Big Data Analytics for Sustainable Products: A State-of-the-Art Review and Analysis
Abstract
:1. Introduction
2. An Overview of Key Concepts
2.1. Sustainable Products
2.2. Big Data Analytics
3. Methods
3.1. Method of the Review
3.2. Method of the Analysis
4. Results and Discussion on the Review: Theoretical Contribution and Implications
5. Results and Discussion on the Analysis: Empirical Contribution and Implications
6. Limitations and Future Research Directions
7. Conclusions and Final Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WCED. Our Common Future, 3rd ed.; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- UN. Agenda 21. The United Nations Programme of Action from Rio; Unite Nations: New York, NY, USA, 1993. [Google Scholar]
- Gholami, H.; Abdul-Nour, G.; Sharif, S.; Streimikiene, D. (Eds.) Sustainable Manufacturing in Industry 4.0: Pathways and Practices, 1st ed.; Springer Nature: Singapore, 2023. [Google Scholar]
- World Bank. World Development Report 1999/2000; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Constantiou, I.D.; Kallinikos, J. New Games, New Rules: Big Data and the Changing Context of Strategy. J. Inf. Technol. 2015, 30, 44–57. [Google Scholar] [CrossRef]
- Ali, S.; Poulova, P.; Yasmin, F.; Danish, M.; Akhtar, W.; Javed, H.M.U. How Big Data Analytics Boosts Organizational Performance: The Mediating Role of Sustainable Product Development. J. Open Innov. Technol. Mark. Complex. 2020, 6, 190. [Google Scholar] [CrossRef]
- Georgiadou, E.; Angelopoulos, S.; Drake, H. Big Data Analytics and International Negotiations: Sentiment Analysis of Brexit Negotiating Outcomes. Int. J. Inf. Manag. 2020, 51, 102048. [Google Scholar] [CrossRef]
- Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. Big data analytics and firm performance: Findings from a mixed-method approach. J. Bus. Res. 2019, 98, 261–276. [Google Scholar] [CrossRef]
- Rizk, A.; Elragal, A. Data science: Developing theoretical contributions in information systems via text analytics. J. Big Data 2020, 7, 7. [Google Scholar] [CrossRef]
- Akter, S.; Wamba, S.F.; Gunasekaran, A.; Dubey, R.; Childe, S.J. How to improve firm performance using big data analytics capability and business strategy alignment? Int. J. Prod. Econ. 2016, 182, 113–131. [Google Scholar] [CrossRef]
- Columbus, L. 84% of Enterprises See Big Data Analytics Changing Their Industries’ Competitive Landscapes in the Next Year. 2014. Available online: https://www.forbes.com/sites/louiscolumbus/2014/10/19/84-of-enterprises-see-big-data-analytics-changing-their-industries-competitive-landscapes-in-the-next-year/?sh=1db21b517de1 (accessed on 1 May 2023).
- Johnson, J.S.; Friend, S.B.; Lee, H.S. Big data facilitation, utilization, and monetization: Exploring the 3Vs in a new product development process. J. Prod. Innov. Manag. 2017, 34, 640–658. [Google Scholar] [CrossRef]
- Tan, K.H.; Zhan, Y. Improving new product development using big data: A case study of an electronics company. R&D Manag. 2017, 47, 570–582. [Google Scholar]
- Diamantoulakis, P.D.; Kapinas, V.M.; Karagiannidis, G.K. Big data analytics for dynamic energy management in smart grids. Big Data Res. 2015, 2, 94–101. [Google Scholar] [CrossRef]
- El-Kassar, A.N.; Singh, S.K. Green innovation and organizational performance: The influence of big data and the moderating role of management commitment and HR practices. Technol. Forecast. Soc. Chang. 2019, 144, 483–498. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, S.; Liu, Y.; Si, S. A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products. J. Clean. Prod. 2017, 142, 626–641. [Google Scholar] [CrossRef]
