The Classification of Riparian Habitats and Assessment of Fish-Spawning Habitat Suitability: A Case Study of the Three Gorges Reservoir, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.2.1. Satellite Data Acquisition and Preprocessing
2.2.2. Extraction of Water Body Information
2.2.3. River Centerline
2.2.4. Field Data
2.3. Riparian Habitat Classification
2.4. Suitability of Spawning Habitats
3. Results
3.1. Spatial Distribution of Habitat Types in the TGR
3.2. Habitat Factor Analysis of Spawning Grounds
3.3. Habitat Suitability Index Curve
3.4. Mapping the Suitability of Spawning Habitats
4. Discussion
4.1. Comparison of River Habitat Classification Methods
4.2. Assessment Methods for Habitat Suitability
4.3. Application Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, J.; Yu, Y.; Gui, R.; Zheng, W.; Guo, A. Spatial Distribution Analysis of Landslide Deformations and Land-Use Changes in the Three Gorges Reservoir Area by Using Interferometric and Polarimetric SAR. Remote Sens. 2023, 15, 2302. [Google Scholar] [CrossRef]
- Liu, S.; Liao, Q.; Xiao, M.; Zhao, D.; Huang, C. Spatial and Temporal Variations of Habitat Quality and Its Response of Landscape Dynamic in the Three Gorges Reservoir Area, China. Int. J. Environ. Res. Public Health 2022, 19, 3594. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Sun, T.; Wang, T.; Li, Z.; Cai, C. Evolution and Prediction of Landscape Pattern and Habitat Quality Based on CA-Markov and InVEST Model in Hubei Section of Three Gorges Reservoir Area (TGRA). Sustainability 2018, 10, 3854. [Google Scholar] [CrossRef]
- Perera, H.; Zhong-Jie, L.I.; Silva, S.; Zhang, T.L.; Liu, J.S. Effect of the distance from the dam on river fish community structure and compositional trends, with reference to the Three Gorges Dam, Yangtze River, China. Acta Hydrobiol. Sin. 2014, 38, 438–445. [Google Scholar] [CrossRef]
- Yi, Y.; Wang, Z.; Yang, Z. Impact of the Gezhouba and Three Gorges Dams on habitat suitability of carps in the Yangtze River. J. Hydrol. 2010, 387, 283–291. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, L.; Zhu, X.; Zhang, A.; Yin, J.; Wang, H. Optimized reservoir operation to balance human and environmental requirements: A case study for the Three Gorges and Gezhouba Dams, Yangtze River basin, China. Ecol. Inform. 2013, 18, 40–48. [Google Scholar] [CrossRef]
- Wang, J.N.; Dong, Z.R.; Liao, W.G.; Li, C. An environmental flow assessment method based on the relationships between flow and ecological response: A case study of the Three Gorges Reservoir and its downstream reach. Sci. China Technol. Sci. 2013, 6, 1471–1484. [Google Scholar] [CrossRef]
- Huang, L.; Li, X.; Fang, H.; Yin, D.; Si, Y.; Wei, J.; Liu, J.; Hu, X.; Zhang, L. Balancing social, economic and ecological benefits of reservoir operation during the flood season: A case study of the Three Gorges Project, China. J. Hydrol. 2019, 572, 422–434. [Google Scholar] [CrossRef]
- New, T.; Xie, Z. Impacts of large dams on riparian vegetation: Applying global experience to the case of China’s Three Gorges Dam. Biodivers. Conserv. 2008, 17, 3149–3163. [Google Scholar] [CrossRef]
- Tian, M.; Zhou, J.; Jia, B.; Lou, S.; Wu, H. Impact of Three Gorges Reservoir Water Impoundment on Vegetation–Climate Response Relationship. Remote Sens. 2020, 12, 2860. [Google Scholar] [CrossRef]
- Leopold, L.B.; Wolman, M.G. River Channel Patterns—Braided, Meandering and Straight. Prof. Geographer 1957, 9, 39–85. [Google Scholar] [CrossRef]
- Schumm, S.A. The Fluvial System; Wiley: New York, NY, USA, 1977. [Google Scholar]
- Rosgen, D.L. A Classification of Natural Rivers. Catena 1994, 22, 169–199. [Google Scholar] [CrossRef]
- Bisson, P.A. A system of naming habitat types in small streams, with examples of habitat utilization by Salmonids during low stream flow. In Aquisition & Utilization of Aquatic Habitat Information; American Fisheries Society: Grand Rapids, MI, USA, 1981; pp. 62–73. [Google Scholar]
