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Abstract: After major earthquakes, communities may experience time-evolving population in terms
of size and distribution, and varying travel demands, along with the displacement and recovery of
residents caused by the damage and restoration of dwelling units. Community transportation can
be significantly affected if the changes in population size and distribution are considerable. As a
result, the post-earthquake infrastructure reconstruction process is essentially like urban replanning
to meet the realistic traffic needs of the remaining and recovering residents and further maximize the
sustainability of the community. To fill the gap in existing studies that considered the travel demand
as fixed during the long-term recovery stage, it is important to investigate the effects of time-evolving
travel demand on transportation resilience modeling and bridge reconstruction planning during
the post-earthquake recovery period. A new methodology is proposed to analyze such impact by
assessing the time-dependent resilience performance of transportation networks during the post-
earthquake recovery stage. Traffic efficiency and safety are the two resilience performance indicators
used to evaluate the transportation network. Post-earthquake infrastructure restoration planning is
conducted using a heuristic algorithm based on the time-dependent resilience performance indicator.
A demonstrative case study is carried out at Shelby County, Tennessee.

Keywords: time-evolving travel demand; transportation network; reconstruction planning; earthquake;
resilience and sustainability

1. Introduction
1.1. Characteristics of the Post-Earthquake Recovery Stage

Earthquakes may have significant and long-term impacts on the population and
infrastructure of modern communities, both of which substantially affect the performance
of the transportation networks. Major earthquakes often cause changes in population
size and distribution in the communities, which may affect the travel demand and origin-
destination (OD) conditions accordingly. For example, after an earthquake, some residents
may have to be relocated to other cities because of the damaged dwelling units and the
lack of necessary living resources (Hazus 2020) [1]. These people may move back to the
community along with the recovery of the lodging units, water, power, etc. The change
in the population size can significantly affect the total travel demand of the community
(Chang et al., 2012) [2]. In addition to those residents relocated to other cities, some residents
may be displaced to the short-term or long-term shelters located at different zones in the
community and move back to their pre-earthquake zones when their dwelling units are
repaired. As a result, the community population is redistributed extensively during the
post-earthquake recovery stage, which may considerably affect the traffic OD conditions of
the community. So, it is important to incorporate the time-evolving feature of the travel
demand when simulating the resilience performance of transportation networks during
the post-earthquake recovery stage.
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However, most of the existing studies assumed the travel demand and the OD condi-
tion during the post-earthquake recovery stage to be a fixed ratio of the pre-earthquake level
(e.g., Alipour and Shafei, 2016; Wu et al., 2021) [3,4]. Such an assumption may be acceptable
for minor hazards with no or slight effect on a community’s population displacement
and redistribution. It, however, cannot reflect the reality when simulating transportation
resilience during the recovery stage after disasters like major earthquakes. If the resilience
performance simulation is conducted based on the fixed travel demand, the needs of the
pre-disaster population, instead of the remaining and future residents during the recovery
stage, will become the focus, which may deviate significantly from the reality. Thus, a more
rational simulation of the performance and resilience of transportation networks subjected
to hazards requires the consideration of the time-evolving population and travel demand
of the community during the post-disaster recovery period.

The post-earthquake reconstruction process of damaged infrastructures can be deemed
as an urban replanning if there are significant changes in population and travel demand
(Di Ludovico et al., 2020) [5]. Earthquakes can cause severe damage to transportation
infrastructures and considerably affect the traffic efficiency and travel safety of the com-
munity during the post-earthquake recovery stage (Wu et al., 2021) [4]. To make it even
worse, the repair of the damaged transportation infrastructures may take up to several
years to finish, making the transportation network in the community remain disrupted
over an extended period during the post-earthquake recovery stage. Timely recovery
of a disrupted transportation network is of utmost importance because it can not only
help improve the transportation performance of the affected community but also, more
importantly, expedite the long-term recovery efforts of other critical infrastructures that are
heavily dependent on accessible, efficient, and safe transportation. Like urban planning,
the reconstruction planning of damaged transportation infrastructures should focus on
meeting the realistic needs of the current/remaining and the future/recovering residents.
After major earthquakes, the time-evolving population size and distribution of the affected
community resulting from the resident displacement and recovery may be at the simi-
lar magnitude of the population change of a fast-developing city. So, the reconstruction
planning cannot be conducted based on a fixed travel demand like what has been done in
most existing studies (e.g., Alipour and Shafei, 2016; Wu et al., 2021) [3,4]. Therefore, it is
significant to develop rational methodologies to predict the time-dependent performance
of transportation networks with time-evolving travel demand so that the stakeholders
can make risk-informed decisions regarding optimal reconstruction planning and further
improve the resilience of the whole community during the post-disaster recovery period.

1.2. Existing Studies on Post-Earthquake Transportation Resilience Modeling

Numerous studies have been conducted to investigate the performance and resilience
modeling of transportation networks in the context of earthquakes. Some research efforts
were focused on the connectivity of transportation networks or the accessibility to vari-
ous resources (e.g., Aydin et al., 2018; Guo et al., 2015; Jenelius et al., 2006; Kilanitis and
Sextos, 2019a; Kondo et al., 2012; Li and Zhou, 2020; Mahmassani et al., 2013; Qian et al.,
2012; Viriyasitavat et al., 2011; Wu and Chen, 2019; and Wu and Chen, 2023a) [6–16].
Boakye et al. (2022) [17] introduced a novel framework to assess the influence of trans-
portation networks on communities during natural disasters. The researchers measured
both the well-being of the community and the equitable distribution of social justice. To
evaluate the network’s ability to preserve the health of affected individuals, they estab-
lished a performance indicator, which was derived from the concept of connectivity theory,
and considered the shortest path between injured individuals and medical resources. Wu
and Chen (2023a) [16] presented a methodology that comprehensively incorporated the
redundancy of transportation systems during emergency response periods. They uti-
lized the equivalent resistance theory and employed the emergency medical demand of
various zones as the weighing factor. The researchers examined the effectiveness of private-
vehicle-based emergency response and applied the developed metric to aid in pre-disaster
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mitigation planning. However, most of these studies were related to the transportation
resilience modeling during the post-disaster emergency response stage when the traffic
is moderate. The connectivity-based methodologies tend to be less sufficient for trans-
portation resilience modeling during the post-earthquake recovery stage because of the
considerable travel demand and the potential traffic congestion and delays.

Many studies have integrated traffic flow and travel time modeling methods, devising
dependable approaches to simulate transportation resilience in scenarios with substantial
traffic volumes (Chang et al., 2012; Feng et al., 2020; Wu and Chen, 2023b; Zou and Chen,
2019) [2,18–20]. Wu et al. (2021) [4] introduced a resilience indicator by considering both
travel time and safety for assessing transportation networks during the extended recovery
phase following an earthquake. The researchers examined the impact of partially closed
links resulting from severe bridge damage on travel time and traffic safety. They employed
static traffic assignment and the Poisson regression model to derive the travel time and
traffic accident frequency. The study assumed that the travel demand during the long-
term recovery stage is same as the pre-earthquake level, which is apparently different
from reality. Some researchers suggested deriving the travel demand during the post-
earthquake recovery stage by applying modification factors based on seismic intensity,
building damage, or network capacity (Kiremidjian et al., 2007; Shinozuka et al., 2008; and
Zhou et al., 2010) [21–23]. These travel demand modification methods have been followed
by some studies when simulating transportation resilience. Alipour and Shafei (2016) [3]
examined the influence of deteriorating components on network resilience. They developed
a framework that considered the degradation of components over time and its consequential
impact on the network functionality. By applying this framework to the transportation
network in the San Francisco Bay Area, they utilized historical seismic activity data along
with current estimates of component deterioration. They used reduction ratios for different
trip purposes as functions of peak ground accelerations.

