A Global Analysis of Climate Change and the Impacts on Oyster Diseases
Abstract
:1. Introduction
2. Climate Change and Oyster Development
3. Impacts of Ocean Acidification on Oysters’ Physiology
4. Climate Change and Oyster Diseases
5. Temperature-Induced Oyster Diseases
6. Salinity-Induced Oyster Diseases
7. pH-Induced Oyster Diseases
8. Management Strategies for Oyster Diseases in the Face of Climate Change
- Laws and Regulations (Probability Score: High): Implement existing laws and regulations relating to oyster farming. These rules must prioritize preventing diseases, implementing biosecurity measures and preserving the environment.
- Best Practices and Biosecurity Measures (Probability Score: High): Monitor the adoption of best practices in oyster farming to minimize the risk of diseases. This may involve selecting suitable sites, regular cleaning and sanitation, and strict adherence to quarantine procedures when introducing new oyster stock.
- Collaboration and Knowledge Sharing (Probability Score: High): Facilitate collaboration between government agencies, researchers, and industry stakeholders to share knowledge and experiences related to disease management.
- Fisheries Directives and Monitoring (Probability Score: Medium): Develop guidelines for fisheries that promote oyster farming methods and establish protocols for disease monitoring and reporting by farmers. Establish comprehensive disease surveillance and monitoring system to detect and respond to disease outbreaks quickly.
- Research and Development (Probability Score: Medium): Invest in research to understand the impact of climate change on oyster diseases and develop disease-resistant oyster strains through selective breeding or genetic engineering.
- Training and Education (Probability Score: High): Provide training and educational programs for oyster farmers to increase awareness of disease management strategies and the importance of adhering to best practices.
- Investment in Technology (Probability Score: Medium): Invest in technological advancements such as automated monitoring systems or remote sensing technologies to improve disease detection.
- Insurance and Risk Management (Probability Score: Low): Encourage adopting insurance and risk management practices within the oyster farming industry to reduce financial losses associated with disease outbreaks.
9. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eissa, E.-S.H.; Ahmed, R.A.; Abd Elghany, N.A.; Elfeky, A.; Saadony, S.; Ahmed, N.H.; Sakr, S.E.-S.; Dayrit, G.B.; Tolenada, C.P.S.; Atienza, A.A.C. Potential Symbiotic Effects of β-1, 3 Glucan, and Fructooligosaccharides on the Growth Performance, Immune Response, Redox Status, and Resistance of Pacific White Shrimp, Litopenaeus vannamei to Fusarium solani Infection. Fishes 2023, 8, 105. [Google Scholar] [CrossRef]
- Hao, L.; Wang, X.; Cao, Y.; Xu, J.; Xue, C. A comprehensive review of oyster peptides: Preparation, characterisation and bioactivities. Rev. Aquac. 2022, 14, 120–138. [Google Scholar] [CrossRef]
- Steenson, S.; Creedon, A. Plenty more fish in the sea?–is there a place for seafood within a healthier and more sustainable diet? Nutr. Bull. 2022, 47, 261–273. [Google Scholar] [CrossRef]
- Alfaro, A.C.; Nguyen, T.V.; Merien, F. The complex interactions of Ostreid herpesvirus 1, Vibrio bacteria, environment and host factors in mass mortality outbreaks of Crassostrea gigas. Rev. Aquac. 2019, 11, 1148–1168. [Google Scholar] [CrossRef]
- FAO. Cultured Aquatic Species Information Programme. Crassostrea gigas. Cultured Aquatic Species Information Programme FAO Fisheries and Aquaculture Department. Text by Helm, M.M. 2016. Available online: https://www.fao.org/figis/pdf/fishery/culturedspecies/Crassostrea_gigas/en?title=FAO%20Fisheries%20%26%20Aquaculture%20-%20Cultured%20Aquatic%20Species%20Information%20Programme%20-%20Crassostrea%20gigas%20(Thunberg%2C%201793) (accessed on 2 May 2023).
- FAO. Cultured Aquatic Species Information Programme. Crassostrea virginica. Cultured Aquatic Species Information Programme FAO Fisheries and Aquaculture Department. Text by Kennedy, V.S. 2016. Available online: https://firms.fao.org/fi/website/FIRetrieveAction.do?dom=culturespecies&xml=Crassostrea_virginica.xml&lang=fr (accessed on 3 May 2023).
- FAO. FAO Cultured Aquatic Species Information Programme. Saccostrea commercialis. Cultured Aquatic Species Information Programme FAO Fisheries and Aquaculture Department. Text by John, A.N. 2016. Available online: https://www.fao.org/figis/pdf/fishery/culturedspecies/Saccostrea_commercialis/en?title=FAO%20Fisheries%20%26%20Aquaculture%20-%20Cultured%20Aquatic%20Species%20Information%20Programme%20-%20Saccostrea%20commercialis%20(Iredale%20%26amp%3B%20Roughley%2C%201933 (accessed on 3 May 2023).
- Pogoda, B. Current status of European oyster decline and restoration in Germany. Humanities 2019, 8, 9. [Google Scholar] [CrossRef]
- FAO. Cultured Aquatic Species Information Programme. Ostrea edulis. Cultured Aquatic Species Information Programme FAO Fisheries and Aquaculture Department. Text by Goulletquer, P. 2016. Available online: https://firms.fao.org/fi/website/FIRetrieveAction.do?dom=culturespecies&xml=Ostrea_edulis.xml&lang=en (accessed on 3 May 2023).
- Martínez-García, M.F.; Ruesink, J.L.; Grijalva-Chon, J.M.; Lodeiros, C.; Arreola-Lizárraga, J.A.; de la Re-Vega, E.; Varela-Romero, A.; Chávez-Villalba, J. Socioecological factors related to aquaculture introductions and production of Pacific oysters (Crassostrea gigas) worldwide. Rev. Aquac. 2022, 14, 613–629. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture 2020. 2021. Available online: http://www.fao.org/3/ca9229en/ca9229en.pdf (accessed on 24 June 2023).
