanced
MARL techniques. Through collaborative learning among multiple agents, the proposed
approach enables the microgrid to adapt and optimize its control strategies in response to
post-disaster conditions, ensuring efficient energy management and rapid recovery. The
interdisciplinary collaboration between deep learning experts and microgrid control spe-
cialists enriches the research’s practical significance and applicability. However, the paper
could benefit from providing more specific insights into the MARL algorithm and conduct-
ing a comprehensive evaluation to demonstrate its effectiveness in optimizing post-disaster
control. Overall, the study offers valuable insights into utilizing MARL for enhancing the
resiliency of islanded microgrids and highlights the potential of this approach in improving
disaster response and recovery in decentralized energy systems. The authors of [27] present
a novel deep reinforcement learning (RL) framework designed to enhance the resilience
of distribution systems during extreme weather events. The study focuses on leveraging
deep RL algorithms to optimize the response of distribution systems to adverse weather
conditions, ensuring reliable and efficient energy distribution even in challenging scenarios.
The proposed framework utilizes advanced RL techniques to adaptively learn and improve
control strategies, enabling the distribution systems to withstand and recover from extreme
weather events effectively. The interdisciplinary collaboration between RL experts and
power systems engineers enriches the research’s practical significance and applicability.
However, the paper could further elaborate on the deep RL algorithms employed and
comprehensively evaluate the framework’s effectiveness in enhancing distribution system
resilience. Overall, the study offers valuable insights into utilizing deep RL for bolstering
distribution system resilience and highlights its potential in addressing the challenges
posed by extreme weather events in electrical power systems. In this paper [28], the author
presents an innovative approach to bolstering power grid resilience by utilizing advanced
hybrid machine learning models. The study is motivated by integrating renewable en-
ergy resources into intelligent grids, aiming to develop a more sustainable energy system
and mitigate climate change’s impact. The research emphasizes the vital role of machine
learning hybrid models in predicting energy demand and optimizing the utilization of
renewable energy sources to improve power grid efficiency and reliability. Specifically,
the study focuses on real-time fault detection and remediation techniques, proactively ad-
dressing potential issues within the power grid, preventing power outages and minimizing
consumer disruption. The results demonstrate the effectiveness of the proposed models,
with CNN-GRU achieving the highest accuracy (93.92%) and the lowest MAE and MSE
losses at 0.14 and 0.05, respectively. CNN-LSTM and CNN-RNN also performed well, with
93.05% and 92.85% accuracy, respectively. Overall, the research concludes that machine
learning hybrid models, including CNN-RNN, CNN-LSTM, and CNN-GRU, can effectively
detect and eliminate faults in grid stations, facilitating the integration of renewable energy
sources and enhancing power grid efficiency and reliability. The potential of combining
machine learning, artificial intelligence, reinforcement learning, and advanced control tech-
niques opens promising avenues for future grid resilience and sustainability. The paper’s
contributions lie in its practical relevance, addressing critical aspects of modern power
grids and providing insights into the potential of advanced machine learning techniques
in enhancing power grid resilience while aligning with broader sustainability goals in
power systems.

2.4. Exploring Diverse Original Classification Methods for Predicting Energy Grid Vulnerabilities

The Human Knowledge Database utilized in this study encompasses a diverse range of
classification methodologies rooted in the expertise of human operators [29]. These methods
reflect the historical practices employed to predict energy grid vulnerabilities during
extreme weather conditions [30]. One such approach involves the formulation of heuristic
rules, wherein experts have devised rule sets informed by their domain knowledge [31].
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For instance, rules linking heightened wind speeds and heavy rainfall to an elevated risk
of power outages exemplify this strategy. Moreover, pattern recognition techniques have
been leveraged, enabling experienced human operators to discern recurring combinations
of weather factors that have historically precipitated grid vulnerabilities [32].

The authors of [33] constructed index-based methods, exemplified by creating a “Phys-
ical Vulnerability Index” that amalgamates various weather parameters, such as rainfall
intensity, wind speed, and temperature. Furthermore, human operators have harnessed
decision trees to sequentially navigate weather conditions based on well-established trees
developed over years of experiential insights. Domain-specific heuristics have evolved
through time, fostering a nuanced comprehension of how distinct weather conditions
impact diverse energy grid components, thereby enriching the classification process.
Experience-based categories that help an operator to predict weather conditions rang-
ing from “low risk” to “moderate risk” and “high risk” have emerged from intuition and
accumulated experiences with past weather events [34].