Chang et al. (2012) [2] introduced an in-depth exploration of modeling approaches
for assessing transportation networks in the aftermath of earthquakes. The authors delved
into various methodologies for damage assessment, network performance evaluation,
and recovery planning. They introduced modification factors for trip production and
attraction based on different functionalities and hazard scenarios of the zones. They also
adopted the classic gravity model to estimate the changed travel demand during the post-
earthquake stage. However, most of these studies were based on the modified but fixed
travel demand of the network, failing to capture the time-evolving nature of the travel
demand during the recovery stage. Some studies considered the time-evolving feature
of travel demand during the post-earthquake recovery stage (Zhou et al., 2010; Kilanitis
and Sextos, 2019b) [23,24]. Kilanitis and Sextos (2019b) [24] investigated the effects of
earthquake-induced bridge damage and time-varying traffic demand on the resilience of
road networks when simulating post-earthquake transportation network resilience. The
study focused on the interaction between the network capacity and the trip generation
during post-earthquake scenarios, based on which they introduced a trip reduction factor
to simulate the time-evolving travel demand. However, post-earthquake traffic demand is
affected not only by the network capacity, but also by the time-evolving population size
and distribution.

1.3. Contributions Made by This Study

All existing studies summarized above contributed to the post-earthquake resilience
modeling of transportation networks and reconstruction planning with some limitations.
For example, most of these studies either used the pre-earthquake travel demand or
applied a reduction or modification factor to quantify the number of trips during the
post-earthquake recovery stage. These simplifications may differ from reality when simu-
lating the performance of transportation networks, especially during the post-earthquake
recovery stage after disasters. After major earthquakes, the time-evolving community pop-
ulation and travel demand may change drastically, which may differ significantly from the
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pre-earthquake community. Thus, transportation resilience modeling and reconstruction
planning based on a specific ratio of the pre-earthquake travel demand may not reflect the
unique characteristics of the transportation during the recovery stage. It would be desirable
to incorporate the time-dependent OD demand into the simulation to rationally assess
the transportation performance and resilience during the post-earthquake recovery stage.
Moreover, the reconstruction planning of damaged transportation infrastructures was not
properly conducted. As mentioned above, the reconstruction planning should focus on
meeting the actual demands of the current/remaining and future/recovering residents
like urban planning. However, the reconstruction plans in existing studies were based on
approximated travel demands as a certain ratio of the pre-earthquake OD demand instead
of using reasonably estimated time-evolving data.

This study is to investigate the time-dependent transportation resilience modeling
and reconstruction planning during the post-earthquake recovery stage to close existing
research gaps. The contributions of this study include (1) modeling more realistic time-
dependent travel demand of the community during the post-earthquake recovery stage;
(2) conducting the reconstruction planning with a focus on meeting the realistic demands
of the current/remaining and future/recovering residents. Specifically, both the time-
evolving population size and distribution are simulated based on earthquake-induced
building damages, public shelter information, community demographics, and building
recovery information. The time-evolving travel demand is further estimated based on the
varying zone population, community demographics, and a verified travel demand model
in the case study area.

2. Methodology

This study proposes a methodology to quantify the resilience performance of trans-
portation networks during the post-earthquake recovery stage by incorporating the time-
dependent travel demand of the community and support the reconstruction planning of
damaged transportation infrastructure. As presented in Figure 1, the model begins with the
given earthquake information (location, intensity, etc.) to generate the bridge and building
damage scenarios using the seismic attenuation function (Atkinson and Boore, 1995) [25]
and fragility curves of structures (Nielson and DesRoches, 2007) [26]. Building damages
and community demographics (U.S. Census Bureau 2019) [27] are used to estimate the
total displaced population (Hazus, 2020) [1] and the initial travel demand using the trip
generation model (Kimley-Horn et al., 2007) [28]. Building recovery reflects the restora-
tion progress of dwelling units, which is used to estimate the recovery of the relocated
residents and the time-dependent population size and distribution, and travel demand
(Hazus 2020) [1].

In Figure 1, bridge damage scenarios are related to link functionalities based on
existing studies (Zhang et al., 2019) [29] and are generated using the Latin Hypercube
sampling method. The time-dependent link travel time and traffic flow can be estimated
using traffic assignment methods, the sampled link functionality scenarios, and the time-
evolving travel demand (Wardrop, 1952) [30]. The traffic flow and traffic accident models
based on the community’s historical traffic crash data can be used to derive the expected
traffic accident frequency (Washington et al., 2010) [31]. The expected time-dependent
resilience index is defined based on system travel time, traffic accident frequency, and
bridge damage uncertainty. Finally, the optimal bridge reconstruction planning can be
derived using heuristic algorithms based on the proposed resilience index. Figure 1 shows
the detailed process of the methodology and Table 1 outlines the list of notations used in
this paper.
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Figure 1. Calculation process of the proposed methodology.

Table 1. List of notations.

Variables Description

ADTi Average daily traffic per lane of road segment i
BPR Bureau of Public Roads
bres Resource constraint for reconstruction planning
ci Traffic capacity of road i

DHi Number of total relocated households of zone i
HHi Total number of households for zone i

HHt=0
i Initial total number of households for zone i at the beginning of recovery

HHt
i Number of households of zone i at recovery time t

Li Length of link/road segment i
m Weight parameter
M The set of all sampled network damage scenarios

medi Median peak ground acceleration value of damage state i
%MFi Parameter related to multi-family dwelling units damage states

%MFCi Possibility for multi-family residential buildings suffering complete damage
%MFEi Possibility for multi-family residential buildings suffering extensive damage
%MFMi Possibility for multi-family residential buildings suffering moderate damage

MFUi Total numbers of multi-family dwelling units in zone i
Mw Moment magnitude
nb Total number of damaged bridges

NDi Number of displaced households move to the public shelter in zone i
ns Number of shelters in the community
nz Number of zones in the community

PGA Mean peak ground acceleration
POP0

total Community population at the pre-earthquake stage
POPt

total Community population at recovery time t
qi Traffic volume on road i
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Table 1. Cont.