- Cubillo, A.M.; Ferreira, J.G.; Lencart-Silva, J.; Taylor, N.G.; Kennerley, A.; Guilder, J.; Kay, S.; Kamermans, P. Direct effects of climate change on productivity of European aquaculture. Aquac. Int. 2021, 29, 1561–1590. [Google Scholar] [CrossRef]
- Scanes, E.; O’Connor, W.A.; Seymour, J.R.; Siboni, N.; Parker, L.M.; Ross, P.M. Emerging diseases in Australian oysters and the challenges of climate change and uncertain futures. Aust. Zool. 2023. [Google Scholar] [CrossRef]
- Plagányi, É. Climate change impacts on fisheries. Science 2019, 363, 930–931. [Google Scholar] [CrossRef]
- Fletcher, S.E.M.; Schaefer, H. Rising methane: A new climate challenge. Science 2019, 364, 932–933. [Google Scholar] [CrossRef]
- Dosdogru, F.; Kalin, L.; Wang, R.; Yen, H. Potential impacts of land use/cover and climate changes on ecologically relevant flows. J. Hydrol. 2020, 584, 124654. [Google Scholar] [CrossRef]
- Mahu, E.; Sanko, S.; Kamara, A.; Chuku, E.O.; Effah, E.; Sohou, Z.; Zounon, Y.; Akinjogunla, V.; Akinnigbagbe, R.O.; Diadhiou, H.D. Climate Resilience and Adaptation in West African Oyster Fisheries: An Expert-Based Assessment of the Vulnerability of the Oyster Crassostrea tulipa to Climate Change. Fishes 2022, 7, 205. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Karl, D.M.; Boyd, P.W.; Cheung, W.; Lluch-Cota, S.E.; Nojiri, Y.; Schmidt, D.N.; Zavialov, P.O.; Alheit, J.; Aristegui, J. Ocean systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 411–484. [Google Scholar]
- Marcogliese, D. The impact of climate change on the parasites and infectious diseases of aquatic animals. Rev. Sci. Tech. 2008, 27, 467–484. [Google Scholar] [CrossRef]
- Prakash, S. Impact of Climate change on Aquatic Ecosystem and its Biodiversity: An overview. Int. J. Biol. Innov. 2021, 3, 312–317. [Google Scholar] [CrossRef]
- Eissa, E.S.H.; Ahmed, N.H.; El-Badawi, A.A.; Munir, M.B.; Abd Al-Kareem, O.M.; Eissa, M.E.; Hussien, E.H.; Sakr, S.E.S. Assessing the influence of the inclusion of Bacillus subtilis AQUA-GROW® as feed additive on the growth performance, feed utilization, immunological responses and body composition of the Pacific white shrimp, Litopenaeus vannamei. Aquac. Res. 2022, 53, 6606–6615. [Google Scholar] [CrossRef]
- Eissa, E.-S.H.; Baghdady, E.S.; Gaafar, A.Y.; El-Badawi, A.A.; Bazina, W.K.; Al-Kareem, A.; Omayma, M.; El-Hamed, A.; Nadia, N. Assessing the influence of dietary Pediococcus acidilactici probiotic supplementation in the feed of European Sea Bass (Dicentrarchus labrax L.)(Linnaeus, 1758) on farm water quality, growth, feed utilization, survival rate, body composition, blood biochemical parameters, and intestinal histology. Aquac. Nutr. 2022, 2022, 5841220. [Google Scholar]
- Combe, M.; Reverter, M.; Caruso, D.; Pepey, E.; Gozlan, R.E. Impact of Global Warming on the Severity of Viral Diseases: A Potentially Alarming Threat to Sustainable Aquaculture Worldwide. Microorganisms 2023, 11, 1049. [Google Scholar] [CrossRef]
- Fox, M.; Service, M.; Moore, H.; Dean, M.; Campbell, K. Barriers and facilitators to shellfish cultivation. Rev. Aquac. 2020, 12, 406–437. [Google Scholar] [CrossRef]
- McCallum, H.; Harvell, D.; Dobson, A. Rates of spread of marine pathogens. Ecol. Lett. 2003, 6, 1062–1067. [Google Scholar] [CrossRef]
- Leung, T.L.; Bates, A.E. More rapid and severe disease outbreaks for aquaculture at the tropics: Implications for food security. J. Appl. Ecol. 2013, 215–222. [Google Scholar] [CrossRef]
- King, W.L.; Jenkins, C.; Seymour, J.R.; Labbate, M. Oyster disease in a changing environment: Decrypting the link between pathogen, microbiome and environment. Mar. Environ. Res. 2019, 143, 124–140. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.E.; Hadfield, J.D.; Sharma, M.D.; Longdon, B. Changes in temperature alter the potential outcomes of virus host shifts. PLoS Pathog. 2018, 14, e1007185. [Google Scholar] [CrossRef] [PubMed]
- Burge, C.A.; Hershberger, P.K. Climate change can drive marine diseases. In Marine Disease Ecology; Oxford University Press: New York, NY, USA, 2020; pp. 83–94. [Google Scholar]
- Wang, X.; Jiang, D.; Lang, X. Extreme temperature and precipitation changes associated with four degree of global warming above pre-industrial levels. Int. J. Climatol. 2019, 39, 1822–1838. [Google Scholar] [CrossRef]
- IPCC Intergovernmental Panel on Climate Change. Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018. [Google Scholar]
- Navarro, J.M.; Villanueva, P.; Rocha, N.; Torres, R.; Chaparro, O.R.; Benítez, S.; Andrade-Villagrán, P.V.; Alarcón, E. Plastic response of the oyster Ostrea chilensis to temperature and pCO2 within the present natural range of variability. PLoS ONE 2020, 15, e0234994. [Google Scholar] [CrossRef]
- Wang, Q.; Cao, R.; Ning, X.; You, L.; Mu, C.; Wang, C.; Wei, L.; Cong, M.; Wu, H.; Zhao, J. Effects of ocean acidification on immune responses of the Pacific oyster Crassostrea gigas. Fish Shellfish Immunol. 2016, 49, 24–33. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Wang, W.; Liu, Z.; Xu, J.; Jia, Z.; Chen, H.; Qiu, L.; Lv, Z.; Wang, L. Transcriptional changes of Pacific oyster Crassostrea gigas reveal essential role of calcium signal pathway in response to CO2-driven acidification. Sci. Total Environ. 2020, 741, 140177. [Google Scholar] [CrossRef]
- Mackenzie, C.L.; Pearce, C.M.; Leduc, S.; Roth, D.; Kellogg, C.T.; Clemente-Carvalho, R.B.; Green, T.J. Impacts of Seawater pH Buffering on the Larval Microbiome and Carry-Over Effects on Later-Life Disease Susceptibility in Pacific Oysters. Appl. Environ. Microbiol. 2022, 88, e01654-22. [Google Scholar] [CrossRef]
- Farabegoli, F.; Blanco, L.; Rodríguez, L.P.; Vieites, J.M.; Cabado, A.G. Phycotoxins in marine shellfish: Origin, occurrence and effects on humans. Mar. Drugs 2018, 16, 188. [Google Scholar] [CrossRef]