Moreover, time series analysis has been instrumental, enabling human experts to
scrutinize temporal weather and vulnerability trends, uncovering valuable correlations [35].
These methodologies, rooted in human expertise, form a foundational basis for the study’s
investigation into energy grid vulnerability prediction, further enriched by integrating
contemporary computational machine learning techniques.

Our work distinguishes itself by proposing an ensemble method based on machine
learning to predict energy grid component states during hurricanes. By leveraging multiple
machine learning algorithms and the bagging technique, our approach aims to provide
accurate and reliable predictions, enhancing grid resilience and disaster preparedness. In
the subsequent sections, we present our proposed ensemble-based prediction model’s
methodology, dataset, experimental setup, and results. A comparative analysis in the
discussion section with individual machine-learning algorithms further demonstrates the
effectiveness of our approach in predicting hurricane-induced outages.

3. Problem Statement

The efficiency and quality of each component in the grid both during and after extreme
weather events are considered when determining the resilience index. There has been a
growing need to predict the status of the grid’s components and maintain its resiliency
in every condition and case. During extreme weather, a grid components status can be
classified as operational (in service) or damaged (out of service). Several features have
been taken from historical data using a case study of the NEOM region in the north of
Saudi Arabia, which could be used to categorize the state of each component into two
statuses (operational or damaged). In this paper, ensemble methods are used to predict
the components’ state and to distinguish between operational and damaged status. The
features that are used to determine this are discussed in the section that follows, along with
a brief introduction to ensemble methods. These three papers [36–38] have provided state-
of-the-art reviews on power grid resilience and several machine learning-based techniques;
they serve as motivation for us to address the problems reported in their studies.

4. Proposed Ensemble Method for Outage Prediction

In machine learning (ML), ensemble learning combines the results of various classi-
fications made using ML in order to improve accuracy and increase attack classification
detection performance. An overview of the machine learning and ensemble methods is
given in this section. Various algorithms are used for the dataset, and the accuracy score is
computed until the highest score is achieved. While the testing is completed online in real-
time deployment mode, the training is performed offline using historical data. Combining
homogeneous and possibly heterogeneous algorithmic classifiers in ensemble learning (EL)
might result in a more accurate predictive model with a faster inference time [39].
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4.1. Insights into Training Data Scenarios

To provide a comprehensive understanding of the original classification methods
employed by human experts, we have developed a flow diagram that illuminates insights
into the training data scenarios used in energy grid forecasting during extreme weather
events. This diagram, depicted in Figure 1, captures the key factors and decision points
that guided human operators in their classification process.
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Figure 1. Flow Diagram of Insights into Training Data Scenarios.

The flow diagram begins with weather data, weather statistics dataset, and grid
station human knowledge database, then identifies historical weather data and real-time
weather forecasts as foundational inputs for the classification process. Human operators
then consider a range of environmental parameters, such as wind speed, temperature,
humidity, and precipitation levels, as well as grid-specific factors, including load demand,
transmission line vulnerabilities, and equipment conditions.

Crucially, the diagram highlights the iterative nature of the classification process,
wherein human experts continually validate and update the classification based on ongo-
ing observations and feedback. This iterative loop reinforces the adaptability of human
operators and underscores the significance of domain expertise in responding to dynamic
conditions. By visualizing the insights into training data scenarios, the flow diagram clearly
depicts the multifaceted considerations that shape human classification methods. This visu-
alization enriches the context of our research and underscores the importance of integrating
such domain knowledge into our machine learning-based approach. In the next section, we
will discuss how our machine-learning ensemble leverages these insights to complement
and enhance its predictive capabilities, ultimately contributing to the resilience of energy
grids during extreme weather conditions.

4.2. Support Vector Machines (SVM)

SVM is a classification method that forms a separation hyperplane among two cat-
egories. The support vector machine (SVM) model utilized in this study combines the
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strength of traditional statistical methods with analytical simplicity, making it particularly
effective, even for small datasets. For this experiment, linear SVM classifiers were selected
due to their faster training time and lower computational complexity compared to non-
linear SVMs. Additionally, linear SVM classifiers are well-suited for high-dimensional data
applications, eliminating the need for additional feature engineering [40].