Variables Description

R Epicentral distance
%RDUt

i Percentage of recovered dwelling units of zone i at time t
RIt Time-dependent resilience index

%SFi Parameter related to single-family dwelling units damage states
%SFCi Possibility for single-family residential buildings suffering complete damage
%SFEi Possibility for single-family residential buildings suffering extensive damage
%SFMi Possibility for single-family residential buildings suffering moderate damage

SFUi Total numbers of single-family dwelling units in zone i
STPij Number of people from zone j that are assigned to the public shelters in zone i
STPj Number of people moving from zone j to public shelters

T Total recovery time of the system
TAF Expected total accident frequency of the system
TAF0 Expected total accident frequency of the system at the pre-earthquake stage
TAFt Expected total accident frequency of the system at recovery time t

ti Travel time of the road i
t0
i Free-flow travel time of road i

ts
i Travel time of link i in sampled damage scenario s

TPH
i Average household trip production of zone i

TPt
i Total trip production of zone i at recovery time t

TTT Total travel time of all links
TTT0 Total travel time of all links at the pre-earthquake stage
TTTt Total travel time of all links at recovery time t

WMFC Default weight for completely damaged multi-family dwelling units
WMFE Default weight for extensively damaged multi-family dwelling units
WMFM Default weight for moderately damaged multi-family dwelling units
WSFC Default weight for completely damaged single-family dwelling units
WSFE Default weight for extensively damaged single-family dwelling units
WSFM Default weight for moderately damaged single-family dwelling units

xi Vector of explanatory variables for traffic accident regression
xt

i Binomial variable specifying if bridge i is being repaired at time t
α BPR function parameter
β Vector of estimable parameters for traffic accident regression
βc BPR function parameter
εi Error term for traffic accident regression
ζi Dispersion of damage state i
λi Expected number of accidents per unit time on road i
λs

i The expected number of traffic accidents of link i in sampled damage scenario s

2.1. Seismic Vulnerability and Household Displacement
2.1.1. Seismic Intensity Measure and Structural Damage

As a popular earthquake intensity measure, the peak ground acceleration, PGA, of
a given location can be estimated using the attenuation laws in existing studies based
on the fault information such as moment magnitude (Mw) and epicentral distance (R)
(Campbell 1981) [32]. Typical attenuation laws are expressed as:

PGA = f (Mw, R) (1)

The seismic fragility of structures (buildings and bridges, etc.) can be defined as the
probability of occurrence of a given infrastructure damage state under given intensities
of earthquakes, e.g., PGA. The failure in terms of a limit state is defined as the excess of
the limiting values of the structural performance indicators. Based on the failure severity
level, the damage states for bridges and buildings are usually divided into five types:
no damage, slight/minor damage, moderate damage, extensive damage, and complete
damage (Nielson and DesRoches, 2007; Hazus, 2020) [1,26]. The damage states of buildings
and bridges can be used to estimate building habitability and link functionality. The
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population size and distribution and the initial travel demand at the beginning of the
recovery stage can be calculated based on the building damage states.

2.1.2. Household Displacement

The damaged dwelling units may result in an estimable number of displaced house-
holds (e.g., Wang and van de Lindt, 2021; Wang et al., 2021; Wang and van de Lindt,
2022) [33–35]. These households may need immediate shelters such as family or friends’
houses, rental homes, and public shelters. For the convenience of estimation, two types of
displaced households are assumed in this study: those moving to temporary homes out of
the community and those moving to public shelters within the community. Households
moving out of the community are considered to relocate to and live in their new communi-
ties/cities, while households moving to shelters within the community are assumed to have
the same travel habits as the residents in those zones where the public shelters locate. The
public shelters may be in different zones from those before the disaster. For both types of
displaced households, it is assumed they will move back when their pre-disaster dwelling
units are repaired. For each zone, the number of total displaced households is estimated as
(Hazus 2020) [1]:

DHi = (SFUi ×%SFi + MFUi ×%MFi)×
(

HHi
SFUi + MFUi

)
(2)

where for zone i, DHi is the number of total displaced households; SFUi is the total number
of single-family dwelling units; MFUi is the total number of multi-family dwelling units;
and HHi is the total number of households. All these data are included in the demographics
of the community (U.S. Census Bureau 2019) [27]. %SFi and %MFi are parameters related
to the building damage states (Hazus 2020) [1], which are defined as:

%SFi = WSFM ×%SFMi + WSFE ×%SFEi + WSFC ×%SFCi (3)

%MFi = WMFM ×%MFMi + WMFE ×%MFEi + WMFC ×%MFCi (4)

where %SFMi, %SFEi, and %SFCi are the probabilities of single-family residential build-
ings suffering moderate, extensive, and complete damage states, respectively. Similarly,
%MFMi, %MFEi, and %MFCi are the probabilities for multi-family residential buildings
suffering moderate, extensive, and complete damage states, respectively. WSFM, WSFE,
WSFC, WMFM, WMFE, and WMFC are the default weights for moderately, extensively, and
completely damaged single- and multi-family dwelling units with values of 0, 0, 1, 0, 0.9,
and 1, respectively.

According to Hazus (2020) [1], the number of households displaced to public shelters
within the community for a given zone can be estimated based on its population size and
the income, ethnicity, home ownership, and age distribution of the residents in the zone.
Thus, the number of households displaced to other cities can be estimated by deducting the
households displaced to public shelters from the total displaced households. The estimated
household displacement information can be used to derive the initial population size and
distribution of the community at the beginning of the post-earthquake recovery stage.

2.2. Time-Evolving Population and Travel Demand
2.2.1. Time-Evolving Population

To estimate the time-evolving population size and distribution of the community and
further derive the travel demand, the reconstruction of damaged dwelling units needs to
be introduced to simulate the recovery of the displaced residents. After an earthquake,
restoring damaged buildings is part of the community’s recovery process. Given the
distributions of the recovery time of buildings with different damage states, the population
of each zone at any given recovery time t can be estimated by assuming residents will move
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back immediately after their damaged dwelling units are restored. Based on Equation (2),
the initial total households for zone i after dislocation is:

HHt=0
i =

{
HHi − DHi, Zone i has 0 public shelter

HHi − DHi + NDi, Zone i has public shelter(s)
(5)

nz

∑
1

STPj =
ns

∑
1

NDi (6)

where NDi is the number of displaced households that move to the public shelter in zone i;
nz is the number of zones in the community; STPj is the number of people moving from
zone j to public shelters; and ns is the number of shelters in the community. Considering
that distance can be a significant factor for the shelter choice of displaced residents, this
study reasonably assumes that the residents who need public shelters will seek temporary
housing at the closest public shelter until it is full. Based on this assumption, NDi is
calculated using linear programming.

According to Hazus (2020) [1], the mean recovery time of single-family and multi-
family dwelling units is listed in Table 2. Following existing studies, this study assumes
the recovery time of dwelling units follows a lognormal distribution with a covariance of
0.4 (Lin and Wang 2017) [36].

Table 2. Building recovery times in days (Hazus 2020) [1].