- Kingsford, R.; Biggs, H. Strategic Adaptive Management Guidelines for Effective Conservation of Freshwater Ecosystems in and around Protected Areas of the World; IUCN WCPA Freshwater Taskforce, Australian Wetlands and Rivers Centre: Sydney, Australia, 2012. [Google Scholar]
- Gacutan, J.; Galparsoro, I.; Pınarbaşı, K.; Murillas, A.; Adewumi, I.J.; Praphotjanaporn, T.; Johnston, E.L.; Findlay, K.P.; Milligan, B.M. Marine spatial planning and ocean accounting: Synergistic tools enhancing integration in ocean governance. Mar. Policy 2022, 136, 104936. [Google Scholar] [CrossRef]
- Halpern, B.S.; Frazier, M.; Potapenko, J.; Casey, K.S.; Koenig, K.; Longo, C.; Lowndes, J.S.; Rockwood, R.C.; Selig, E.R.; Selkoe, K.A. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 2015, 6, 7615. [Google Scholar] [CrossRef]
- Nash, K.L.; Blythe, J.L.; Cvitanovic, C.; Fulton, E.A.; Halpern, B.S.; Milner-Gulland, E.; Addison, P.F.; Pecl, G.T.; Watson, R.A.; Blanchard, J.L. To achieve a sustainable blue future, progress assessments must include interdependencies between the sustainable development goals. One Earth 2020, 2, 161–173. [Google Scholar] [CrossRef]
- Clements, J.C.; Carver, C.E.; Mallet, M.A.; Comeau, L.A.; Mallet, A.L. CO2-induced low pH in an eastern oyster (Crassostrea virginica) hatchery positively affects reproductive development and larval survival but negatively affects larval shape and size, with no intergenerational linkages. ICES J. Mar. Sci. 2021, 78, 349–359. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Z.; Zhang, Y.; Wang, L.; Song, X.; Wang, W.; Zheng, Y.; Zong, Y.; Lv, Z.; Song, L. Ocean acidification inhibits initial shell formation of oyster larvae by suppressing the biosynthesis of serotonin and dopamine. Sci. Total. Environ. 2020, 735, 139469. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, Y.; Zhou, Z.; Zong, Y.; Zheng, Y.; Liu, C.; Kong, N.; Gao, Q.; Wang, L.; Song, L. Metabolomic and transcriptomic profiling reveals the alteration of energy metabolism in oyster larvae during initial shell formation and under experimental ocean acidification. Sci. Rep. 2020, 10, 6111. [Google Scholar] [CrossRef]
- Gibbs, M.C.; Parker, L.M.; Scanes, E.; Byrne, M.; O’Connor, W.A.; Ross, P.M. Adult exposure to ocean acidification and warming remains beneficial for oyster larvae following starvation. ICES J. Mar. Sci. 2021, 78, 1587–1598. [Google Scholar] [CrossRef]
- Hamilton, A.P. Nitrogen Loading, Climate Change, Pathogens: Impacts of Multiple Stressors on Rhode Island Shellfish; University of Rhode Island: Kingston, RI, USA, 2018. [Google Scholar]
- Scanes, E.; Parker, L.M.; Seymour, J.R.; Siboni, N.; King, W.L.; Danckert, N.P.; Wegner, K.M.; Dove, M.C.; O’Connor, W.A.; Ross, P.M. Climate change alters the haemolymph microbiome of oysters. Mar. Pollut. Bull. 2021, 164, 111991. [Google Scholar] [CrossRef]
- Johnson, A.; White, N.D. Ocean acidification: The other climate change issue. Am. Sci. 2014, 102, 60–63. [Google Scholar] [CrossRef]
- VanderZwaag, D.L.; Oral, N.; Stephens, T. Research Handbook on Ocean Acidification Law and Policy; Edward Elgar Publishing: Cheltenham, UK, 2021. [Google Scholar]
- Leung, J.Y.; Chen, Y.; Nagelkerken, I.; Zhang, S.; Xie, Z.; Connell, S.D. Calcifiers can adjust shell building at the nanoscale to resist ocean acidification. Small 2020, 16, 2003186. [Google Scholar] [CrossRef]
- Scanes, E.; Parker, L.M.; Seymour, J.R.; Siboni, N.; King, W.L.; Wegner, K.M.; Dove, M.C.; O’Connor, W.A.; Ross, P.M. Microbiome response differs among selected lines of Sydney rock oysters to ocean warming and acidification. FEMS Microb. Ecol. 2021, 97, fiab099. [Google Scholar] [CrossRef]
- Pierce, M.L.; Ward, J.E.; Holohan, B.A.; Zhao, X.; Hicks, R.E. The influence of site and season on the gut and pallial fluid microbial communities of the eastern oyster, Crassostrea virginica (Bivalvia, Ostreidae): Community-level physiological profiling and genetic structure. Hydrobiologia 2016, 765, 97–113. [Google Scholar] [CrossRef]
- Sakowski, E.G.; Wommack, K.E.; Polson, S.W. Oyster Calcifying Fluid Harbors Persistent and Dynamic Autochthonous Bacterial Populations That May Aid in Shell Formation. Mar. Ecol. Prog. Ser. 2020, 653, 57–75. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, P.; Anderson, K.; Thompson, E.L.; Melwani, A.; Parker, L.M.; Ross, P.M.; Raftos, D.A. Rapid transcriptional acclimation following transgenerational exposure of oysters to ocean acidification. Mol. Ecol. 2016, 25, 4836–4849. [Google Scholar] [CrossRef]
- Alagawany, M.; Farag, M.R.; Abdelnour, S.A.; Dawood, M.A.O.; Elnesr, S.S.; Dhama, K. Curcumin and its different forms: A review on fish nutrition. Aquaculture 2021, 532, 736030. [Google Scholar] [CrossRef]
- Raza, S.H.A.; Abdelnour, S.A.; Alotaibi, M.A.; AlGabbani, Q.; Naiel, M.A.E.; Shokrollahi, B.; Noreldin, A.E.; Jahejo, A.R.; Shah, M.A.; Alagawany, M.; et al. MicroRNAs mediated environmental stress responses and toxicity signs in teleost fish species. Aquaculture 2022, 546, 737310. [Google Scholar] [CrossRef]
- Petes, L.E.; Brown, A.J.; Knight, C.R. Impacts of upstream drought and water withdrawals on the health and survival of downstream estuarine oyster populations. Ecol. Evol. 2012, 2, 1712–1724. [Google Scholar] [CrossRef]
- Li, X.; Shi, C.; Yang, B.; Li, Q.; Liu, S. High temperature aggravates mortalities of the Pacific oyster (Crassostrea gigas) infected with Vibrio: A perspective from homeostasis of digestive microbiota and immune response. Aquaculture 2023, 568, 739309. [Google Scholar] [CrossRef]
- Fitzer, S.C.; McGill, R.A.R.; Torres Gabarda, S.; Hughes, B.; Dove, M.; O’Connor, W.; Byrne, M. Selectively bred oysters can alter their biomineralization pathways, promoting resilience to environmental acidification. Glob. Chang. Biol. 2019, 25, 4105–4115. [Google Scholar] [CrossRef]
- Lemasson, A.J.; Hall-Spencer, J.M.; Fletcher, S.; Provstgaard-Morys, S.; Knights, A.M. Indications of future performance of native and non-native adult oysters under acidification and warming. Mar. Environ. Res. 2018, 142, 178–189. [Google Scholar] [CrossRef]