The SVM algorithm can be described using the following variables:

Training data D = {xi, yi}Ni = 1 (1)

Input vectors xi = (x(1)i, . . . , x(n)i)T ∈ Rˆn (2)

Target labels yi ∈ {−1,+1} (3)

The conditions for SVM are defined as:

yi[wTΦ(xi) + b] ≥ 1, f or i = 1, . . . , N (4)

Here, w represents the weight vector, and b is the bias term. The non-linear transfor-
mation function is denoted as:

Φ(·) : Rˆn → RˆnK (5)

The SVM algorithm finds a separating hyperplane between two parallel hyperplanes
given by:

wTΦ(xi) + b = 0 (6)

with a margin width of 2‖w‖2.
The classifier’s decision is made using the formula:

sgn(wT Φ(xi) + b) (7)

The final SVM function is formulated as:

sgn
(
∑ Ni ξi yi K(xi, xi) + b

)
(8)

In this way, the SVM model effectively classifies data points into distinct classes,
contributing to accurate predictions and robust performance in the experiment.

4.3. Logistic Regression (LOR)

Logistic Regression is a method to predict values for the dependent variable between
0 and 1 using the regression formula [41]:

y = ê(b0 + b1x1 + . . . + bnxn) / (1 + eˆ(b0 + b1x1 + . . . + bnxn)) (9)

Additionally, we can transform the probability “p” of the dependent variable “y” as
follows:

p′ = log_e(p / (1− p)) (10)

where p′ can range between +∞ and −∞. The transformed values will be used in the
ordinary linear regression, and the final equation becomes:

p′ = b0 + b1x1 + b2x2 + . . . + bnxn (11)

4.4. Decision Trees (DT)

Decision trees [42] are one of the important methods in machine learning that work
on linear as well as non-linear data. These algorithms work according to the rules made
on data. The accuracy of the decision trees heavily depends on the decision to split the
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tree, i.e., deciding on the correct number of splits. The basic motive of a decision tree is to
predict the target variable’s value based on the simple decision rules extracted from the
related features set. A decision tree employs a tree-like model to represent options and
their potential results, including several variables and chance event outcomes. In a decision
tree, the internal node is the depiction of the applied test, and the tree branch represents
the output of the test performed. A decision tree comprises a tree flowchart-like structure
that can handle both categorical as well as numerical data. This strategy is different for
regression as well as classification trees. Therefore, multiple algorithms are utilized to
divide a node into at least two sub-nodes. The nodes are partitioned by the decision trees
on all the variables which are available and the division that yields identical sub-nodes
is selected. Initially, the algorithm starts from the decision’s tree root node to predict the
class in a given dataset. Then, the values of the root are compared with the record attribute
present in the real dataset. Depending on this comparison, a jump is made to a different
branch to start with the next node.

The value of the attribute is re-compared with the value of other sub-nodes for the next
node to move in a further direction. This procedure continues until the algorithm reaches
the destination node of the tree, i.e., leaf node. The entire process can be summarized by
the following steps.

1. Start with the root node of the tree ‘R’. This node includes the entire dataset.
2. Determine the best attribute of the options in the dataset with the help of some

attribute selection measure (ASM).
3. Splitting the root node ‘R’ into subsets ‘S’, which contain all the possible values for

the best attributes.
4. The node, i.e., decision tree node which has the best attribute, is generated.
5. By utilizing the subsets of the entire dataset as constructed in step no. 3, generate new

decision trees recursively.
6. Continue with this procedure until further splitting of the node is not possible and

the current node will be the final node, i.e., the leaf node.

To select the attribute in step 2, there are several methods, but the most widely used
ones include information gain and the Gini index. The number of subsets that the nodes
should reach is determined by these measurements.