- Yu, F.; Liu, F.; Xia, Z.; Lin, P.; Xu, C.; Wang, J.; Hou, M.; Zou, X. Classification and Assessment Methods for Mountain Channel Habitats in the Chishui River Basin, China. Water 2022, 14, 515. [Google Scholar] [CrossRef]
- Zhang, Y.; Arthington, A.H.; Bunn, S.E.; Mackay, S.; Xia, J.; Kennard, M. Classification of flow regimes for environmental flow assessment in regulated rivers: The huai river basin, China. River Res. Appl. 2012, 28, 989–1005. [Google Scholar] [CrossRef]
- Wan, J.; Bu, H.; Zhang, Y.; Meng, W. Classification of rivers based on water quality assessment using factor analysis in Taizi River basin, northeast China. Environ. Earth Sci. 2013, 69, 909–919. [Google Scholar] [CrossRef]
- Rinaldi, M.; Gurnell, A.M.; Del Tánago, M.G.; Bussettini, M.; Hendriks, D. Classification of river morphology and hydrology to support management and restoration. Aquat. Sci. 2016, 78, 17–33. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, Z.; Cai, L.; Qiao, Y.; Chen, X.; Chang, J. Effects of upstream and downstream dam operation on the spawning habitat suitability of Coreius guichenoti in the middle reach of the Jinsha River. Ecol. Eng. 2018, 120, 198–208. [Google Scholar] [CrossRef]
- Nicholas, E.J.; Michael, P.; Sarah, P.; Steve, C. Evidence of lake trout (Salvelinus namaycush) spawning and spawning habitat use in the Dog River, Lake Superior. J. Great Lakes Res. 2018, 44, 1117–1122. [Google Scholar] [CrossRef]
- Yi, Y.; Le, S. Habitat Suitability Function of Four Major Chinese Carps Spawning Sites in the Yangtze River. J. Basic Sci. Eng. 2011, 19, 117–122. [Google Scholar]
- Chang, Y.J.; Sun, C.L.; Chen, Y.; Yeh, S.Z.; Dinardo, G. Habitat suitability analysis and identification of potential fishing grounds for swordfish, Xiphias gladius, in the South Atlantic Ocean. Int. J. Remote Sens. 2012, 33, 7523–7541. [Google Scholar] [CrossRef]
- Liu, P.; Li, L.; Guo, S.; Xiong, L.; Zhang, W.; Zhang, J.; Xu, C. Optimal design of seasonal flood limited water levels and its application for the Three Gorges Reservoir. J. Hydrol. 2015, 527, 1045–1053. [Google Scholar] [CrossRef]
- Zhang, S.; Jing, Z.; Yi, Y.; Wu, Y.; Zhao, Y. The dynamic capacity calculation method and the flood control ability of the Three Gorges Reservoir. J. Hydrol. 2017, 555, 361–370. [Google Scholar] [CrossRef]
- Farsad Layegh, N.; Darvishzadeh, R.; Skidmore, A.K.; Persello, C.; Krüger, N. Integrating Semi-Supervised Learning with an Expert System for Vegetation Cover Classification Using Sentinel-2 and RapidEye Data. Remote Sens. 2022, 14, 3605. [Google Scholar] [CrossRef]
- Pacheco-Pascagaza, A.M.; Gou, Y.; Louis, V.; Roberts, J.F.; Rodríguez-Veiga, P.; Da Conceição Bispo, P.; Espírito-Santo, F.D.B.; Robb, C.; Upton, C.; Galindo, G.; et al. Near Real-Time Change Detection System Using Sentinel-2 and Machine Learning: A Test for Mexican and Colombian Forests. Remote Sens. 2022, 14, 707. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Choi, Y.; Ban, H.; Han, H.; Hong, S. A Maritime Cloud-Detection Method Using Visible and Near-Infrared Bands over the Yellow Sea and Bohai Sea. Remote Sens. 2022, 14, 793. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 2007, 9, 62–66. [Google Scholar] [CrossRef]
- Xu, W.; Yang, Z.; Yi, R.; Yao, J.; Chen, X. Relationship between environmental variables and egg abundance of the four major Chinese carps, downstream of the Three Gorges Reservoir. River Res. Appl. 2021, 37, 1191–1200. [Google Scholar] [CrossRef]
- Yang, S.; Gao, X.; Ma, B.; Kong, Y.; Liu, H. Seasonal Dynamics of Fish Community in Mudong Section of the Three Gorges Reservoir of the Yangtze River, China. Chin. J. Appl. Environ. Biol. 2010, 16, 555–560. [Google Scholar]
- CN-HJ 710.7; Technical Guidelines for Biodiversity Monitoring—Inland Water Fish. Ministry of Environmental Protection: Beijing, China, 2014.