- Ellis, R.P.; Urbina, M.A.; Wilson, R.W. Lessons from two high CO(2) worlds—future oceans and intensive aquaculture. Glob. Chang Biol. 2017, 23, 2141–2148. [Google Scholar] [CrossRef]
- Taylor, C.T.; Cummins, E.P. Regulation of gene expression by carbon dioxide. J. Physiol. 2011, 589, 797–803. [Google Scholar] [CrossRef]
- D’Ignazio, L.; Bandarra, D.; Rocha, S. NF-κB and HIF crosstalk in immune responses. FEBS J. 2016, 283, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Beniash, E.; Ivanina, A.; Lieb, N.S.; Kurochkin, I.; Sokolova, I.M. Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Mar. Ecol. Prog. Ser. 2010, 419, 95–108. [Google Scholar] [CrossRef]
- Dang, X.; Huang, Q.; He, Y.Q.; Gaitán-Espitia, J.D.; Zhang, T.; Thiyagarajan, V. Ocean acidification drives gut microbiome changes linked to species-specific immune defence. Aquat. Toxicol. 2023, 256, 106413. [Google Scholar] [CrossRef] [PubMed]
- Weiss, L.C.; Pötter, L.; Steiger, A.; Kruppert, S.; Frost, U.; Tollrian, R. Rising pCO(2) in Freshwater Ecosystems Has the Potential to Negatively Affect Predator-Induced Defenses in Daphnia. Curr. Biol. 2018, 28, 327–332.e323. [Google Scholar] [CrossRef]
- Hernroth, B.; Baden, S.; Tassidis, H.; Hörnaeus, K.; Guillemant, J.; Bergström Lind, S.; Bergquist, J. Impact of ocean acidification on antimicrobial activity in gills of the blue mussel (Mytilus edulis). Fish Shellfish Immunol. 2016, 55, 452–459. [Google Scholar] [CrossRef]
- Zhao, X.; Han, Y.; Chen, B.; Xia, B.; Qu, K.; Liu, G. CO(2)-driven ocean acidification weakens mussel shell defense capacity and induces global molecular compensatory responses. Chemosphere 2020, 243, 125415. [Google Scholar] [CrossRef]
- Meng, Y.; Guo, Z.; Fitzer, S.C.; Upadhyay, A.; Chan, V.B.; Li, C.; Cusack, M.; Yao, H.; Yeung, K.W.; Thiyagarajan, V. Ocean acidification reduces hardness and stiffness of the Portuguese oyster shell with impaired microstructure: A hierarchical analysis. Biogeosciences 2018, 15, 6833–6846. [Google Scholar] [CrossRef]
- Li, X.; Yang, B.; Shi, C.; Wang, H.; Yu, R.; Li, Q.; Liu, S. Synergistic Interaction of Low Salinity Stress With Vibrio Infection Causes Mass Mortalities in the Oyster by Inducing Host Microflora Imbalance and Immune Dysregulation. Front. Immunol. 2022, 13, 859975. [Google Scholar] [CrossRef]
- Dickinson, G.H.; Ivanina, A.V.; Matoo, O.B.; Pörtner, H.O.; Lannig, G.; Bock, C.; Beniash, E.; Sokolova, I.M. Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, Crassostrea virginica. J. Exp. Biol. 2012, 215, 29–43. [Google Scholar] [CrossRef]
- Zúñiga-Soto, N.; Pinto-Borguero, I.; Quevedo, C.; Aguilera, F. Secretory and transcriptomic responses of mantle cells to low pH in the Pacific oyster (Crassostrea gigas). Front. Mar. Sci. 2023, 10, 1156831. [Google Scholar] [CrossRef]
- Asplund, M.E.; Baden, S.P.; Russ, S.; Ellis, R.P.; Gong, N.; Hernroth, B.E. Ocean acidification and host–pathogen interactions: Blue mussels, M ytilus edulis, encountering V ibrio tubiashii. Environ. Microbiol. 2014, 16, 1029–1039. [Google Scholar] [CrossRef] [PubMed]
- Woolway, R.I.; Sharma, S.; Smol, J.P. Lakes in hot water: The impacts of a changing climate on aquatic ecosystems. BioScience 2022, 72, 1050–1061. [Google Scholar] [CrossRef] [PubMed]
- Doney, S.C.; Busch, D.S.; Cooley, S.R.; Kroeker, K.J. The impacts of ocean acidification on marine ecosystems and reliant human communities. Annu. Rev. Environ. Resour. 2020, 45, 83–112. [Google Scholar] [CrossRef]
- Doney, S.C.; Fabry, V.J.; Feely, R.A.; Kleypas, J.A. Ocean acidification: The other CO2 problem. Ann. Rev. Mar Sci. 2009, 1, 169–192. [Google Scholar] [CrossRef] [PubMed]
- Hare, J.A.; Morrison, W.E.; Nelson, M.W.; Stachura, M.M.; Teeters, E.J.; Griffis, R.B.; Alexander, M.A.; Scott, J.D.; Alade, L.; Bell, R.J. A vulnerability assessment of fish and invertebrates to climate change on the Northeast US Continental Shelf. PLoS ONE 2016, 11, e0146756. [Google Scholar] [CrossRef]
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Hauck, J.; Pongratz, J.; Pickers, P.A.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G. Global carbon budget 2018. Earth Syst. Sci. Data Discuss. 2018, 10, 2141–2194. [Google Scholar] [CrossRef]
- Ford, S.E.; Chintala, M.M. Northward expansion of a marine parasite: Testing the role of temperature adaptation. J. Exp. Mar. Biol. Ecol. 2006, 339, 226–235. [Google Scholar] [CrossRef]
- Gattuso, J.-P.; Magnan, A.K.; Bopp, L.; Cheung, W.W.; Duarte, C.M.; Hinkel, J.; Mcleod, E.; Micheli, F.; Oschlies, A.; Williamson, P. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 2018, 337. [Google Scholar] [CrossRef]
- Newell, R.I. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: A review. J. Shellfish Res. 2004, 23, 51–62. [Google Scholar]
- Cunha, M.; Quental-Ferreira, H.; Parejo, A.; Gamito, S.; Ribeiro, L.; Moreira, M.; Monteiro, I.; Soares, F.; Pousão-Ferreira, P. Understanding the individual role of fish, oyster, phytoplankton and macroalgae in the ecology of integrated production in earthen ponds. Aquaculture 2019, 512, 734297. [Google Scholar] [CrossRef]
- Waldbusser, G.G.; Hales, B.; Langdon, C.J.; Haley, B.A.; Schrader, P.; Brunner, E.L.; Gray, M.W.; Miller, C.A.; Gimenez, I.; Hutchinson, G. Ocean acidification has multiple modes of action on bivalve larvae. PLoS ONE 2015, 10, e0128376. [Google Scholar] [CrossRef] [PubMed]
- Ndraha, N.; Hsiao, H.-I. The risk assessment of Vibrio parahaemolyticus in raw oysters in Taiwan under the seasonal variations, time horizons, and climate scenarios. Food Control. 2019, 102, 188–196. [Google Scholar] [CrossRef]
- Muhling, B.A.; Jacobs, J.; Stock, C.A.; Gaitan, C.F.; Saba, V.S. Projections of the future occurrence, distribution, and seasonality of three Vibrio species in the Chesapeake Bay under a high-emission climate change scenario. Geohealth 2017, 1, 278–296. [Google Scholar] [CrossRef] [PubMed]