4.5. Artificial Neural Network (ANN)

ANN is an essential part of the machine learning method that is now the most widely
used in research and development. ANN’s draw inspiration from the biological human
brain, which is a network with potentially 60 trillion linked neurons that execute network
patterns of decision-making [40]. This fundamental concept serves as the foundation for
the artificial neural network process, which begins with very basic, easily comprehendible
interconnected neurons operating as a single processor. Consequently, from the primary
concept of the information processing cycle, ANNs perform complex mathematical formu-
lations to arrive at optimal results for any given dataset or problem segment. In developing
the models in this study, different variants of artificial neural networks (ANNs) were de-
liberately selected to explore and harness their unique capabilities for the specific task at
hand. ANNs are known for their ability to model complex relationships and patterns in
data, making them suitable for various applications. Multiple ANN variants allowed the
researchers to evaluate their performance under different scenarios and data characteristics.
For instance, a feedforward neural network was chosen for its simplicity and effectiveness
in handling structured data. By leveraging these diverse ANN architectures, the study
aimed to comprehensively assess their strengths and limitations in addressing the specific
challenges of the problem domain, ultimately paving the way for more informed decisions
and model selection in real-world applications. There are also different types of activation
functions that can be used in ANN, but the simplest one is the rectified linear activation
function, or ReLU. The ReLU function normally chooses the highest value for the output
from the linear combination of inputs from the previous nodes [43]. ReLU was chosen
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since it produces either all zeros or all ones as its output. In addition, the grid includes
all numerical functions within a specific range and is either stable (represented by “1”) or
unstable (represented by “0”) with regard to our dataset. The “sigmoid” function is used
as an activation function for the output layer because the dataset only has two prediction
classes, indicating that the dataset will be classified logistically.

ReLu = 0 i f x < 0 (12)

or
ReLu = 1 i f x ≥ 0 (13)

where the ReLU function is defined as follows: f (x) = max(0, x) meaning that the output
of the function is maximum between the input value and zero, and the input value is x.
This can also be written as:

ReLu = 1 i f x ≥ 0 (14)

The adaptive optimization method, often known as “Adam”, is an optimization
approach which is most widely used to forecast grid stability to enhance the performance
of ANN [44]. The Adam optimizer function can aid in ANN network weight optimization.
It also aids in improving the ANN model’s learning rate.

4.6. Naive Bayes

The Naive Bayes model is a machine learning classification model known for its
independence assumption, meaning that other attributes do not influence the probabilities
of one instance. It has been observed that the Naïve Bayes classifier often produces accurate
results. However, it can underperform due to issues arising from training data noise,
variance, and bias [44]. According to the algorithm explanations in [44], the features or
vectors are presented as X = (X1, . . ., Xn) from domain Di, where lowercase “x” represents
the value of a vector. The unobserved class C is one of the “m” values represented as C ∈ {0,
. . ., m−1}, and it is obtained by g(x), where g: Ω→ {0, . . ., m−1}, and Ω = D1 × . . . × Dn.

The Naïve Bayes discrimination function is given as:

f _NB(x) = ∏(j = 1 to n) P(Xj = xj
∣∣ C = i) P(C = i) (15)

4.7. Bagging

There are three main classes or methods of ensemble learning (EL), including bagging,
stacking, and boosting. In our study, we used the bagging technique. The process of
bagging involves averaging the results of numerous decision trees which have been fitted
to distinct samples of the same dataset. Consider a training set T = t1, . . . , tn and responses
L = l1, . . . , ln . The bagging algorithm selects a random sample and replaces the training
set periodically (P times) before fitting trees of various sizes to these samples. The process
depicted in Algorithm 1 can be used to accomplish this.

f̂ =
1
P

P

∑
b=1

fb
(
X′

)
(16)

Algorithm 1 Bagging classifier

1: for b = 1, . . . P: do
2: Sample, with replacement, n training examples from T, L; call these Tb, Lb.
3: Train a classification tree, fb on Tb, Lb.
4: Predictions for samples that were unseen x0 after training.
5: Calculate the final predictions from each individual fb on x0 to take the average of all

predictions for regression or the majority vote for a classification task by using Equation (5).
6: end for
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4.8. Features of Component

An individual quantifiable feature of an observed phenomena is what machine learn-
ing refers to as a “feature” [41]. The effectiveness of the classification approach highly
depends on the choice of discriminating, independent, and informative variables. To fig-
ure out the status of the components just after a hurricane strike, major features might
be defined. In [25], the wind speed and the distance between each component from the
hurricane’s center have been suggested in response to a hurricane. These features provide
sufficient information, but they do not reveal information about the component itself. In
this paper, wind speed, wind direction, solar irradiance, pressure, temperature, and rain
are examined as six key features to predict the state of each component as a result of
the hurricane.