- Qian, N. Fluvial Processes Study; Science Press: Beijing, China, 1987. [Google Scholar]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Yi, Y.; Cheng, X.; Zhou, J. Research progress in habitat suitability assessment methods. Ecol. Environ. Sci. 2013, 22, 887–893. [Google Scholar] [CrossRef]
- Yi, Y.; Wang, Z.; Yang, Z. Two-dimensional habitat modeling of Chinese sturgeon spawning sites. Ecol. Model. 2010, 221, 864–875. [Google Scholar] [CrossRef]
- Hess, G.R.; Bay, J.M. A Regional Assessment of Windbreak Habitat Suitability. Environ. Monit. Assess. 2000, 61, 239–256. [Google Scholar] [CrossRef]
- Lee, B.; Leroy, P.N.; Daniel, M.; Thomas, D.; Gordon, R.; George, P.; Michael, P. The Network Dynamics Hypothesis: How Channel Networks Structure Riverine Habitats. Bioscience 2004, 54, 413–427. [Google Scholar] [CrossRef]
- Allan, J.D. Stream Ecology: Structure and Function of Running Waters; Chapman & Hall: London, UK, 2021. [Google Scholar]
- Cohen, P.; Andriamahefa, H.; Wasson, J.G. Towards a regionalization of aquatic habitat: Distribution of mesohabitats at the scale of a large basin. Regul. Rivers: Res. Manag. 1998, 14, 391–404. [Google Scholar] [CrossRef]
- Hawkins, C.P.; Kershner, J.L.; Bisson, P.A.; Bryant, M.D.; Decker, L.M.; Gregory, S.V.; Mccullough, D.A.; Overton, C.K.; Reeves, G.H.; Steedman, R.J. A Hierarchical Approach to Classifying Stream Habitat Features. Fisheries 1993, 18, 3–12. [Google Scholar] [CrossRef]
- Yao, W.; Zhao, T.; Chen, Y.; Yu, G.; Xiao, M. Assessing the river habitat suitability and effects of introduction of exotic fish species based on anecohydraulic model system. Ecol. Inform. 2018, 45, 59–69. [Google Scholar] [CrossRef]
- Kang, H.; Choi, B. Dominant Fish and Macroinvertebrate Response to Flow Changes of the Geum River in Korea. Water 2018, 10, 942. [Google Scholar] [CrossRef]
- Belgiorno, V.; Naddeo, V.; Scannapieco, D.; Zarra, T.; Ricco, D. Ecological status of rivers in preserved areas: Effects of meteorological parameters. Ecol. Eng. 2013, 53, 173–182. [Google Scholar] [CrossRef]
- Zhang, P.; Cai, L.; Yang, Z.; Chen, X.; Qiao, Y.; Chang, J. Evaluation of fish habitat suitability using a coupled ecohydraulic model: Habitat model selection and prediction. River Res. Appl. 2018, 34, 937–947. [Google Scholar] [CrossRef]
- Nukazawa, K.; Shiraiwa, J.I.; Kazama, S. Evaluations of seasonal habitat variations of freshwater fishes, fireflies, and frogs using a habitat suitability index model that includes river water temperature. Ecol. Model. 2011, 222, 3718–3726. [Google Scholar] [CrossRef]
- Baruah, A.; Kumar Sarma, A.; Hinge, G. Hydrological–Hydrodynamic Nexus for Evaluation of Fish Habitat Suitability in the Bhogdoi River, India. J. Hydrol. Eng. 2021, 26, 04021032. [Google Scholar] [CrossRef]
- Vayghan, A.H.; Poorbagher, H.; Shahraiyni, H.T.; Fazli, H.; Saravi, H.N. Suitability indices and habitat suitability index model of Caspian kutum (Rutilus frisii kutum) in the southern Caspian Sea. Aquat. Ecol. 2013, 47, 441–451. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Yu, L.; Cao, K.; Wang, D.; Duan, X.; Ding, F.; Mao, Z.; Wang, K.; Liu, S.; et al. Managing Water Level for Large Migratory Fish at the Poyang Lake Outlet: Implications Based on Habitat Suitability and Connectivity. Water 2022, 14, 2076. [Google Scholar] [CrossRef]
- Guo, W.; Wang, H.; Xu, J.; Xia, Z. Ecological operation for Three Gorges Reservoir. Water Sci. Eng. 2011, 4, 143–156. [Google Scholar] [CrossRef]
- Ba, J.; Chen, D. Invasive fishes in Three Gorges Reservoir area and preliminary study on effects of fish invasion owing to impoundment. J. Lake Sci. 2012, 24, 5. [Google Scholar] [CrossRef]