- Cook, T.; Folli, M.; Klinck, J.; Ford, S.; Miller, a. The relationship between increasing sea-surface temperature and the northward spread ofPerkinsus marinus (Dermo) disease epizootics in oysters. Estuar. Coast. Shelf Sci. 1998, 46, 587–597. [Google Scholar] [CrossRef]
- Brousseau, D.; Baglivo, J. Modelling seasonal proliferation of the parasite, Perkinsus marinus (Dermo) in field populations of the oyster, Crassostrea virginica. J. Shellfish Res. 2000, 19, 133–138. [Google Scholar]
- Hofmann, E.; Ford, S.; Powell, E.; Klinck, J. Modeling studies of the effect of climate variability on MSX disease in eastern oyster (Crassostrea virginica) populations. In The Ecology and Etiology of Newly Emerging Marine Diseases; Springer: Dordrecht, The Netherlands, 2001; pp. 195–212. [Google Scholar]
- Byers, J.E. Effects of climate change on parasites and disease in estuarine and nearshore environments. PLoS Biol. 2020, 18, e3000743. [Google Scholar] [CrossRef]
- Ford, S.E.; Smolowitz, R. Infection dynamics of an oyster parasite in its newly expanded range. Mar. Biol. 2007, 151, 119–133. [Google Scholar] [CrossRef]
- Gehman, A.-L.M.; Hall, R.J.; Byers, J.E. Host and parasite thermal ecology jointly determine the effect of climate warming on epidemic dynamics. Proc. Natl. Acad. Sci. USA 2018, 115, 744–749. [Google Scholar] [CrossRef]
- Sullivan, T.J.; Neigel, J.E. Differential host mortality explains the effect of high temperature on the prevalence of a marine pathogen. PLoS ONE 2017, 12, e0187128. [Google Scholar] [CrossRef]
- Rahman, M.F.; Billah, M.M.; Kline, R.J.; Rahman, M.S. Effects of elevated temperature on 8-OHdG expression in the American oyster (Crassostrea virginica): Induction of oxidative stress biomarkers, cellular apoptosis, DNA damage and γH2AX signaling pathways. Fish Shellfish Immunol. Rep. 2023, 4, 100079. [Google Scholar] [CrossRef]
- Ford, S.E. Range extension by the oyster parasite Perkinsus marinus into the northeastern United States: Response to climate change? Oceanogr. Lit. Rev. 1996, 12, 1265. [Google Scholar]
- Power, A.; McCrickard, B.; Mitchell, M.; Covington, E.; Sweeney-Reeves, M.; Payne, K.; Walker, R. Perkinsus marinus in coastal Georgia, USA, following a prolonged drought. Dis. Aquat. Org. 2006, 73, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Fuhrmann, M.; Richard, G.; Quere, C.; Petton, B.; Pernet, F. Low pH reduced survival of the oyster Crassostrea gigas exposed to the Ostreid herpesvirus 1 by altering the metabolic response of the host. Aquaculture 2019, 503, 167–174. [Google Scholar] [CrossRef]
- Thomas, Y.; Cassou, C.; Gernez, P.; Pouvreau, S. Oysters as sentinels of climate variability and climate change in coastal ecosystems. Environ. Res. Lett. 2018, 13, 104009. [Google Scholar] [CrossRef]
- McAfee, D.; Cumbo, V.R.; Bishop, M.J.; Raftos, D.A. Intraspecific differences in the transcriptional stress response of two populations of Sydney rock oyster increase with rising temperatures. Mar. Ecol. Prog.Ser. 2018, 589, 115–127. [Google Scholar] [CrossRef]
- Soniat, T.M.; Hofmann, E.E.; Klinck, J.M.; Powell, E.N. Differential modulation of eastern oyster (Crassostrea virginica) disease parasites by the El-Niño-Southern Oscillation and the North Atlantic Oscillation. Int. J. Earth Sci. 2009, 98, 99–114. [Google Scholar] [CrossRef]
- Green, T.J.; Siboni, N.; King, W.L.; Labbate, M.; Seymour, J.R.; Raftos, D. Simulated Marine Heat Wave Alters Abundance and Structure of Vibrio Populations Associated with the Pacific Oyster Resulting in a Mass Mortality Event. Microb. Ecol. 2019, 77, 736–747. [Google Scholar] [CrossRef]
- Nordio, D.; Khtikian, N.; Andrews, S.; Bertotto, D.; Leask, K.; Green, T. Adaption potential of Crassostrea gigas to ocean acidification and disease caused by Vibrio harveyi. ICES J. Mar. Sci. 2021, 78, 360–367. [Google Scholar] [CrossRef]
- Domeneghetti, S.; Varotto, L.; Civettini, M.; Rosani, U.; Stauder, M.; Pretto, T.; Pezzati, E.; Arcangeli, G.; Turolla, E.; Pallavicini, A.; et al. Mortality occurrence and pathogen detection in Crassostrea gigas and Mytilus galloprovincialis close-growing in shallow waters (Goro lagoon, Italy). Fish Shellfish Immunol. 2014, 41, 37–44. [Google Scholar] [CrossRef]
- Bushek, D.; Ford, S.E. Anthropogenic impacts on an oyster metapopulation: Pathogen introduction, climate change and responses to natural selection Anthropogenic impacts on an oyster metapopulation. Elem. Sci. Anth. 2016, 4, 000119. [Google Scholar] [CrossRef]
- Pernet, F.; Barret, J.; Marty, C.; Moal, J.; Le Gall, P.; Boudry, P. Environmental anomalies, energetic reserves and fatty acid modifications in oysters coincide with an exceptional mortality event. Mar. Ecol. Prog. Ser. 2010, 401, 129–146. [Google Scholar] [CrossRef]
- Rahman, M.S.; Carraro, R.; Cardazzo, B.; Carraro, L.; Meneguolo, D.B.; Martino, M.E.; Andreani, N.A.; Bordin, P.; Mioni, R.; Barco, L.; et al. Molecular Typing of Vibrio parahaemolyticus Strains Isolated from Mollusks in the North Adriatic Sea. Foodborne Pathog. Dis. 2017, 14, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Prado, P.; Roque, A.; Pérez, J.; Ibáñez, C.; Alcaraz, C.; Casals, F.; Caiola, N. Warming and acidification-mediated resilience to bacterial infection determine mortality of early Ostrea edulis life stages. Mar. Ecol. Prog. Ser. 2016, 545, 189–202. [Google Scholar] [CrossRef]
- M Billah, M.; Rahman, M.S. Impacts of anthropogenic contaminants and elevated temperature on prevalence and proliferation of Escherichia coli in the wild-caught American oyster, Crassostrea virginica in the southern Gulf of Mexico coast. Mar. Biol. Res. 2021, 17, 775–793. [Google Scholar] [CrossRef]