4.9. Evaluation Metrics

There are numerous evaluation criteria that can be used to assess the classification
method’s acceptability and reliability as found in the literature. The most standard method
for assessing a classification system is accuracy, which is usually calculated as the ratio of
the number of accurate predictions to the total samples in the testing set.

Accuracy =
correct classi f ication

all classi f ication
(17)

Precision (P) is the ratio of actual predicted outages to overall predicted outages and is
defined as:

Precision (P) =
True Positive

Total Predicted Positive
(18)

Recall (R) is the ratio of accurately predicted outages to all actual outages and can be
calculated as follow:

Recall (R) =
True Positive

Total Actual Positive
(19)

F1-Score evaluation of historical data is used to test the efficacy of the produced
decision boundary.

F1 =
2PR

P + R
(20)

4.10. Ensemble Classifier

Ensemble classifiers in this study differ from existing ensemble approaches that com-
bine ML classifiers to improve accuracy. The following are some of the most common
models utilized:

4.10.1. Mean Ensemble Voting

This ensemble type aims to find the average decisions of all base classifiers as depicted
by the equation adapted from [32]:

ŷ = Average {ŷ1, ŷ2, ..., ŷk} (21)

4.10.2. Weighted Ensemble Voting

To predict the class label ŷ, considering the weight ω related to classifier ƒ, the formula
used is:

ŷ = ∑ (ωi × ŷi)/∑ω (22)

where ω is the characteristic function and A is the set of class labels, computed using the
formula:

ωi = ƒi ∈ A (23)
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4.10.3. Accuracy in Weighted Ensemble Voting

This approach operates similarly to weighted accuracy, where the weight ω is replaced
by the accuracy of each base classifier. The accuracy is calculated by:

Accuracy = (∑True Positive + ∑True Negative)/∑Total Population (24)

4.10.4. Proposed Ensemble Voting

The ensemble approach adopted and modified in this study is “Accuracy as Weighted
Ensemble Voting”. The weight represents the accuracy of each classifier, which is already
used in classification. The proposed approach uses confusion matrices and a numerical
array to store accurate prediction values. The significance of the proposed ensemble lies
in utilizing the accuracy of each class or label among all base ML classifiers. Rather than
using overall accuracy as an absolute measure, this approach considers the strength of each
base classifier, making it a more suitable approach for the labeling process. Algorithm 1
illustrates the calculation of weights for base ML classifiers and the process of combining
them for ensemble voting. Algorithm 2 describes the ensemble voting algorithm.

Algorithm 2 Ensemble Voting Algorithm

Require: X: A data stream of sentences inserted from a file.
Require: Y: A label of the sentences
Require: C lf (i): Number of algorithms used [ANN, SVM, Naive Bayes, Decision Tree, Bagging
Classifier].
Ensure: W: An array of weights assigned for each C lf (i)
Ensure: Voting_Accuracy: Represents the proposed ensemble voting model.
1: {Data preprocessing stage}
2: Tokenize sentences in X
3: Remove spaces and stop words in X
4: Convert X to numerical representation using a converter function
5: Convert labels (Y) to numerical representation using a converter function
6: Split data into training and testing portions:

train_data(X, Y), test _data(X, Y)
7: for each model in C lf (i) do
8: C lf (i) ← f it (train_data (X, Y)
9: P (y′) ← Predict (test_data (X))
10: Result ← Compare (P (y′), Y)
11: Conf (i) ← Calculate_Confusion_matrix (Result)
12: Accuracy(i)← Result

Y×100
13: end for
14: {Give a weight for each model}
15: Combine the diagonals of all confusion matrices into one matrix:

Conf_matrix ← [[Conf (i :). diagonal]]
16: Find the maximum of each column that will represent the algorithm weight:

W ← max_column (Conf_matrix(i))
17: V_result← Voting_algorithm (C lf (i), W (i))
18: Voting_Accuracy ← V result