Occupancy Class

Recovery Time

Structural Damage State

None Slight Moderate Extensive Complete

Single-family dwelling 0 5 120 360 720
Multi-family dwelling 0 10 120 480 960

As assumed above, the displaced residents will return to their pre-earthquake dwelling
units soon after the buildings being restored to meet the habitability criterion. The total
households of zone i at time recovery time t can be estimated as:

HHt
i =

{
HHt=0

i + %RDUt
i ∗ DHi, Zone i has 0 public shelters

HHt=0
i + %RDUt

i ∗ DHi −∑j %RDUt
i ∗ STPij, Zone i has public shelter(s)

(7)

where HHt
i is the number of households of zone i at recovery time t; %RDUt

i is the
percentage of recovered dwelling units of zone i at time t; and STPij means the number
of people from zone j that are assigned to the public shelters in zone i. %RDUt

i can be
derived based on the recovery time (Table 2) and the specified distribution information. The
time-dependent number of households, HHt

i , can be used to estimate the travel demands
of the community at any time during the recovery stage.

2.2.2. Time-Dependent Travel Demand

The recovery stage can last up to several years after major earthquakes. Unlike the
usually sudden, short, and intense post-earthquake emergency response stage that can
easily disrupt almost all regular travel plans (Wu and Chen 2023b) [19], the relatively
long-lasting recovery stage may allow the remaining residents to keep up with their daily
activities despite the ongoing reconstruction of the damaged infrastructures (Chang et al.,
2012) [2]. The Memphis Metropolitan Planning Organization (MPO) developed a travel
demand model in the Long-Range Transportation Plan for the Memphis region. They used
trip generation, trip attraction, and the trip distribution matrix based on the gravity model
to derive the travel demand of the region, the model settings of which have been verified
to be reliable (Kimley-Horn et al., 2007) [28].
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According to the Memphis MPO travel demand model (Kimley-Horn et al., 2007) [28],
there are nine typical trip purposes, including journey to work, home-based school, home-
based university, home-based shopping, home-based social-recreational, home-based
pickup/drop-off, home-based other, non-home-based work, and non-home-based non-
work. For household trip production, the numbers of trips generated for different purposes
are related to at least two of the following parameters: number of persons in a household,
number of persons aged 0–17 in a household, number of workers in a household, and num-
ber of vehicles in a household (Kimley-Horn et al., 2007) [28]. Based on the Memphis MPO
model, the total trip production of a given zone at any recovery time can be estimated as:

TPt
i = TPH

i ∗ HHt
i (8)

where TPt
i is the total trip production of zone i at recovery time t; and TPH

i is the
average household trip production of zone i derived using the Memphis MPO model
(Kimley-Horn et al., 2007) [28] with the demographics of the zone (U.S. Census Bureau
2019) [27].

For the trip attraction of each zone, the number of attracted trips for each purpose is
related to one or more of the following parameters of the zone: total employment, school en-
rollment, university enrollment, retail employment, service employment, total households,
and office employment (Kimley-Horn et al., 2007) [28]. All the above-mentioned zone
information is available in the demographics of the Memphis area (U.S. Census Bureau
2019) [27]. This study follows the Memphis MPO model for travel demand estimation. A
commonly used method, the gravity model (Erlander and Stewart 1990) [37], is adopted
for trip distribution. The factors used to determine the trip distribution matrix are travel
distances and production-attraction dummies.

Based on the estimated daily travel demand, the origin-destination (OD) matrix will
be derived during the study period according to the historical time-of-day travel data of the
Memphis area. Similarly, a mode choice logit model is adopted to estimate the percentage
of vehicle-based trips. The factors considered in the mode choice logit model are origin-
destination highway distance, production-attraction zone types (e.g., CBD, urban, suburban,
and rural), and household auto ownership. The derived time-dependent OD demand
during the study period can be used with various traffic assignment methods (e.g., Wardrop
1952 [30]) to get the link travel time and traffic accident frequency of the community.

2.3. Travel Time and Safety for Roads with Work Zones
2.3.1. Modified Bureau of Public Roads Function

Damaged bridges may disrupt road links following earthquakes and create work
zones. According to Padgett and DesRoches (2007) [38], bridges with extensive damage
can recover 50% of their capacities within one week after the disaster. Considering that
the recovery stage usually does not start immediately after earthquakes, the results from
their research will be applied in this study. We focus on two-way two-lane roads (two
lanes in each direction), which are common in the US. In this study, a two-way two-lane
bridge is deemed fully closed if it is completely damaged; and deemed at 50% capacity
if the bridge suffers extensive damage but one lane in each direction remains open. With
extensive damage, since one lane in each direction on the bridge will be closed, the link
will be degraded into a road essentially with “work zones” in both directions (Figure 2).
As a result, there are three typical traffic scenarios for two-way double-lane roads: normal
four-lane traffic, disrupted traffic with work zones on the bridge (Figure 2), and fully closed
to traffic.
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Significant differences exist between the travel patterns of normal roads and those
with work zones (Hou and Chen, 2019) [39]. To consider the impact of work zones on travel
time, a modified Bureau of Public Roads (BPR) function is adopted from an existing study
(Zhang et al., 2019) [29] to estimate the travel time of roads i in Figure 2. The travel time
function for road i can be expressed as:

ti = t0
i

[
1 + α

(
qi
ci

)βc
]

(9)

where ti is the travel time of the road i; t0
i is the free-flow travel time of the road; qi is

the traffic volume on the road; ci is the traffic capacity of the road; and α and βc are BPR
function parameters. Different from the default values of 0.15 and 4.0 for α and βc for
normal roads, these parameters have values of 1.429 and 4.293, respectively, for road i with
the traffic pattern as specified in Figure 2 (Zhang et al., 2019) [29]. According to the US
Highway Capacity Manual (TRB 2010) [40], the ideal capacity of one intact lane is usually
assumed to be 2000 vehicles. Zhang et al. (2019) [29] have confirmed that Equation (9)
works when the ratio of heavy vehicles is not higher than 10%. Since trucks and heavy
vehicles only account for 4.2% of the highway vehicles (Sprung 2018) [41], the BPR function
can be applied in this study.

2.3.2. Work Zone Traffic Accident Estimation

For the road scenario in Figure 2, the changed traffic pattern will affect traffic accident
frequency (Garber and Zhao, 2002; La Torre et al., 2017; Pigman and Agent, 1990; Weng
and Meng, 2011; and Yang et al., 2015) [42–46]. As an important topic that has been widely
investigated, work zone traffic safety can be as important as traffic efficiency to travelers.
The Poisson regression model has been used for traffic accident counts but with a significant
limitation: the mean and standard deviation of accidents need to be close. To handle the
over-dispersed accident data, negative binomial regression is often used as an alternative
for discrete and nonnegative events. According to Washington et al. (2010) [31], for the
negative binomial distribution, the expectation of the number of accidents on road i is:

λi = eβxi+εi (10)

where λi is the Poisson parameter for road i, which is equal to the expected number of
accidents per unit time on road i; xi is a vector of explanatory variables; β is a vector of
estimable parameters; and EXP(εi) is a gamma-distributed error term (Washington et al.,
2010) [31]. For work zone traffic accidents, the explanatory variables may include link
length, light conditions (daytime or nighttime), adjusted traffic volume, posted speed limit,
speed reduction to the normal speed limit, the number of open lanes, the number of lane
closures, road type, the number of ramps, and the number of intersections within the work
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zone (Ozturk et al., 2013) [47]. It should be noted that the explanatory variables for normal
roads are usually different from those of work zones.