- Bonilla, S.H.; Silva, H.R.; Terra da Silva, M.; Franco Gonçalves, R.; Sacomano, J.B. Industry 4.0 and sustainability implications: A scenario-based analysis of the impacts and challenges. Sustainability 2018, 10, 3740. [Google Scholar] [CrossRef]
- Nagy, J.; Oláh, J.; Erdei, E.; Máté, D.; Popp, J. The role and impact of Industry 4.0 and the internet of things on the business strategy of the value chain—The case of Hungary. Sustainability 2018, 10, 3491. [Google Scholar] [CrossRef]
- Kristoffersen, E.; Blomsma, F.; Mikalef, P.; Li, J. The smart circular economy: A digital-enabled circular strategies framework for manufacturing companies. J. Bus. Res. 2020, 120, 241–261. [Google Scholar] [CrossRef]
- Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [Google Scholar] [CrossRef]
- Haseeb, M.; Hussain, H.I.; Ślusarczyk, B.; Jermsittiparsert, K. Industry 4.0: A solution towards technology challenges of sustainable business performance. Soc. Sci. 2019, 8, 154. [Google Scholar] [CrossRef]
- Ren, S.; Zhang, Y.; Liu, Y.; Sakao, T.; Huisingh, D.; Almeida, C.M. A comprehensive review of big data analytics throughout product lifecycle to support sustainable smart manufacturing: A framework, challenges and future research directions. J. Clean. Prod. 2019, 210, 1343–1365. [Google Scholar] [CrossRef]
- Bag, S.; Wood, L.C.; Xu, L.; Dhamija, P.; Kayikci, Y. Big data analytics as an operational excellence approach to enhance sustainable supply chain performance. Resour. Conserv. Recycl. 2020, 153, 104559. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Highes, L.; Kar, A.K.; Baabdullah, A.M.; Grover, P.; Abbas, R.; Andreini, D.; Abumoghli, I.; Barlette, Y.; Bunker, D.; et al. Climate change and COP26: Are digital technologies and information management part of the problem or the solution? An editorial reflection and call to action. Int. J. Inf. Manag. 2022, 63, 102456. [Google Scholar] [CrossRef]
- Kar, A.K.; Dwivedi, Y.K. Theory building with big data-driven research—Moving away from the “What” towards the “Why”. Int. J. Inf. Manag. 2020, 54, 102205. [Google Scholar] [CrossRef]
- Broadus, R. Toward a definition of bibliometrics. Scientometrics 1987, 12, 373–379. [Google Scholar] [CrossRef]
- Abu, F.; Gholami, H.; Saman, M.Z.M.; Zakuan, N.; Sharif, S.; Streimikiene, D. Pathways of lean manufacturing in wood and furniture industries: A bibliometric and systematic review. Eur. J. Wood Wood Prod. 2021, 79, 753–772. [Google Scholar] [CrossRef]
- Chen, C.T. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 2000, 114, 1–9. [Google Scholar] [CrossRef]
- Gholami, H.; Hashemi, A.; Lee, J.K.Y.; Abdul-Nour, G.; Salameh, A.A. Scrutinizing state-of-the-art I4.0 technologies toward sustainable products development under fuzzy environment. J. Clean. Prod. 2022, 377, 134327. [Google Scholar] [CrossRef]
- Jawahir, I.S.; Dillon, O.W.; Rouch, K.E.; Joshi, K.J.; Venkatachalam, A.; Jaafar, I.H. Total Life-Cycle Considerations in Product Design for Sustainability: A Framework for Comprehensive Evaluation. In Proceedings of the 10th International Research/Expert Conference, Barcelona, Spain, 11–15 September 2006. [Google Scholar]