Y×100 = 0

5. Discussion

We proposed an ensemble model in which several models (commonly referred to as
weak learners) were trained to address the same issue and were then combined to provide
superior outcomes. The basic hypothesis is that, by properly combining some of these weak
models, we can create more accurate and/or resilient models that can be used as building
blocks for creating sophisticated models. The aim of ensemble methods is to improve
performance by combining some of these weak learners to generate stronger learners (or
ensemble models) that have less bias and/or variation. We have used the ensemble of five
machine learning models, which are logistic regression (LOR), support vector machines
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(SVM), decision trees (DT), artificial neural network (ANN) and Naive Bayes. We have ap-
plied bagging technique to vote for and predict the final output. Bagging is a homogeneous
model of weak learners that learn independently in parallel and combine their output to
determine the average of these independent models’ predictions (for regression) or the
majority vote (for classification). The final output was obtained using different classifiers
to predict the components’ state. Then, the performance of all the methods is evaluated
using various performance evaluation techniques to find the best method. This ensemble
model is trained to classify components into two categories (damaged and operational) in
response to an impending hurricane. For each element, the model is trained on a variety of
features (wind speed, wind direction, solar irradiance, pressure, temperature, and rain).

In this work, different data preprocessing techniques were used, including data trans-
formation, data cleaning, missing data handling, and resampling. The purpose of prepro-
cessing is to transform the raw data into a processed form to attain more accuracy and
increase the performance of the model. The trained ensemble model determines the state of
each component in accordance with the predicted hurricane. In order to lessen the associ-
ated aftermath, it can be extremely important to schedule available resources in a proactive
manner in reaction to these events. Security-constrained unit commitment (SCUC), a crucial
decision-making mechanism in the operation of the energy market, has been the subject
of in-depth study [45]. The event-driven security-constrained unit commitment (E-SCUC)
problem is resolved to produce an ideal and resilient schedule of the resources in response
to the hurricane once the state of each system component is estimated [38].

5.1. Experiment Details

In this section, we provide a comprehensive overview of the experimental setup and
details that, in the proposed ensemble approach for power grid component state prediction,
we were told to use to assess the initial sample size’s impact on our model’s accuracy.
The dataset was preprocessed according to the methodology outlined in the proposed
model section. Data transformation, cleaning, handling missing data, and resampling
techniques were applied to ensure the data’s quality and suitability for training and testing
the ensemble model. To investigate the effect of the initial sample size, we performed
data splitting, dividing the dataset into training and testing sets. The split was conducted
with 70% of the data allocated to the training set and 30% to the testing set. This split
proportion was chosen based on the ratio of the number of classes used and the overall
dataset size. By using the 70–30 split, we ensured that each class was well-represented
in training and testing data, maintaining a balanced dataset throughout the experiment.
We conducted a series of experiments with various data split percentages to explore the
impact of different initial sample sizes on prediction accuracy. The initial sample sizes
were adjusted from 60–40 to 80–20 in 5% intervals. For each split percentage, we evaluated
the performance of our model on the power grid component state prediction task. The
prediction accuracy was used as the primary evaluation metric to assess the performance of
the ensemble method. We measured the accuracy of the models in correctly predicting the
state (damaged or operational) of each power grid component in response to an impending
hurricane. The experimental results revealed essential insights into the relationship between
the initial sample size and the accuracy of the ensemble model. We observed that, as the
sample size increased, the prediction accuracy of the models improved. Larger initial
sample sizes allowed the ANN models to learn more effectively from the data, leading
to enhanced generalization and better performance. Based on the experimental findings,
we concluded that the initial sample size significantly impacts the accuracy of the ANN
models in the proposed ensemble approach for power grid component state prediction.
A more significant sample size results in improved prediction accuracy, providing better
resilience and preparedness in the face of extreme weather events. The 70–30 data split used
in the ensemble model was found to balance training and testing data, ensuring robust and
accurate predictions. These experimental results validate the effectiveness and reliability of
our proposed approach for enhancing power grid resilience.
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5.2. Results

Table 1 compares evaluation metrics of the five models: logistic regression (LR),
decision tree (DT), support vector machine (SVM), Naive Bayes (NB), and artificial neural
network models (ANN). As can be noticed, among the trained models, bagging and the
logistic regression achieved the best overall classification accuracy, with values of 0.99979
and 0.99974, respectively; they also gave the highest performance in precision, recall, and
F1 score.