2.4. Resilience Index and Reconstruction Planning
2.4.1. Time-Dependent Resilience Index

The expected total travel time (TTT) is one of the commonly used system performance
metrics in transportation engineering to characterize the efficiency of a transportation
network:

TTT =
∑s ∑i ts

i
|M| (11)

where ts
i is the travel time of link i derived from Equation (9) and traffic assignment methods

in sampled damage scenario s; and M is the set of all sampled network damage scenarios.
Similarly, the expected total accident frequency (TAF) of the system is used to quantify the
traffic safety risk of the network, which is defined as:

TAF =
∑s ∑i λs

i
|M| (12)

where λs
i is the expected number of traffic accidents of link i derived from Equation (10) in

sampled damage scenario s. The integrated resilience index (RI) at time t is proposed to con-
sider both traffic efficiency and travel safety performances. Considering that travel demand
and community population are both functions of the recovery time, a time-dependent
integrated resilience index of the transportation system to offset the effect of population
change can be defined as:

RIt = m· TTT0

POP0
total

δ
/

TTTt

POPt
total

δ
+ (1−m)· TAF0

POP0
total

δ
/

TAFt

POPt
total

δ
(13)

where m is a weight parameter between [0, 1] usually defined by decision-makers based
on the specific scenarios and preferences; TTT0, TAF0, POP0

total , and TTTt, TAFt, POPt
total

are the TTT, TAF and community populations at the pre-disaster period and recovery time
t respectively; and δ is an adjustment factor for RI. Considering that both TTT and TAF
may change exponentially with recovery time, a proper δ will keep RI between 0 to 1. For
demonstrative purposes, this study let m = 0.5 to evenly distribute the importance to travel
time and traffic safety and use δ = 2.

2.4.2. Reconstruction Planning of Transportation Infrastructure

According to the above-mentioned characteristics of the post-earthquake recovery
stage, the post-earthquake reconstruction planning can be deemed as an urban replanning if
the population size and distribution changes are significant. Compared to the reconstruction
planning of the damaged infrastructures with a fixed travel demand that is usually derived
based on the pre-earthquake population in existing studies, the infrastructure restoration
in this study is based on the time-evolving travel demand of the community. Therefore,
the reconstruction planning in this study focuses on serving the remaining and recovering
residents instead of the pre-earthquake residents in most existing studies.

Considering the common situation of limited resources that would impede the repair-
ing efforts of all damaged infrastructures simultaneously, this study focuses on developing
the optimal reconstruction planning of the damaged bridges to improve transportation
resilience. For long-term recovery, minor damages are not critical and there are two types
of bridge damage scenarios according to Section 2.3: a completely damaged bridge that
is fully closed to traffic, and an extensively damaged bridge that partially opens to traffic
with work zones. Other than the bridge damage state, the reconstruction time of a bridge is
also an important factor affecting its repair priority and effect on system performance. In
this study, the performance indicator is based on the proposed time-dependent resilience
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index in Section 2.4.1. The optimal bridge reconstruction plan is to maximize the system
resilience. The objective function of the reconstruction optimization is defined as:

Objective Z = max
(∫ T

0
RItdt

)
(14)

Subject to :
nb

∑
i=1

xt
i ≤ bres (15)

where T is the total recovery time of the system; xt
i is a binomial variable specifying whether

bridge i is being repaired at time t; nb is the total number of damaged bridges; and bres is
the resource constraint.

3. Case Study
3.1. Shelby County, Tennessee

Shelby County, Tennessee is in an earthquake-prone area. There are 37 zip codes in
Shelby County and the demographics of each zip code area are available from the US
Census Bureau (Figures 3 and 4) (U.S. Census Bureau 2019) [27]. Among all the zip codes,
38054, 38058, 38131, and 38132 are not considered in this study because of their special
functionalities (e.g., PO box, local airport). To better fit Shelby County in the model with a
reasonable scope, every main road network intersection is considered as a single node/zone
(Figure 5). The basic information for the zip codes and zones is presented in Tables 3 and 4
respectively.
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Table 3. Zip code information of Shelby County.

Zip Code TDP 1 Avg 2 Households

38002 25,802 1.84 14,053
38016 33,445 1.78 18,801
38017 48,012 2.67 17,980
38018 29,209 2.04 14,317
38028 4696 1.77 2646
38053 23,981 2.29 10,490
38103 35,566 5.08 7005
38104 37,758 3.02 12,517
38105 17,336 6.48 2676
38106 28,019 2.69 10,429
38107 15,159 2.14 7073
38108 19,164 2.85 6729
38109 43,959 2.59 16,989
38111 38,634 2.16 17,860
38112 18,764 2.75 6826
38114 25,507 2.4 10,624
38115 37,249 2.32 16,053
38116 43,802 2.96 14,793
38117 37,887 3.15 12,029
38118 101,321 7.21 14,062
38119 28,514 2.83 10,065
38120 42,874 6.28 6827
38122 23,456 2.34 10,044
38125 33,446 2.27 14,722
38126 10,891 4.18 2607
38127 35,673 2.33 15,320
38128 35,595 2.21 16,080
38133 35,919 4.67 7689
38134 42,981 2.86 15,053
38135 18,557 1.66 11,170
38138 34,024 3.37 10,082
38139 10,335 1.84 5629
38141 19,847 2.58 7678

Note: 1 TDP means total daily time population, including daytime workers and daytime residents; 2 Avg means
average daily household size.

Table 4. Zonal information of Shelby County.

Zones Longitude Latitude Households Zone Type

1 35.343022 −89.788899 3513 Rural
2 35.308079 −89.822665 2098 Rural
3 35.288887 −89.686639 3513 Rural
4 35.2561 −89.676892 3513 Rural
5 35.210145 −89.653792 3513 Rural
6 35.158731 −89.694493 1323 Rural
7 35.195068 −89.792187 9401 Suburban
8 35.20436 −89.77236 2563 Suburban
9 35.156498 −89.774194 9401 Suburban
10 35.156446 −89.638166 3596 Rural
11 35.044817 −89.637635 3596 Rural
12 35.046272 −89.689285 3596 Rural
13 35.033613 −89.689272 3596 Rural
14 35.020894 −89.689143 3596 Rural
15 35.157881 −89.794974 14,317 Suburban
16 35.211229 −89.63495 1323 Rural
17 35.332123 −90.015529 2098 Rural
18 35.34534 −89.906004 2098 Rural
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Table 4. Cont.