- Gido, K.B.; Matthews, W.J.; Wolfinbarger, W.C. Long-Term Changes in a Reservoir Fish Assemblage: Stability in an Unpredictable Environment. Ecol. Appl. 2000, 10, 1517–1529. [Google Scholar] [CrossRef]
- Franssen, N.R.; Tobler, M. Upstream effects of a reservoir on fish assemblages 45 years following impoundment. J. Fish Biol. 2013, 82, 1659–1670. [Google Scholar] [CrossRef]
- Miranda, L.; Coppola, G.A.B.J. Reservoir Fish Habitats: A Perspective on Coping with Climate Change. Rev. Fish. Sci. Aquac. 2020, 28, 478–498. [Google Scholar] [CrossRef]
- Holbach, A.; Wang, L.; Chen, H.; Hu, W.; Schleicher, N.; Zheng, B.; Norra, S. Water mass interaction in the confluence zone of the Daning River and the Yangtze River—A driving force for algal growth in the Three Gorges Reservoir. Environ. Sci. Pollut. Res. 2013, 20, 7027–7037. [Google Scholar] [CrossRef]
- Yang, L.; Liu, D.; Huang, Y.; Yang, Z.; Ji, D.; Song, L. Isotope analysis of the nutrient supply in Xiangxi Bay of the Three Gorges Reservoir. Ecol. Eng. 2015, 77, 65–73. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, B.; Wang, L.; Qin, Y.; Hong, L.; Wei, C. Characterization of Mixing Processes in the Confluence Zone between the Three Gorges Reservoir Mainstream and the Daning River Using Stable Isotope Analysis. Environ. Sci. Technol. 2016, 50, 9907–9914. [Google Scholar] [CrossRef]
RapidEye | Sentinel-2 | |||
---|---|---|---|---|
Band | Centre Wavelength | Bandwidth | Centre Wavelength | Bandwidth |
Blue | 475 | 70 | 490 | 65 |
Green | 555 | 70 | 560 | 35 |
Red | 657.5 | 55 | 665 | 30 |
Red edge | 710 | 40 | ||
Near Infrared | 805 | 90 | 842 | 115 |
Habitat Type | Number | Proportion/(%) | Density |
---|---|---|---|
Backwater bay | 230 | 43.3 | 0.40 |
Point bar | 97 | 18.3 | 0.17 |
Straight river channel | 92 | 17.3 | 0.16 |
Convex-bank point bar | 55 | 10.4 | 0.10 |
Concave-bank deep pool | 57 | 10.7 | 0.10 |
Habitat Type | Number of Spawning Grounds | Slope/(°) | Vegetation Coverage | CCI | |||
---|---|---|---|---|---|---|---|
Min | Max | Min | Max | Min | Max | ||
Backwater bay | 14 | 8.98 | 23.02 | 0.39 | 0.73 | 2.16 | 8.98 |
Point bar | 2 | 25.64 | 32.12 | 0.41 | 0.52 | 1.52 | 1.77 |
Straight river channel | 2 | 26.15 | 30.40 | 0.48 | 0.49 | 1.34 | 1.45 |
Convex-bank point bar | 5 | 13.03 | 21.71 | 0.30 | 0.65 | 1.59 | 2.30 |
Concave-bank deep pool | 4 | 14.86 | 20.82 | 0.52 | 0.63 | 2.40 | 4.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Z.; Ding, F.; Yuan, L.; Zhang, Y.; Ni, Z.; Li, Y.; Wang, L.; Li, Y. The Classification of Riparian Habitats and Assessment of Fish-Spawning Habitat Suitability: A Case Study of the Three Gorges Reservoir, China. Sustainability 2023, 15, 12773. https://doi.org/10.3390/su151712773
Mao Z, Ding F, Yuan L, Zhang Y, Ni Z, Li Y, Wang L, Li Y. The Classification of Riparian Habitats and Assessment of Fish-Spawning Habitat Suitability: A Case Study of the Three Gorges Reservoir, China. Sustainability. 2023; 15(17):12773. https://doi.org/10.3390/su151712773
Chicago/Turabian StyleMao, Zhihui, Fang Ding, Lilai Yuan, Yan Zhang, Zhaohui Ni, Yingren Li, Lin Wang, and Yunfeng Li. 2023. "The Classification of Riparian Habitats and Assessment of Fish-Spawning Habitat Suitability: A Case Study of the Three Gorges Reservoir, China" Sustainability 15, no. 17: 12773. https://doi.org/10.3390/su151712773
APA StyleMao, Z., Ding, F., Yuan, L., Zhang, Y., Ni, Z., Li, Y., Wang, L., & Li, Y. (2023). The Classification of Riparian Habitats and Assessment of Fish-Spawning Habitat Suitability: A Case Study of the Three Gorges Reservoir, China. Sustainability, 15(17), 12773. https://doi.org/10.3390/su151712773