- De Silva, N.; Jawahir, I.S.; Dillon, O., Jr.; Russell, M. A new comprehensive methodology for the evaluation of product sustainability at the design and development stage of consumer electronic products. Int. J. Sustain. Manuf. 2009, 1, 251–264. [Google Scholar] [CrossRef]
- Shuaib, M.; Seevers, D.; Zhang, X.; Badurdeen, F.; Rouch, K.E.; Jawahir, I.S. Product sustainability index (ProdSI) a metrics-based framework to evaluate the total life cycle sustainability of manufactured products. J. Ind. Ecol. 2014, 18, 491–507. [Google Scholar] [CrossRef]
- Hapuwatte, B.M.; Jawahir, I.S. Closed-loop sustainable product design for circular economy. J. Ind. Ecol. 2021, 25, 1430–1446. [Google Scholar] [CrossRef]
- Jayal, A.D.; Badurdeen, F.; Dillon, O.W., Jr.; Jawahir, I.S. Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels. CIRP J. Manuf. Sci. Technol. 2010, 2, 144–152. [Google Scholar] [CrossRef]
- Ahmad, S.; Wong, K.Y.; Tseng, M.L.; Wong, W.P. Sustainable product design and development: A review of tools, applications and research prospects. Resour. Conserv. Recycl. 2018, 132, 49–61. [Google Scholar] [CrossRef]
- Gholami, H.; Abu, F.; Lee, J.K.Y.; Karganroudi, S.S.; Sharif, S. Sustainable Manufacturing 4.0—Pathways and Practices. Sustainability 2021, 13, 13956. [Google Scholar] [CrossRef]
- Stock, T.; Seliger, G. Opportunities of sustainable manufacturing in industry 4.0. Procedia CIRP 2016, 40, 536–541. [Google Scholar] [CrossRef]
- Faulkner, W.; Badurdeen, F. Sustainable Value Stream Mapping (Sus-VSM): Methodology to visualize and assess manufacturing sustainability performance. J. Clean. Prod. 2014, 85, 8–18. [Google Scholar] [CrossRef]
- Jamil, N.; Gholami, H.; Mat Saman, M.Z.; Streimikiene, D.; Sharif, S.; Zakuan, N. DMAIC-based approach to sustainable value stream mapping: Towards a sustainable manufacturing system. Econ. Res.-Ekon. Istraživanja 2020, 33, 331–360. [Google Scholar] [CrossRef]
- Lee, J.K.Y.; Gholami, H.; Saman, M.Z.M.; Ngadiman, N.H.A.B.; Zakuan, N.; Mahmood, S.; Omain, S.Z. Sustainability-oriented application of value stream mapping: A review and classification. IEEE Access 2021, 9, 68414–68434. [Google Scholar] [CrossRef]
- Nica, E.; Stan, C.I.; Luțan, A.G.; Oașa, R.Ș. Internet of things-based real-time production logistics, sustainable industrial value creation, and artificial intelligence-driven big data analytics in cyber-physical smart manufacturing systems. Econ. Manag. Financ. Mark. 2021, 16, 52–63. [Google Scholar]
- Peters, E.; Kliestik, T.; Musa, H.; Durana, P. Product decision-making information systems, real-time big data analytics, and deep learning-enabled smart process planning in sustainable industry 4.0. J. Self-Gov. Manag. Econ. 2020, 8, 16–22. [Google Scholar]
- Vinodh, S.; Ben Ruben, R.; Asokan, P. Life cycle assessment integrated value stream mapping framework to ensure sustainable manufacturing: A case study. Clean Technol. Environ. Policy 2016, 18, 279–295. [Google Scholar] [CrossRef]
- Cox, M.; Ellsworth, D. Managing big data for scientific visualization. ACM Siggraph 1997, 97, 21–38. [Google Scholar]
- Einav, L.; Levin, J. The data revolution and economic analysis. Innov. Policy Econ. 2013, 14, 1–24. [Google Scholar]
- O’Leary, D.E. Artificial intelligence and big data. IEEE Intell. Syst. 2013, 28, 96–99. [Google Scholar] [CrossRef]
- Goes, P. Big data and IS research. Mis Q. 2014, 38, 3–8. [Google Scholar]
- Laney, D. 3D data management: Controlling data volume, velocity and variety. META Group Res. Note 2001, 6, 1–4. [Google Scholar]