Zones Longitude Latitude Households Zone Type

19 35.331266 −89.920981 2098 Rural
20 35.319164 −89.873442 2098 Rural
21 35.153188 −90.059146 7005 Suburban
22 35.137466 −90.024084 6259 CBD
23 35.130376 −90.023955 6259 Urban
24 35.155747 −90.037473 3537 CBD
25 35.151606 −90.040735 2676 CBD
26 35.124652 −90.054897 2086 Suburban
27 35.10264 −90.029534 2086 Suburban
28 35.103061 −90.019985 2086 Suburban
29 35.071525 −90.023332 2086 Suburban
30 35.158338 −90.020242 3537 CBD
31 35.182929 −89.932609 6729 Suburban
32 35.07939 −90.057321 8495 Rural
33 35.020647 −90.08822 8495 Rural
34 35.124294 −90.067707 2086 Suburban
35 35.131173 −89.956728 5953 Urban
36 35.133559 −89.956127 5953 Urban
37 35.135243 −89.968143 1707 Urban
38 35.079982 −89.930549 5953 Urban
39 35.080578 −89.955869 5312 Urban
40 35.133766 −89.984064 1707 Urban
41 35.150891 −89.98136 1707 Urban
42 35.158259 −89.980416 1707 Urban
43 35.108035 −89.98827 5312 Urban
44 35.057674 −89.833646 16,053 Urban
45 35.021095 −90.025306 7397 Suburban
46 35.020989 −90.002561 7397 Suburban
47 35.131269 −89.901452 6015 Suburban
48 35.11449 −89.901795 6015 Suburban
49 35.057248 −89.932866 4687 Suburban
50 35.021407 −89.937372 4687 Suburban
51 35.020528 −89.898062 4687 Suburban
52 35.052222 −89.812832 5033 Suburban
53 35.084536 −89.878106 5033 Suburban
54 35.101952 −89.870081 3414 Suburban
55 35.130947 −89.867721 3414 Suburban
56 35.171825 −89.943552 3348 Urban
57 35.149089 −89.927158 3348 Urban
58 35.152387 −89.884629 3348 Urban
59 35.037425 −89.795708 7361 Suburban
60 35.020556 −89.795966 7361 Suburban
61 35.142383 −90.051141 2607 CBD
62 35.236202 −90.014406 5107 Rural
63 35.199458 −90.034662 5107 Rural
64 35.191005 −90.016037 5107 Rural
65 35.235393 −89.895316 4020 Suburban
66 35.205276 −89.923297 4020 Suburban
67 35.192791 −89.926172 4020 Suburban
68 35.205485 −89.834333 11,170 Suburban
69 35.237388 −89.793563 2563 Suburban
70 35.204362 −89.791932 2563 Suburban
71 35.204642 −89.867163 3763 Suburban
72 35.180442 −89.860168 3763 Suburban
73 35.168234 −89.85416 3763 Suburban
74 35.093018 −89.808541 10,082 Suburban
75 35.075809 −89.774767 5629 Suburban
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Table 4. Cont.

Zones Longitude Latitude Households Zone Type

76 34.994567 −89.84841 7678 Suburban
77 35.207011 −89.894558 4020 Suburban
78 35.169095 −89.90233 3763 Suburban

The main road network of Shelby County comprises 78 nodes and 115 links. This study
evenly distributed the population of each zip code to the nodes inside it. It is assumed
there are eight different types of buildings in the community according to the building
classification in Hazus (2020) [1]: 1–2 stories wood frame, other wood frame, 1–3 stories
steel moment frame, 4–7 stories steel moment frame, 1–3 stories concrete moment frame,
4–7 stories concrete moment frame, 1–3 stories concrete shear wall, and 4–7 stories concrete
shear wall. Due to the lack of detailed and reliable data, the percentages of different
building types are randomly generated for each zone for demonstrative purposes. Among
all the links, it is assumed that 31 of them have bridges on them (Figure 6). There are five
different types of bridges in the network: multi-span continuous (MSC) concrete, slab, and
steel girder bridges, and multi-span simply supported (MSSS) concrete girder and steel
girder bridges. In this study, it is assumed that only bridge damage may cause the failure
or degradation of a link. Of the 115 links, 31 are, therefore, vulnerable to earthquakes due
to the existence of bridges (B1–B31) on them (Figure 6). The geographic information of
the nodes and bridges is available on Google Maps and through ArcGIS database. The
households of each zone are divided into single-family and multi-family households. The
percentage of single-family households is 70%, according to the demographics of Shelby
County (Census profile 2018) [48].
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3.2. Data Analysis

In this study, an earthquake with an epicentral depth of 10 km is assumed to happen in
the community being investigated. Atkinson and Boore (1995) [25] developed the seismic
attenuation law for earthquakes with an epicentral depth of 10 km. It is applied in this
study to derive the ground motion at different zones and bridges. According to Atkinson
and Boore (1995) [25], the mean peak ground acceleration at a certain distance from the
epicenter can be estimated as:

log(PGA) = c1 + c2(Mw − 6) + c3(Mw − 6)2 − log R− c4R (16)

where Mw is the moment magnitude of the earthquake; R is the epicentral distance (km) of
the location; and c1, c2, c3, and c4 are the parameters from regression analyses. According to
the study by Atkinson and Boore (1995) [25], the following parameters are used: c1 = 3.79,
c2 = 0.298, c3 = −0.0536, and c4 = 0.00135. Attenuation laws have many uncertainties,
including magnitude, epicentral distance, ground motion, and limited knowledge about
earthquake phenomena, and it is crucial to consider these uncertainties when deriving
ground motion intensity measurements. According to Adachi and Ellingwood (2007) [49],
PGA is assumed with a coefficient of variance of 0.6 to reflect the uncertainties.

As mentioned in Section 2.1, the peak ground accelerations derived from Equation (16)
can be used to evaluate the building and bridge damage. According to Nielson and
DesRoches (2007) [26], the probability of a given infrastructure damage state is defined as:

P[Damage State i or greater|PGA] = Φ
[

ln(PGA)− ln(medi)

ζi

]
(17)

where medi and ζi are the median PGA value and the dispersion of damage state i, respec-
tively. For certain damage states of buildings and bridges, the medi and ζi are shown in
Tables 5 and 6. Moderate medi, extensive medi, and complete medi in Tables 5 and 6 are
the mean PGA values for moderate, extensive, and complete damages, respectively. Per
Hazus (2020) [1], typical buildings are designed based on four seismic standards: high-code,
moderate-code, low-code, or not seismically designed (also called pre-code). Buildings
designed based on codes with higher seismic standards are more robust under earthquakes.
This study assumes all the buildings in Table 6 were designed based on the moderate-code
seismic standards.

Table 5. Seismic fragility parameters of five bridge types (Nielson and DesRoches 2007) [26].

Bridge Type
Median PGA Values (g)

ζi
Extensive medi Complete medi

MSC concrete 0.75 1.03 0.7
MSC slab 0.78 1.73 0.7
MSC steel 0.39 0.5 0.55

MSSS concrete 0.83 1.17 0.65
MSSS steel 0.56 0.82 0.5

According to the historical traffic data of the Memphis/Shelby County area, the morn-
ing rush hour (7:00 a.m.–8:00 a.m.) has the heaviest traffic of the day (Kimley-Horn et al.,
2007) [28]. The resilience assessment of this study is based on the traffic performance of the
morning rush hour during the recovery stage. The percentages of different trip purposes as
introduced in Section 2.2.2 of the morning rush hour over total daily trips are presented in
Table 7 (Kimley-Horn et al., 2007) [28]. In this study, due to insufficient information, the
percentages of different trip purposes during the morning rush hour are assumed to be the
same as the pre-earthquake period throughout the recovery stage.
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Table 6. Median and dispersion values for seismic fragility of eight building types (Hazus 2020) [1].