- Malek, J.C.; Byers, J.E. Responses of an oyster host (Crassostrea virginica) and its protozoan parasite (Perkinsus marinus) to increasing air temperature. PeerJ 2018, 6, e5046. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Velasco, R.; Manzano-Sarabia, M.; Hurtado-Oliva, M. Effect of hypo- and hypersaline stress conditions on physiological, metabolic, and immune responses in the oyster Crassostrea corteziensis (Bivalvia: Ostreidae). Fish Shellfish Immunol. 2022, 120, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Hanley, T.C.; White, J.W.; Stallings, C.D.; Kimbro, D.L. Environmental gradients shape the combined effects of multiple parasites on oyster hosts in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 2019, 612, 111–125. [Google Scholar] [CrossRef]
- Groner, M.L.; Burge, C.A.; Cox, R.; Rivlin, N.D.; Turner, M.; Van Alstyne, K.L.; Wyllie-Echeverria, S.; Bucci, J.; Staudigel, P.; Friedman, C.S. Oysters and eelgrass: Potential partners in a high pCO2 ocean. Ecology 2018, 99, 1802–1814. [Google Scholar] [CrossRef]
- Levinton, J.; Doall, M.; Ralston, D.; Starke, A.; Allam, B. Climate change, precipitation and impacts on an estuarine refuge from disease. PLoS ONE 2011, 6, e18849. [Google Scholar] [CrossRef]
- Wang, T.; Li, Q. Effects of temperature, salinity and body size on the physiological responses of the Iwagaki oyster Crassostrea nippona. Aquac. Res. 2020, 51, 728–737. [Google Scholar] [CrossRef]
- Hamdoun, A.M.; Cheney, D.P.; Cherr, G.N. Phenotypic plasticity of HSP70 and HSP70 gene expression in the Pacific oyster (Crassostrea gigas): Implications for thermal limits and induction of thermal tolerance. Biol. Bull. 2003, 205, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Strand, Å.; Waenerlund, A.; Lindegarth, S. High tolerance of the Pacific oyster (Crassostrea gigas, Thunberg) to low temperatures. J. Shellfish Res. 2011, 30, 733–735. [Google Scholar] [CrossRef]
- Ding, F.; Li, A.; Cong, R.; Wang, X.; Wang, W.; Que, H.; Zhang, G.; Li, L. The phenotypic and the genetic response to the extreme high temperature provides new insight into thermal tolerance for the Pacific oyster Crassostrea gigas. Front. Mar. Sci. 2020, 7, 399. [Google Scholar] [CrossRef]
- Rodríguez-Jaramillo, C.; García-Corona, J.; Zenteno-Savín, T.; Palacios, E. The effects of experimental temperature increase on gametogenesis and heat stress parameters in oysters: Comparison of a temperate-introduced species (Crassostrea gigas) and a native tropical species (Crassostrea corteziensis). Aquaculture 2022, 561, 738683. [Google Scholar] [CrossRef]
- Büttger, H.; Nehls, G.; Witte, S. High mortality of Pacific oysters in a cold winter in the North-Frisian Wadden Sea. Helgol. Mar. Res. 2011, 65, 525–532. [Google Scholar] [CrossRef]
- Callaway, R.; Shinn, A.P.; Grenfell, S.E.; Bron, J.E.; Burnell, G.; Cook, E.J.; Crumlish, M.; Culloty, S.; Davidson, K.; Ellis, R.P. Review of climate change impacts on marine aquaculture in the UK and Ireland. Aquat. Conserv. Mar. Freshw. Ecosyst. 2012, 22, 389–421. [Google Scholar] [CrossRef]
- Graham, O.J.; Stephens, T.; Rappazzo, B.; Klohmann, C.; Dayal, S.; Adamczyk, E.M.; Olson, A.; Hessing-Lewis, M.; Eisenlord, M.; Yang, B. Deeper habitats and cooler temperatures moderate a climate-driven seagrass disease. Philos. Trans. R. Soc. B: Biol. Sci. 2023, 378, 20220016. [Google Scholar] [CrossRef]
- Pace, S.M.; Powell, E.N.; Soniat, T.M.; Kuykendall, K.M. How oyster health indices vary between mass mortality events. J. Shellfish Res. 2020, 39, 603–617. [Google Scholar] [CrossRef]
- Pruett, J.L.; Pandelides, A.F.; Willett, K.L.; Gochfeld, D.J. Effects of flood-associated stressors on growth and survival of early life stage oysters (Crassostrea virginica). J. Exp. Mar. Biol. Ecol. 2021, 544, 151615. [Google Scholar] [CrossRef]
- Lannig, G.; Flores, J.F.; Sokolova, I.M. Temperature-dependent stress response in oysters, Crassostrea virginica: Pollution reduces temperature tolerance in oysters. Aquat. Toxicol. 2006, 79, 278–287. [Google Scholar] [CrossRef]
- La Peyre, M.K.; Casas, S.M.; Gayle, W.; La Peyre, J.F. The combined influence of sub-optimal temperature and salinity on the in vitro viability of Perkinsus marinus, a protistan parasite of the eastern oyster Crassostrea virginica. J. Invertebr. Pathol. 2010, 105, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Svetlichny, L.; Hubareva, E.; Khanaychenko, A.; Uttieri, M. Response to salinity and temperature changes in the alien Asian copepod Pseudodiaptomus marinus introduced in the Black Sea. J. Exp. Zool. A Ecol. Integr. Physiol. 2019, 331, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Carnegie, R.B.; Ford, S.E.; Crockett, R.K.; Kingsley-Smith, P.R.; Bienlien, L.M.; Safi, L.S.L.; Whitefleet-Smith, L.A.; Burreson, E.M. A rapid phenotype change in the pathogen Perkinsus marinus was associated with a historically significant marine disease emergence in the eastern oyster. Sci. Rep. 2021, 11, 12872. [Google Scholar] [CrossRef] [PubMed]
- Cáceres-Martínez, J.; Vásquez-Yeomans, R.; Padilla-Lardizábal, G.; del Río Portilla, M. Perkinsus marinus in pleasure oyster Crassostrea corteziensis from Nayarit, Pacific coast of México. J. Invertebr. Pathol. 2008, 99, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, Y.; Liang, J.; He, G.; Liu, X.; Zheng, Z.; Le, D.Q.; Deng, Y.; Zhao, L. Impacts of marine heatwaves on pearl oysters are alleviated following repeated exposure. Mar. Pollut. Bull. 2021, 173, 112932. [Google Scholar] [CrossRef] [PubMed]
- Brooks, D.R.; Hoberg, E.P. How will global climate change affect parasite–host assemblages? Trends Parasitol. 2007, 23, 571–574. [Google Scholar] [CrossRef]
- Luckenbach, M.W.; Coen, L.D.; Ross Jr, P.; Stephen, J.A. Oyster reef habitat restoration: Relationships between oyster abundance and community development based on two studies in Virginia and South Carolina. J. Coast. Res. 2005, 64–78. [Google Scholar]
- Ruesink, J.L.; Lenihan, H.S.; Trimble, A.C.; Heiman, K.W.; Micheli, F.; Byers, J.E.; Kay, M.C. Introduction of non-native oysters: Ecosystem effects and restoration implications. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 643–689. [Google Scholar] [CrossRef]