- Gantz, J.; Reinsel, D. Extracting value from chaos. IDC Iview 2011, 1142, 1–12. [Google Scholar]
- Zikopoulos, P.; Deroos, D.; Parasuraman, K.; Deutsch, T.; Giles, J.; Corrigan, D. Harness the Power of Big Data the IBM Big Data Platform; McGraw Hill Professional: New York, NY, USA, 2012. [Google Scholar]
- Kwon, O.; Lee, N.; Shin, B. Data quality management, data usage experience, and acquisition intention of big data analytics. Int. J. Inf. Manag. 2014, 34, 387–394. [Google Scholar] [CrossRef]
- Awan, U.; Shamim, S.; Khan, Z.; Zia, N.U.; Shariq, S.M.; Khan, M.N. Big data analytics capability and decision-making: The role of data-driven insight on circular economy performance. Technol. Forecast. Soc. Chang. 2021, 168, 120766. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.; Zhang, J.; Zhong, R. Big data analytics for intelligent manufacturing systems: A review. J. Manuf. Syst. 2021, 62, 738–752. [Google Scholar] [CrossRef]
- Li, J.; Tao, F.; Cheng, Y.; Zhao, L. Big data in product lifecycle management. Int. J. Adv. Manuf. Technol. 2015, 81, 667–684. [Google Scholar] [CrossRef]
- Opresnik, D.; Taisch, M. The value of big data in servitization. Int. J. Prod. Econ. 2015, 165, 174–184. [Google Scholar] [CrossRef]
- Tukker, A. Product services for a resource-efficient and circular economy—A review. J. Clean. Prod. 2015, 97, 76–91. [Google Scholar] [CrossRef]
- Pritchard, J. Statistical bibliography or bibliometrics? J. Doc. 1969, 25, 348–349. [Google Scholar]
- Letchumanan, L.T.; Gholami, H.; Yusof, N.M.; Ngadiman, N.H.A.B.; Salameh, A.A.; Štreimikienė, D.; Cavallaro, F. Analyzing the Factors Enabling Green Lean Six Sigma Implementation in the Industry 4.0 Era. Sustainability 2022, 14, 3450. [Google Scholar] [CrossRef]
- Lee, J.K.Y.; Gholami, H.; Medini, K.; Salameh, A.A. Hierarchical analysis of barriers in additive manufacturing implementation with environmental considerations under uncertainty. J. Clean. Prod. 2023, 408, 137221. [Google Scholar] [CrossRef]
- Forza, C. Survey research in operations management: A process-based perspective. Int. J. Oper. Prod. Manag. 2002, 22, 152–194. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Kumar, N.; Kumar, G.; Singh, R.K. Big data analytics application for sustainable manufacturing operations: Analysis of strategic factors. Clean Technol. Environ. Policy 2021, 23, 965–989. [Google Scholar] [CrossRef]
- Koyuncu, C.A.; Aydemir, E.; Başarır, A.C. Selection Industry 4.0 maturity model using fuzzy and intuitionistic fuzzy TOPSIS methods for a solar cell manufacturing company. Soft Comput. 2021, 25, 10335–10349. [Google Scholar] [CrossRef]
- Nara, E.O.B.; da Costa, M.B.; Baierle, I.C.; Schaefer, J.L.; Benitez, G.B.; do Santos, L.M.A.L.; Benitez, L.B. Expected impact of industry 4.0 technologies on sustainable development: A study in the context of Brazil’s plastic industry. Sustain. Prod. Consum. 2021, 25, 102–122. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Bellman, R.E.; Zadeh, L.A. Decision-making in a fuzzy environment. Manag. Sci. 1970, 17, 141–164. [Google Scholar] [CrossRef]
- Wilson, L.; Goh, T.T.; Wang, W.Y.C. Big Data Management Challenges in a Meteorological Organisation. Int. J. E-Adopt. (IJEA) 2012, 4, 1–14. [Google Scholar] [CrossRef]
- Saguy, I.S.; Singh, R.P.; Johnson, T.; Fryer, P.J.; Sastry, S.K. Challenges facing food engineering. J. Food Eng. 2013, 119, 332–342. [Google Scholar] [CrossRef]