Building Type Stories Moderate medi Extensive medi Complete medi ζi

Wood frame
1–2 0.43 0.91 1.34 0.64

all other 0.35 0.64 1.13 0.64

Steel moment frame
1–3 0.22 0.42 0.8 0.64
4–7 0.21 0.44 0.82 0.64

Concrete moment frame
1–3 0.23 0.41 0.77 0.64
4–7 0.21 0.49 0.89 0.64

Concrete shear wall
1–3 0.3 0.49 0.87 0.64
4–7 0.26 0.55 1.02 0.64

Table 7. Percentages of trips by purpose.

Percentages of Trips by Purpose over Daily Trips

All Purposes
Time Period Journey to Work

Home-Based
School/Home

Based University

Other
Home-Based

Purposes
Non-Home Based

7:00–8:00 a.m. 16.7% 23.6% 7% 3.8% 12.52%

This study assumes the earthquake has an epicenter latitude and longitude of (35.107757,
−89.940678). For comparison purposes, the data analysis also explored earthquakes with
four moment magnitudes: 6.0, 6.5, 7.0, and 7.25. Given the demographic data, earthquake
information, building fragility, and the community population during the recovery stage
can be estimated using Equations (2)–(7). The expected total auto-mode OD demand during
the morning rush hour at any recovery time can be derived from the household information,
community population, and zone information using the Memphis MPO model (Kimley-
Horn et al., 2007) [28]. The expected community population and OD demand are shown
in Figures 7 and 8 as functions of recovery time. The figures show both the community
population and OD demand increase with the recovery time, which conforms to the reality
that the displaced residents keep moving back to their original zones due to the restoration
of their pre-earthquake dwelling units. The percentage increments in the community
population and OD demand are similar because the community OD demand is a rough
product of the community household number and the average household trips, considering
the latter may only vary slightly among different zones within the community. As shown
in Figures 7 and 8, the higher the earthquake magnitude, the smaller the community
population and OD demand, and the faster they recover. The lower starting point is
consistent with the common understanding that higher magnitude generally causes more
damaged housing units, more displaced residents, and greater reduced travel demand.
The faster increase is caused by the lognormal distribution of the building recovery time.
In this case, most damaged houses will recover within the mean recovery time (Table 2).
Figures 7 and 8 also show the changes in the community population and OD demand
can be around 10%, which may significantly affect the transportation performance of the
community. The considerable difference underscores the necessity to consider the time-
dependent population and OD demand when simulating transportation resilience during
the post-earthquake recovery stage.

The displaced population was estimated based on the information of the buildings
(Table 6) designed according to the moderate-code seismic standards. However, there are
many countries and regions where some or even most dwelling units were designed based
on low-code or even pre-code seismic standards (Bilham, 2010; Ilki and Celep, 2012; Wang,
2008) [50–52]. Under major earthquakes, the affected communities may experience exten-
sive infrastructure damages, a significantly displaced population, substantially decreased
travel demands, and a long-lasting recovery stage (Naddaf, 2023) [53].
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Considering the lack of the specific work zone traffic accident data in the Memphis area,
this study uses the work zone traffic accident model by Ozturk et al. (2013) [47] to model
the traffic safety in work zones. Their model uses the negative binomial regression based on
the observed data in the State of New Jersey. The traffic accident model of fully functioning
roads adopted in this study is based on the observed data in Tennessee to estimate the
travel safety of roads with moderate or lower damages (Kiattikomol, 2005) [54]. Based
on the existing studies, the case study assumes the speed limits are 55 mph and 45 mph
for fully functional roads and work zones, respectively (Mannering, 2007; Mekker et al.,
2016) [55,56]. Considering the trivial effects of ramps and intersections on traffic accidents
according to the studies summarized by Ozturk et al. (2013) [47], this case study assumes
no ramps and intersections on the links. Since all roads are typical four-lane roads, the
numbers of operating and closed lanes are both two for the road situation in Figure 2. Based
on the available information, the traffic accident frequency of road i is expressed as:

λi =

{
2× 10−10·Li

0.7856 ADTi
2.26, Fully f unctional roads

0.0799·Li
0.477 ADTi

0.512, Road with work zones
(18)

where Li is the length of link/road segment i; and ADTi is the average daily traffic per lane
of road segment i. ADTi can be derived from the community travel demand and the traffic
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assignment method. The link lengths can be estimated from the longitudes and latitudes
(Table 4) of the links’ starting and ending nodes.

3.3. Results

This study assumes that only bridge reconstruction will generate work zones during
the post-earthquake recovery period. Assuming that the above-mentioned earthquake has
a moment magnitude of 7.25, Latin hypercube sampling is used to simulate bridge damage
scenarios with 10,000 samples. Based on the estimated travel demand (Figure 8), the traffic
simulation for the morning rush hour is conducted during the post-earthquake recovery
stage through static traffic assignment. The expected system total travel time, total accident
frequency, and resilience index are calculated using Equations (11)–(13) and (18). They are
presented in Figures 9–11 as functions of recovery time.

The box plots in Figures 9 and 10 suggest both the expected total travel time and total
accident frequency increase with time. Such phenomena are caused by the increasing travel
demand along with the recovery process of the population, and thus are in accordance
with reality. The increased percentages of the expected TTT and TAF are 3.9% and 14.07%,
respectively. The smaller increase in TTT may be caused by the fact that the traffic volumes
on most links are lower than their capacities, which reflects a trivial increase in their
travel time. Only a few links with high traffic volumes have significant traffic delays and
contribute to the increase in TTT. The larger increase in TAF may result from the increased
traffic volume. Unlike link travel time, traffic accident frequency is more sensitive to link
traffic volume, whether it is below the link traffic capacity or not (Equation (18)). Figure 11
shows that the expected RI also increases with the recovery time, despite the increase in
TTT and TAF. It is because the resilience index is related not only to the expected total travel
time and accidents on the transportation network, but also to the community population
it serves. As a result, the system resilience index of the transportation network gradually
increases during the recovery period.
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The pre-earthquake TTT and TAF are 1389 and 4305, respectively, assuming no link
damage. Figures 9 and 10 show that TTT and TAF for most sampled network damage
scenarios fall in ranges of [1533, 1694] and [5464, 7160], respectively. The results suggest
that TAF is more sensitive to bridge damages with larger variations as compared with
TTT. The less-deviated TTT may be caused by the existence of many redundant links, so
there are always alternative paths with similar travel time in case of link damage. The
larger variations in TAF may result from partially functional bridges with work zones. This
corroborates the traffic accident model in Equation (18), which shows that roads with work
zones tend to have higher traffic accident frequencies than fully functional roads, unless
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the traffic is very heavy. This observation also proves the significance of considering work
zone traffic accidents when simulating transportation resilience during the post-earthquake
recovery stage, especially when the recovery takes a very long time. Although the expected
TTT in this case study is relatively stable, the expected TAF presents a time-evolving
difference of 14.07%, which is non-negligible. Like traffic efficiency, traffic safety is also
critical to the travel experience of the remaining and recovering residents. The considerable
difference in TAF throughout the recovery stage confirms the significance of simulating
the time-evolving community population and travel demand. Also, as mentioned above,
many countries and regions have many older buildings designed using codes with lower
standards or even pre-code seismic standards (Bilham, 2010; Ilki and Celep, 2012; and
Wang, 2008) [50–52]. For those areas, the impact of earthquakes on population, travel
demand, and traffic patterns can be more significant, so that both TTT and TAF may exhibit
considerable changes during the recovery stage.