Table 1. Comparison of the performance of five models using the bagging classifier.

Evaluation Metrics

Models Accuracy Precision Recall F1-Score

LR 99.96 99.95 99.97 99.96
DT 99.95 99.95 99.96 99.95

SVM 99.92 99.89 99.94 99.91
NB 98.91 98.96 98.57 98.76

ANN 60.69 33.44 50.00 40.08
Proposed Ensemble

Classifier 99.90 99.96 99.98 99.96

Table 1 presents the performance metrics of various machine learning algorithms
evaluated in this study for forecasting smart grid device conditions during extreme weather
events. Notably, the presented results demonstrate the remarkable accuracy rates achieved
by support vector machines (SVM), logistic regression (LR), decision tree (DT), and Naive
Bayes (NB), where accuracy levels consistently exceeded 98%. These findings underscore
these models’ proficiency in handling the problem domain’s intricacies. However, an
intriguing observation emerges when considering the artificial neural network (ANN)
performance. The ANN displays comparatively lower accuracy in isolation, achieving
approximately 60.69%. This lower performance indicates the inherent complexities and
challenges of modeling such dynamic and multifaceted systems. While the isolated per-
formance of the ANN may seem counterintuitive, it aligns with our deliberate strategy
to use ANN as a baseline for comparison and as a catalyst for future research directions.
The suboptimal performance of the ANN serves as a pivotal point for motivation, guiding
our exploration of more advanced techniques, such as convolutional neural networks
(CNN), gated recurrent units (GRU), and long short-term memory (LSTM) networks, which
hold the potential to uncover deeper insights and elevate our ensemble-based forecasting
methodology.

Figure 2 below shows the performance of the five models, i.e., the logistic regression
(LR), decision tree (DT), support vector machine (SVM), Naive Bayes (NB), and artificial
neural network model (ANN).

Figure 3 below shows the confusion matrices of the five models of machine learning
algorithms.

When comparing the five algorithms in Table 2, the artificial neural network shows
higher error than the other algorithms, followed by Naïve Bayes, support vector machine,
decision tree, and finally logistic regression.

Table 2. Performance Comparison of Machine Learning algorithms.

ML Models Mean Absolute Error Root Mean Square Error

LR 0.00025 0.016100
DT 0.00057 0.023800

SVM 0.00088 0.029688
NB 0.01223 0.110617

ANN 0.326178 0.571120
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Figure 4 shows the accuracy of artificial neural network model (ANN), which is 0.9995,
while the loss is shown in Figure 5.

Table 3 presents the classification of the components in this case study. Based on the
previously mentioned characteristics, the components are classified into two categories: op-
erational and damaged. Seven components are classified in the damaged class, specifically,
numbers 13, 14, 19,292, 59, 30,280, 66,164, and 999, and ten components were categorized in
the operational class, specifically, numbers 3, 5, 9, 53, 67, 47, 17, 14,161, 30,282, and 979.
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Table 3. Classification of components.

Com No. 1 Pre(hPa) 2 Tem(C) 3 WSp (m/s) 4 WDir (deg) 5 SR(W/m2) 6 R (mm) 7 Class

3 1012.917 14.429 2.667 106.699 0 0 Operational
5 1013.247 14.390 3.141 102.371 0 0 Operational
9 1012.876 20.277 2.120 156.114 333.671 0 Operational
13 1012.829 20.601 2.794 214.971 548.236 0 Damaged
14 1012.648 20.785 2.765 209.89 412.398 0 Damaged
53 1015.040 12.054 3.515 65.738 0 0 Operational
59 1016.296 20.209 4.081 302.274 675.432 0 Damaged
67 1016.969 15.482 1.834 121.943 0 0 Operational
47 1015.900 13.810 2.805 73.3100 0 0 Operational
17 1012.672 19.765 0.800 186.866 0 0 Operational

14,161 1002.664 28.213 3.968 132.535 0 0 Operational
19,292 1009.626 23.466 2.178 149.937 0 0 Damaged
30,280 1006.045 28.311 5.043 274.751 89.396 0 Damaged
30,282 1005.931 27.403 0.709 308.247 89.396 0 Operational
66,164 1001.678 28.620 2.125 154.453 0 0 Damaged

979 1016.091 16.468 1.264 72.3990 0 0 Operational
999 1015.462 19.598 5.260 251.148 518.165 0 Damaged

1 Component number. 2 Pressure (Hectopascal Pressure Unit), 3 Temperature (Celsius Unit), 4 Wind Speed
(meter/second Unit), 5 Wind Direction (Degree Unit), 6 Solar Irradiance (Watts per square meter Unit), 7 Rain
(millimeter Unit).