- Kwac, J.; Rajagopal, R. Demand response targeting using big data analytics. In Proceedings of the 2013 IEEE International Conference on Big Data, Silicon Valley, CA, USA, 6–9 October 2013; Volume 6691643, pp. 683–690. [Google Scholar]
- Tomic, S.D.K.; Fensel, A. OpenFridge: A platform for data economy for energy efficiency data. In Proceedings of the 2013 IEEE International Conference on Big Data, Silicon Valley, CA, USA, 6–9 October 2013; Volume 6691686, pp. 43–47. [Google Scholar]
- Bernat, S.; Karabag, S.F. Strategic alignment of technology: Organising for technology upgrading in emerging economy firms. Technol. Forecast. Soc. Chang. 2019, 145, 295–306. [Google Scholar] [CrossRef]
- Sharma, R.; Kamble, S.S.; Gunasekaran, A.; Kumar, V.; Kumar, A. A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Comput. Oper. Res. 2020, 119, 104926. [Google Scholar] [CrossRef]
- Kissling, W.D.; Ahumada, J.A.; Bowser, A.; Fernandez, M.; Fernández, N.; García, E.A.; Hardisty, A.R. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol. Rev. 2018, 93, 600–625. [Google Scholar] [CrossRef]
- Kuang, W.; Zhang, S.; Li, X.; Lu, D. A 30 m resolution dataset of China’s urban impervious surface area and green space, 2000–2018. Earth Syst. Sci. Data 2021, 13, 63–82. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. The emerging data-driven Smart City and its innovative applied solutions for sustainability: The cases of London and Barcelona. Energy Inform. 2020, 3, 5. [Google Scholar] [CrossRef]
- Bressanelli, G.; Adrodegari, F.; Perona, M.; Saccani, N. The role of digital technologies to overcome Circular Economy challenges in PSS Business Models: An exploratory case study. Procedia Cirp. 2018, 73, 216–221. [Google Scholar] [CrossRef]
- Ragland, B. Measure, Metric or Indicator: What’s the Difference? Crosstalk 1995, 8, 29–30. [Google Scholar]
- Bai, C.; Dallasega, P.; Orzes, G.; Sarkis, J. Industry 4.0 technologies assessment: A sustainability perspective. Int. J. Prod. Econ. 2020, 229, 107776. [Google Scholar] [CrossRef]
Country | Publication Year | TP | TC | Document h-Index | Most Collaborative Country (#doc) | Most Productive Institute (#doc) | Top Contributing Author (#doc) | Most Used Journal (#doc) | Most Cited Paper (#cite) |
---|---|---|---|---|---|---|---|---|---|
China | 2016–2023 | 196 | 5130 | 31 | USA (15) and UK (15) | Chinese Academy of Sciences (15) | Zhang, Y. (9), Ren, S. (9), and Liu, Y. (9) | Journal of Cleaner Production (20) | Tao et al. [20] (1406) |
USA | 2013–2023 | 124 | 3718 | 33 | China (15) | The University of Tennessee, Knoxville (7) | Huisingh, D. (6) | Journal of Cleaner Production (8) | Ren et al. [22] (245) |
India | 2014–2023 | 90 | 1656 | 21 | USA (12) | Jamia Millia Islamia (5) | Atassi, L. (3) | Advances in Science Technology and Innovation (3) | Sharma et al. [72] (221) |
UK | 2013–2023 | 80 | 1965 | 24 | China (15) | The University of Manchester (6) | Jagtap, S. (3) | Economics Management and Financial Markets (4) | Sharma et al. [72] (221) |
Italy | 2014–2023 | 57 | 913 | 15 | UK (11) | Consiglio Nazionale delle Ricerche (5) | Hassoun, A. (4) | Proceedings of the Summer School Francesco Turco (4) | Kissling et al. [73] (164) |
Institution | Country | Publication Year | TP | TC | Document h-Index | Most Collaborative Institute (#doc) | Top Contributing Author (#doc) | Most Used Journal (#doc) | Most Cited Paper (#cite) |
---|---|---|---|---|---|---|---|---|---|