3.4. Post-Earthquake Bridge Reconstruction Planning

Due to the usually limited resources, including monetary budget, personnel, material
supply, etc., it is not realistic to reconstruct all the damaged bridges simultaneously. To in-
vestigate the effect of time-evolving travel demand and the restoration priorities of bridges
with different damage states, this study assumes that only one bridge can be repaired at a
time for demonstrative purposes, without losing generality. So, it is meaningful to repair
the most critical bridges first. In this study, the most critical bridges will be identified based
on their impacts on the system resilience index. Considering the computational complexity
to include the bridge damage uncertainties in the optimization, a specific bridge damage
scenario was assumed in Table 8 to demonstrate the reconstruction planning. All bridges
to be repaired have suffered either extensive or complete damage; however, moderately or
less-damaged bridges will fully recover their traffic-carrying capacities before the recovery
stage (Padgett and DesRoches, 2007) [38]. According to Twumasi-Boakye and Sobanjo
(2018) [57], the estimated mean recovery time of general highway bridges with extensive
and complete damages is 48.5 and 133 days, respectively. Assuming the repair time obeys
a normal distribution with a coefficient of variation of 0.2, the repair time of the damaged
bridges in this study is sampled and presented in Table 8. The post-earthquake time-
evolving travel demand after the moment magnitude 7.25 earthquake (Figure 8) is used to
carry out the reconstruction planning optimization. The effect of an intuitive reconstruction
sequence (simply following the order of bridge numbers) on the system resilience index
is also investigated for comparison purposes. The goal here is to identify which plan is
better in terms of meeting the demands of the remaining and recovering residents in the
community.

Table 8. Bridge repair time by damage state.

Bridge # Damage State Repair Time (Week)

3 Extensive 9
7 Extensive 7
8 Complete 17
9 Extensive 6
10 Complete 22
11 Extensive 9
13 Complete 18
14 Extensive 5
16 Extensive 7
18 Complete 22
24 Complete 16
25 Complete 14
26 Complete 14
28 Extensive 7
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Based on Equations (14) and (15), the bridge reconstruction optimization is derived
using the Greedy Algorithm. The Greedy Algorithm solves an optimization problem by
selecting the best option available at every step. For the bridge reconstruction optimization
in this study, the repair of every bridge is deemed as a step. To achieve the optimization
objective specified in Equation (14), the algorithm will repair the bridge that can increase the
resilience index the most quickly at every single step. The optimal reconstruction sequence
of the bridges is 9, 14, 3, 28, 7, 11, 16, 25, 10, 18, 24, 13, 26, and 8. For both the optimal
and intuitive reconstruction plans, their corresponding resilience indexes as functions of
recovery time are presented in Figure 12. Figure 12 shows that both curves start and end
at the same values, which conforms to the reality that the two reconstruction plans have
the same starting and ending bridge damage situations. The curve of the resilience index
for the optimal plan increases fast at the beginning and slows down at t = 120 weeks. The
curve of the resilience index for the intuitive plan rises slowly during the first 60 weeks,
then increases similarly to the optimal plan, and then rises sharply at t = 173 weeks. The
curve of the resilience index for the optimal plan has higher values than the intuitive plan
throughout the recovery stage, which means the optimal reconstruction plan provides a
better transportation experience to the remaining and recovery residents. This phenomenon
is likely because the critical bridges have received priority in the optimal plan. It is also
found that all seven bridges with “extensive” damage states are fixed first. Although
bridges losing full functionality may have more significant impact on the capacity of the
transportation network than those only losing partial functionality, extensively damaged
bridges have larger impacts on the overall system resilience, since TAF is very sensitive
to the existence of work zones. In contrast, TTT is more stable than TAF due to many
redundant links according to the above analysis. Also, the shorter repair time of extensively
damaged bridges means that their restoration can increase the resilience index faster.
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4. Conclusions

Transportation networks may remain disrupted for years, significantly affecting the
traffic efficiency and safety of the community’s remaining and recovering residents during
the post-earthquake recovery stage. A framework to model the time-dependent resilience
performance of transportation networks during the post-earthquake recovery stage was
developed, with a focus on the transportation experience of the current and future residents
of the attacked community. To simulate the uncertainties in bridge damage scenarios,
the seismic attenuation law, bridge fragility functions, and Latin hypercube sampling
method were adopted in this study to generate numerous network disruption scenarios.
The building fragility functions, building recovery information, community demographics,
and the MPO model were applied to estimate the time-evolving community population
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and travel demand. The modified BPR function for work zones, static traffic assignment
method, and work zone traffic accident model based on negative binomial regression were
applied to simulate the traffic efficiency and travel safety during the morning rush hour
throughout the recovery stage.

This study defined a new time-dependent integrated resilience index to assess the
transportation performance experienced by the time-evolving community residents. The
methodology incorporates uncertainties into link degradation to make the resilience mod-
eling more reliable. The proposed resilience index was used to derive the optimal bridge
construction plan to maximize the overall benefits of the time-evolving community resi-
dents. Finally, the proposed methodology was demonstrated in Shelby County, Tennessee,
which belongs to an earthquake-prone area. A comparative analysis was conducted in
terms of reconstruction planning to investigate the effects of the optimal reconstruction
plan on transportation resilience during the post-earthquake recovery stage.

It is found that earthquakes may significantly affect the community population and
travel demand and, in turn, impact the time-dependent travel time, traffic accident, and
system resilience index. Therefore, the model is more realistic and reliable than traditional
methodologies that did not reasonably consider the time-evolving population and travel
demand. The reconstruction planning emphasized the significance of focusing on the needs
of adopting a more realistic population group instead of a fixed resident group derived
from the pre-earthquake population. This study still has some limitations: due to the lack
of reliable and site-specific data, some assumptions had to be made, including some specific
parameters related to buildings and bridges, the bridge reconstruction time, the travel
behavior of residents, etc.; the influence of sequential earthquakes on the infrastructure
fragility curves was not considered, which can be significant to both the travel demand and
bridge damage (Yaghmaei-Sabegh & Mahdipour-Moghanni, 2019) [58]; some factors that
may affect the traffic simulation were not incorporated in this study, including traffic signal
lights and the correlation between traffic delays and accidents; and the reconstruction
planning was scenario-based due to the computational complexity when both the time-
evolving feature and uncertainty are involved at the same time. Despite these assumptions
and simplifications in the demonstrative study, the proposed methodology is general
enough to be applied to conduct a more advanced study once more reliable and site-specific
data, as well as more powerful computational technologies, become available in the future.
Finally, although this methodology was proposed based on earthquakes, it can be easily
adapted and applied to the long-term recovery stage involving other disasters or incidents
causing similar disruptions and time-evolving population and travel demand.
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