- McAfee, D.; O’Connor, W.A.; Bishop, M.J. Fast-growing oysters show reduced capacity to provide a thermal refuge to intertidal biodiversity at high temperatures. J. Anim. Ecol. 2017, 86, 1352–1362. [Google Scholar] [CrossRef]
- Wang, Z.; Haidvogel, D.B.; Bushek, D.; Ford, S.E.; Hofmann, E.E.; Powell, E.N.; Wilkin, J. Circulation and water properties and their relationship to the oyster disease MSX in Delaware Bay. J. Mar. Res. 2012, 70, 279–308. [Google Scholar] [CrossRef]
- Ford, S.E.; Tripp, M. Diseases and defense mechanisms. East. Oyster Crassostrea Virginica 1996, 581–660. [Google Scholar]
- Wendling, C.C.; Wegner, K.M. Relative contribution of reproductive investment, thermal stress and Vibrio infection to summer mortality phenomena in Pacific oysters. Aquaculture 2013, 412–413, 88–96. [Google Scholar] [CrossRef]
- Brumfield, K.D.; Usmani, M.; Chen, K.M.; Gangwar, M.; Jutla, A.S.; Huq, A.; Colwell, R.R. Environmental parameters associated with incidence and transmission of pathogenic Vibrio spp. Environ. Microbiol. 2021, 23, 7314–7340. [Google Scholar] [CrossRef]
- Zhang, Y.; Svyatsky, D.; Rowland, J.C.; Moulton, J.D.; Cao, Z.; Wolfram, P.J.; Xu, C.; Pasqualini, D. Impact of Coastal Marsh Eco-Geomorphologic Change on Saltwater Intrusion Under Future Sea Level Rise. Water Resour. Res. 2022, 58, e2021WR030333. [Google Scholar] [CrossRef]
- Boulais, M.; Chenevert, K.J.; Demey, A.T.; Darrow, E.S.; Robison, M.R.; Roberts, J.P.; Volety, A. Oyster reproduction is compromised by acidification experienced seasonally in coastal regions. Sci. Rep. 2017, 7, 13276. [Google Scholar] [CrossRef]
- Velez, K.C.; Leighton, R.; Decho, A.; Pinckney, J.; Norman, R. Modeling pH and temperature effects as climatic hazards in Vibrio vulnificus and Vibrio parahaemolyticus planktonic growth and biofilm formation. GeoHealth 2023, 7, e2022GH000769. [Google Scholar] [CrossRef]
- Nhu, N.T.; Lee, J.S.; Wang, H.J.; Dufour, Y.S. Alkaline pH increases swimming speed and facilitates mucus penetration for Vibrio cholerae. J. Bacteriol. 2021, 203, e00607–e00620. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Kirk, M.F. pH as a primary control in environmental microbiology: 1. thermodynamic perspective. Front. Environ. Sci. 2018, 6, 21. [Google Scholar] [CrossRef]
- Burge, C.A.; Mark Eakin, C.; Friedman, C.S.; Froelich, B.; Hershberger, P.K.; Hofmann, E.E.; Petes, L.E.; Prager, K.C.; Weil, E.; Willis, B.L. Climate change influences on marine infectious diseases: Implications for management and society. Annu. Rev. Mar. Sci. 2014, 6, 249–277. [Google Scholar] [CrossRef]
- La Peyre, J.F.; Casas, S.M.; Richards, M.; Xu, W.; Xue, Q. Testing plasma subtilisin inhibitory activity as a selective marker for dermo resistance in eastern oysters. Dis. Aquat. Org. 2019, 133, 127–139. [Google Scholar] [CrossRef]
- Tan, K.; Zhang, H.; Zheng, H. Selective breeding of edible bivalves and its implication of global climate change. Rev. Aquac. 2020, 12, 2559–2572. [Google Scholar] [CrossRef]
- Yeh, H.; Skubel, S.A.; Patel, H.; Cai Shi, D.; Bushek, D.; Chikindas, M.L. From farm to fingers: An exploration of probiotics for oysters, from production to human consumption. Probiotics Antimicrob. Proteins 2020, 12, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Eissa, E.-S.H.; Abd El-Hamed, N.N.; Ahmed, N.H.; Badran, M.F. Improvement the Hatchery Seed Production Strategy on Embryonic Development and Larval Growth Performance and Development stages of Green Tiger Prawn, Penaeus semisulcatus Using Environmental Aspects. Thalass. Int. J. Mar. Sci. 2022, 38, 1327–1338. [Google Scholar] [CrossRef]
- Ringø, E. Probiotics in shellfish aquaculture. Aquac. Fish. 2020, 5, 1–27. [Google Scholar] [CrossRef]
- Lynch, S.A.; Flannery, G.; Hugh-Jones, T.; Hugh-Jones, D.; Culloty, S.C. Thirty-year history of Irish (Rossmore) Ostrea edulis selectively bred for disease resistance to Bonamia ostreae. Dis. Aquatic Org. 2014, 110, 113–121. [Google Scholar] [CrossRef]
- Dove, M.C.; Nell, J.A.; Mcorrie, S.; O’connor, W.A. Assessment of Qx and winter mortality disease resistance of mass selected Sydney Rock Oysters, Saccostrea glomerata (Gould, 1850), in the Hawkesbury River and Merimbula Lake, NSW Australia. J. Shellfish Res. 2013, 32, 681–687. [Google Scholar]
- De Decker, S.; Normand, J.; Saulnier, D.; Pernet, F.; Castagnet, S.; Boudry, P. Responses of diploid and triploid Pacific oysters Crassostrea gigas to Vibrio infection in relation to their reproductive status. J. Invertebr. Pathol. 2011, 106, 179–191. [Google Scholar] [CrossRef]
- Bedier, E.; Langlade, A.; Angeri, S.; Brizard, R.; Nerlovic, V.; Glize, P.; Haffray, P. Validation in commercial conditions of the response to selection of the European flat oyster Ostrea edulis for resistance to Bonamia ostreae. In Proceedings of the 8th International Conference on Shellfish Restoration, Brest, France, 2–5 October 2005. [Google Scholar]
- Naiel, M.A.E.; Negm, S.S.; Ghazanfar, S.; Shukry, M.; Abdelnour, S.A. The risk assessment of high-fat diet in farmed fish and its mitigation approaches: A review. J. Anim. Physiol. Anim. Nut. 2023, 107, 948–969. [Google Scholar] [CrossRef]
Location | Species | Water Type | Parameters | Impact | Remark | References |
---|---|---|---|---|---|---|
China | N/A | N/A | Temperature, pH, sea level | Disease | Vibrio parahaemolyticus | [84] |
USA | N/A | Vibrio spp. | Disease | Vibrio spp. abundance may increase with increasing temperature | [85] | |
USA | Eastern oyster (Crassostrea virginica) | Freshwater | Temperature | Disease | Dermo disease | [86] |
N/A | Eastern oyster (Crassostrea virginica) | N/A | Perkinsus marinus | Disease | Dermo disease | [87] |
USA | Eastern oyster (Crassostrea virginica) | Marine | Temperature, parasites | Disease | High-temperature adaptation of P. marinus strains | [79] |
USA | Eastern oyster (Crassostrea virginica) | Freshwater | Protozoan pathogen, Haplosporidium nelson | Disease | MSX (multinucleated spore unknown) disease | [88] |