6. Conclusions

In this paper, we proposed an ensemble method that leverages the strength of five
machine learning models, namely support vector machines, logistic regression, decision
trees, artificial neural networks, and Naive Bayes, to classify power grid components
into either damaged or operational states in response to imminent hurricane conditions.
The experiments validated our proposed method’s efficiency in accurately categorizing
components based on six crucial features. This ensemble approach led to a more resilient
power grid, with the bagging ensemble classification method showcasing the best overall
classification accuracy of 99.9%. Our model also achieved outstanding performance in
precision (99.96), recall (99.98), and F1 score (99.96). Our approach outperformed their
best-performing SVM model with the Gaussian kernel. These results demonstrate that
our ensemble method excels in accurately predicting the state of power grid components
during extreme weather events, significantly improving power grid resilience. The success
of our ensemble method showcases its potential to play a critical role in future power grid
planning and preparedness, ensuring a more resilient and reliable energy system in the
face of adverse weather condition.

7. Limitations

While our research presents a promising approach to forecasting smart grid device
conditions during extreme weather events using ensemble methods, certain limitations
warrant discussion. Notably, the isolated performance of the artificial neural network
(ANN) yielded accuracy levels lower than anticipated, achieving approximately 60.69%.
This outcome highlights the intricate challenges inherent in modeling the complex dynamics
of energy grids during extreme conditions. The limitations of the ANN underscore the
importance of exploring alternative techniques to capture the intricate relationships within
the data. Our study acknowledges these limitations and paves the way for valuable future
research avenues. The suboptimal performance of the ANN catalyzes our commitment to
delve into more sophisticated models, such as convolutional neural networks (CNN), gated
recurrent units (GRU), and long short-term memory (LSTM) networks. These advanced
architectures are anticipated to better capture the temporal and spatial patterns inherent in
energy grid behavior, potentially leading to enhanced predictive accuracy.
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8. Future Work

In future research, we aim to further enhance the performance of our ensemble classi-
fication model by incorporating more advanced machine-learning techniques. Specifically,
we plan to explore the integration of long short-term memory (LSTM), gated recurrent
unit (GRU), convolutional neural networks (CNN), and bidirectional recurrent neural
networks (BRNN) as part of our ensemble approach. These state-of-the-art models have
demonstrated promising capabilities in handling sequential and time-series data, which
are common characteristics in power grid operation. Additionally, we recognize the signifi-
cance of data quantity in training robust machine learning models. To ensure improved
accuracy and generalization, we will focus on enhancing our dataset from a small-scale
dataset to a large-scale one. By incorporating more data instances, our ensemble model
will gain better insights into the underlying patterns and relationships, leading to more
accurate predictions of power grid component states during extreme weather events.

Furthermore, we also plan to explore the application of a dual hesitant fuzzy sets-
based methodology for prioritizing zero-emission last-mile delivery (LMD) solutions in the
context of smart grid resiliency, inspired by the research in [46]. Future work will expand
the feature set used in our model to include additional relevant attributes that might impact
the state of power grid components. These may include historical maintenance records,
past system performance during similar weather conditions, and real-time sensor data from
various grid components. By incorporating these diverse features, our ensemble model will
have a more comprehensive understanding of the power grid’s behavior, further improving
its resilience and adaptability to various weather scenarios. We also aim to evaluate the
ensemble model’s performance under different geographical and climatic conditions. We
can ensure the model’s robustness and applicability in different settings by considering
various regions with diverse weather patterns and system configurations. Our future work
will focus on employing advanced machine learning techniques, increasing dataset size,
and enriching the feature set to further enhance the accuracy and reliability of our ensemble
classification model. By addressing these aspects, we aim to contribute to developing a
more resilient and efficient power grid capable of withstanding and responding to extreme
weather events with greater precision and effectiveness.
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