Chinese Academy of Sciences | China | 2017–2022 | 15 | 199 | 8 | University of Chinese Academy of Sciences (9) | Che, T. (3) and Pan, X. (3) | Big Earth Data (2) | Kuang et al. [74] (37) |
Ministry of Education China | China | 2017–2023 | 13 | 1150 | 8 | Northwestern Polytechnical University (9) | Zhang, Y. (9) | Journal of Cleaner Production (6) | Zhang et al. [16] (324) |
Norges Teknisk-Naturvitenskapelige Universitet | Norway | 2019–2023 | 13 | 480 | 8 | INRAE (3) | Bibri, S.E. (6) | Advances In Science Technology and Innovation (3) | Kristoffersen et al. [19] (200) |
Linköpings Universitet | Sweden | 2017–2023 | 11 | 1046 | 8 | Ministry of Education China (8) | Liu, Y. (9) | Journal of Cleaner Production (6) | Zhang et al. [16] (324) |
CNRS Centre National de la Recherche Scientifique | France | 2018–2023 | 10 | 358 | 5 | Université Fédérale Toulouse Midi-Pyrénées (4) | Belaud, J.P. (2) | n/a | Kissling et al. [73] (164) |
Author (h-Index) | Affiliation | Publication Year | TP | TC | Document h-Index | Most Used Journal (#doc) | Most Cited Paper (#cite) |
---|---|---|---|---|---|---|---|
Zhang, Y. (47) | Northwestern Polytechnical University, Xi’an, China | 2017–2022 | 9 | 1137 | 8 | Journal of Cleaner Production (6) | Zhang et al. [16] (324) |
Liu, Y. (31) | Linköpings Universitet, Linkoping, Sweden | 2017–2023 | 9 | 1028 | 8 | Journal of Cleaner Production (6) | Zhang et al. [16] (324) |
Ren, S. (13) | Xi’an Institute of Posts and Telecommunications, School of Modern Posts, Xi’an, China | 2017–2022 | 9 | 1027 | 8 | Journal of Cleaner Production (5) | Zhang et al. [16] (324) |
Huisingh, D. (55) | The University of Tennessee, Knoxville, Knoxville, United States | 2017–2020 | 6 | 692 | 6 | Journal of Cleaner Production (5) | Ren et al. [22] (245) |
Bibri, S.E. (24) | Ecole Polytechnique Fédérale de Lausanne, Department of Civil and Environmental Engineering, Lausanne, Switzerland | 2019–2022 | 6 | 174 | 3 | Advances in Science Technology and Innovation (3) | Bibri and Krogstie [75] (81) |
Journal | Publication Year | TP | TC | Document h-Index | CiteScore 2021 (Highest Percentile) | Most Cited Paper (#Cite)—Objective |
---|---|---|---|---|---|---|
Sustainability | 2017–2023 | 60 | 1583 | 18 | 5.0 (86th) | Nagy et al. [18] (311)—To examine how businesses in Hungary understand and apply the concept of Industry 4.0 and its tools including IoT, BDA, etc. |
Journal of Cleaner Production | 2017–2022 | 33 | 2383 | 25 | 15.8 (98th) | Zhang et al. [16] (324)—To propose an overall architecture of BDA for product lifecycle. |
Journal of Self Governance and Management Economics | 2019–2021 | 14 | 307 | 7 | 5.3 (99th) | Peters et al. [42] (103)—To examine the relationship between product decision-making information systems, real-time BDA, and deep learning-enabled smart process planning in sustainable Industry 4.0. |
Procedia CIRP | 2014–2022 | 14 | 257 | 8 | 3.9 (67th) | Bressanelli et al. [76] (90)—To explore the role of digital technologies in a case study of a company utilizing a PSS business model with IoT, and BDA. |
Economics Management and Financial Markets | 2019–2021 | 13 | 284 | 10 | 5.1 (95th) | Nica et al. [41] (60)—To present an exploratory analysis on IoT-based real-time production logistics, sustainable industrial value creation, and artificial intelligence-driven BDA in cyber–physical smart manufacturing systems. |
Title | Type | Publication Year | Authors | TC | FWCI * | Objective | Contribution to SDGs ** |
---|---|---|---|---|---|---|---|
Digital twin-driven product design, manufacturing, and service with big data | Journal article | 2018 | Tao et al. [20] | 1406 | 75.2 | To propose a method for product design, manufacturing, and service driven by digital twin, exploring its application methods, frameworks, and future potential through three illustrative cases. | Goal 9 |
Green innovation and organizational performance: The influence of big data and the moderating role of management commitment and HR practices | Journal article | 2019 | El-Kassar and Singh [15] | 438 | 43.25 | To develop and test a model demonstrating the relationships among green innovation, its drivers, and factors influencing performance and competitive advantage. | Goals 7, 9 and 12 |
A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products | Journal article | 2017 | Zhang et al. [16] | 324 | 15.31 | To propose an overall architecture of BDA for product lifecycle. | Goals 8, 9 and 12 |
The role and impact of Industry 4.0 and the Internet of Things on the business strategy of the value chain: the case of Hungary | Journal article | 2018 | Nagy et al. [18] | 311 | 15.41 | To examine how businesses understand and apply the concept of Industry 4.0 and its tools including IoT, BDA, etc. | Goals 8 and 9 |
Industry 4.0: A solution towards technology challenges of sustainable business performance | Journal article | 2019 | Haseeb et al. [21] | 286 | 50.14 | To identify and examine elements of Industry 4.0 including BDA, IoT, etc. to develop sustainable business performance. | Goals 9 and 17 |
Industry 4.0 and sustainability implications: A scenario-based analysis of the impacts and challenges | Journal article | 2018 | Bonilla et al. [17] | 270 | 13.76 | To examine and discuss the sustainability, impact, and challenges of Industry 4.0 and its related technologies, including BDA, IoT, etc. from four dissimilar scenarios. | Goals 8, 9, 12 and 17 |
A comprehensive review of big data analytics throughout product lifecycle to support sustainable smart manufacturing: A framework, challenges and future research directions | Journal article | 2019 | Ren et al. [22] | 245 | 13.78 | To present a comprehensive overview of BDA in smart manufacturing and propose a product lifecycle-based framework. | Goals 9 and 12 |
Big Data Analytics for Dynamic Energy Management in Smart Grids | Journal article | 2015 | Diamantoulakis et al. [14] | 240 | 10.15 | To shed light on the challenges and problems related to BDA encountered by the dynamic energy management employed in smart grid networks and offer an overview of the prevalent data-processing techniques and a potential avenue. | Goals 7, 9 and 12 |
Big data analytics as an operational excellence approach to enhance sustainable supply chain performance | Journal article | 2020 | Bag et al. [23] | 223 | 18.03 | To assess the significance of BDA capability for enhancing sustainable supply chain performance using the dynamic capability theory. | Goals 9, 12 and 17 |
The smart circular economy: A digital-enabled circular strategies framework for manufacturing companies | Journal article | 2020 | Kristoffersen et al. [19] | 200 | 10.99 | To present the smart circular economy framework, which helps manufacturers achieve SD by translating circular strategies into the business analysis requirements of digital technologies including BDA, IoT, etc. | Goals 8, 9, 12 and 17 |
Linguistic Variable | Code | Fuzzy Number |
---|---|---|
Very low | VL | (0, 0, 0.1) |
Low | L | (0, 0.1, 0.3) |
Medium low | ML | (0.1, 0.3, 0.5) |
Medium | M | (0.3, 0.5, 0.7) |
Medium high | MH | (0.5, 0.7, 0.9) |
High | H | (0.7, 0.9, 1.0) |
Very high | VH | (0.9, 1.0, 1.0) |
Linguistic Variable | Code | Fuzzy Number |
---|---|---|
Very poor | VP | (0, 0, 1) |
Poor | P | (0, 1, 3) |
Medium poor | MP | (1, 3, 5) |
Fair | F | (3, 5, 7) |
Medium good | MG | (5, 7, 9) |
Good | G | (7, 9, 10) |
Very good | VG | (9, 10, 10) |
Indicator | Experts’ Linguistic Valuation | Aggregated Fuzzy Weight | ||||
---|---|---|---|---|---|---|
Sustainability Aspects | Desired Degree | P.Tech.1 | P.Tech.2 | P.Tech.3 | ||
EcI1 | Eco | Min | H | VH | VH | (0.83, 0.96, 1.00) |
EcI2 | Eco | Min | H | VH | VH | (0.83, 0.96, 1.00) |
EcI3 | Eco | Min | VH | H | VH | (0.83, 0.96, 1.00) |
EnI1 | Env | Min | VH | H | VH | (0.83, 0.96, 1.00) |
EnI2 | Env | Min | MH | MH | H | (0.56, 0.76, 0.93) |
EnI3 | Env | Min | H | H | VH | (0.76, 0.93, 1.00) |
EnI4 | Env | Max | H | H | VH | (0.76, 0.93, 1.00) |
SoI1 | Soc | Max | VH | H | VH | (0.83, 0.96, 1.00) |
SoI2 | Soc | Max | VH | H | VH | (0.83, 0.96, 1.00) |
SoI3 | Soc | Max | H | MH | H | (0.63, 0.83, 0.96) |
SoI4 | Soc | Max | H | MH | H | (0.63, 0.83, 0.96) |
Indicator | Big Data Analytics (BDA) | |||||||
---|---|---|---|---|---|---|---|---|
P.Tech.1 | P.Tech.2 | P.Tech.3 | Aggregation | Normalization | Normalized Fuzzy Weight | CCBDA | Contributory Rank | |
EcI1 | M | MP | M | (2.33, 4.33, 6.33) | (0.05, 0.07, 0.14) | (0.04, 0.06, 0.14) | 0.089 | 9 |
EcI2 | MP | P | P | (0.33, 1.66, 3.66) | (0.09, 0.19, 1.00) | (0.07, 0.18, 1.00) | 0.439 | 5 |
EcI3 | MP | P | MP | (0.66, 2.33, 4.33) | (0.07, 0.14, 0.50) | (0.05, 0.13, 0.50) | 0.269 | 7 |
EnI1 | M | M | MG | (3.66, 5.66, 7.66) | (0.04, 0.05, 0.09) | (0.03, 0.05, 0.09) | 0.060 | 10 |
EnI2 | M | M | MG | (3.66, 5.66, 7.66) | (0.04, 0.05, 0.09) | (0.02, 0.04, 0.08) | 0.050 | 11 |
EnI3 | P | MP | P | (0.33, 1.66, 3.66) | (0.09, 0.19, 1.00) | (0.07, 0.17, 1.00) | 0.446 | 4 |
EnI4 | VG | VG | VG | (9.00,10.0,10.00) | (0.90, 1.00, 1.00) | (0.60, 0.90, 1.00) | 0.787 | 1 |
SoI1 | MG | M | MG | (4.33, 6.33, 8.33) | (0.43, 0.63, 0.83) | (0.35, 0.60, 0.83) | 0.579 | 2 |
SoI2 | MG | M | M | (3.66, 5.66, 7.66) | (0.36, 0.56, 0.76) | (0.29, 0.53, 0.76) | 0.523 | 3 |
SoI3 | MP | MP | MP | (1.00, 3.00, 5.00) | (0.10, 0.30, 0.50) | (0.06, 0.24, 0.48) | 0.292 | 6 |
SoI4 | P | P | MP | (0.33, 1.66, 3.66) | (0.03, 0.16, 0.36) | (0.02, 0.13, 0.34) | 0.202 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gholami, H.; Lee, J.K.Y.; Ali, A. Big Data Analytics for Sustainable Products: A State-of-the-Art Review and Analysis. Sustainability 2023, 15, 12758. https://doi.org/10.3390/su151712758
Gholami H, Lee JKY, Ali A. Big Data Analytics for Sustainable Products: A State-of-the-Art Review and Analysis. Sustainability. 2023; 15(17):12758. https://doi.org/10.3390/su151712758
Chicago/Turabian StyleGholami, Hamed, Jocelyn Ke Yin Lee, and Ahad Ali. 2023. "Big Data Analytics for Sustainable Products: A State-of-the-Art Review and Analysis" Sustainability 15, no. 17: 12758. https://doi.org/10.3390/su151712758
APA StyleGholami, H., Lee, J. K. Y., & Ali, A. (2023). Big Data Analytics for Sustainable Products: A State-of-the-Art Review and Analysis. Sustainability, 15(17), 12758. https://doi.org/10.3390/su151712758