Netherlands | Pacific oyster (Crassostrea gigas) | Marine | Temperature, parasitic infections | Disease | - | [89] |
USA | Eastern oyster (Crassostrea virginica) | Freshwater | Parasite Perkinsus marinus | Disease severity | Dermo disease | [90] |
Mexico | Eastern oysters (Crassostrea virginica) | Marine | Temperature, salinity | Disease severity | Dermo disease | [91,92] |
USA | Eastern oyster (Crassostrea virginica) | Freshwater | Temperature, salinity | Disease prevalence | - | [93] |
USA | Eastern oyster (Crassostrea virginica) | - | Temperature | Disease prevalence | Dermo disease | [94] |
USA | Eastern oyster (Crassostrea virginica) | Marine | Salinity | Disease prevalence, mortality | Up to 100% prevalence of Dermo at some sites | [95] |
Location | Species | Water Type | Parameters | Impact | Remark | References |
---|---|---|---|---|---|---|
Australia | Pacific oyster (Crassostrea gigas) | Marine | pH | Mortality, stress | Reduced nitric oxide synthase and superoxide dismutase activities, lowered survival (33.5%) | [96] |
France | Pacific oyster (Crassostrea gigas) | Marine | Temperature, chlorophyll | Mortalities | - | [97] |
Australia | Sydney rock oyster (Saccostrea glomerata) | Marine | Temperature | Mortalities | A 12% higher mortality in selectively bred than in wild-type | [98] |
USA | Eastern oyster (Crassostrea virginica) | Freshwater | Temperature, salinity, Perkinsus marinus | Mortalities | Above 36% in epizootic years | [99] |
Australia | Pacific oyster (Crassostrea gigas) | Marine | Temperature | Mortalities | Spatial location is a significant determinant | [28] |
USA | Apalachicola oysters | Freshwater | Salinity, drought | Mortalities | Mortality was size-specific | [57] |
North South Wales | Sydney rock oyster (Saccostrea glomerata) | Freshwater | pH | Mortalities | However, resilience to acidification was exhibited | [59] |
Australia | Pacific oyster (Crassostrea gigas) | Marine | Temperature | Mortalities | Mortality rate up to 77.4% | [100] |
Canada | Pacific oyster (Crassostrea gigas) | Marine | pH, Vibrio harveyi | Mortalities | Bigger larvae usually fare better in corrosive saltwater | [101] |
Italy | Pacific oyster (Crassostrea gigas) | Marine | Diverse pathogens, including Vibrio splendidus and Vibrio aestuarianus | Mortalities | Varied | [102] |
USA | Eastern oyster (Crassostrea virginica) | Freshwater | Salinity, Haplosporidium nelsoni, Perkinsus marinus | Mortalities | Resilience in the population | [103] |
France | Pacific oyster (Crassostrea gigas) | Freshwater | Temperature | Mortalities | Mortality up to 85% | [104] |
Location | Species | Water Type | Parameters | Impact | Remark | References |
---|---|---|---|---|---|---|
Italy | Pacific oyster (Crassostrea gigas) | Freshwater, Marine | Vibrio parahaemolyticus | Susceptibility | Virulence factors in a few strains | [105] |
Australia | Sydney rock oyster (Saccostrea glomerata) | Marine | pCO2 and temperature | Susceptibility | Altered microbiome | [47] |
Australia | Sydney rock oyster (Saccostrea glomerata) | Marine | CO2 stress | Susceptibility | - | [54] |
Spain | European flat oyster (Ostrea edulis) | Marine | Temperature, ocean acidification | Susceptibility | A bottleneck in pediveligers from 22 to 30 °C | [106] |
UK | Pacific oyster (Magallana gigas) and native flat oyster (Ostrea edulis) | Marine | pCO2, temperature | Susceptibility | A 40% M. gigas decrease at 750 ppm pCO2 | [60] |
Mexico | American oyster (Crassostrea virginica) | Marine | Temperature, anthropogenic contaminants | Susceptibility | Prone to waterborne pathogen pollution | [107] |
USA | Eastern oyster (Crassostrea virginica) | Marine | Temperature, parasitic infections | Susceptibility | Survival declined with increasing temperature | [108] |
Mexico | Qyster (Crassostrea corteziensis) | Marine | Salinity | Susceptibility | Increased susceptibility but survival maintained above 96% | [109] |
Mexico | Eastern oyster (Crassostrea virginica) | - | Temperature, tidal elevation, Perkinsus marinus | Susceptibility | Combined effects (biotic and abiotic factors and multiple parasites) on Dermo disease | [110] |
Location | Species | Water Type | Parameters | Impact | Remark | References |
---|---|---|---|---|---|---|
USA | Pacific oyster (Crassostrea gigas) | Marine | pH | Growth, survival, immunity | Altered microbiome and reduced survival | [36] |
USA | Pacific oyster (Crassostrea gigas) | Marine | pCO2, pH | Growth | - | [111] |
USA | Eastern oyster (Crassostrea virginica) | Freshwater | Salinity | Growth, survival | A trade-off between oyster growth and vulnerability to disease, increased mortality | [112] |
China | Pacific oyster (Crassostrea gigas) | Marine | pH and long-term CO2 exposure | Metabolism | Common response mechanisms in metabolism to short and long-term CO2 exposure | [35] |
China | Pacific oyster (Crassostrea gigas) | Marine | pCO2 | Immune response | Enzyme activity, increased apoptosis, and mRNA expressions | [34,70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okon, E.M.; Birikorang, H.N.; Munir, M.B.; Kari, Z.A.; Téllez-Isaías, G.; Khalifa, N.E.; Abdelnour, S.A.; Eissa, M.E.H.; Al-Farga, A.; Dighiesh, H.S.; et al. A Global Analysis of Climate Change and the Impacts on Oyster Diseases. Sustainability 2023, 15, 12775. https://doi.org/10.3390/su151712775
Okon EM, Birikorang HN, Munir MB, Kari ZA, Téllez-Isaías G, Khalifa NE, Abdelnour SA, Eissa MEH, Al-Farga A, Dighiesh HS, et al. A Global Analysis of Climate Change and the Impacts on Oyster Diseases. Sustainability. 2023; 15(17):12775. https://doi.org/10.3390/su151712775
Chicago/Turabian StyleOkon, Ekemini Moses, Harriet Nketiah Birikorang, Mohammad Bodrul Munir, Zulhisyam Abdul Kari, Guillermo Téllez-Isaías, Norhan E. Khalifa, Sameh A. Abdelnour, Moaheda E. H. Eissa, Ammar Al-Farga, Hagar Sedeek Dighiesh, and et al. 2023. "A Global Analysis of Climate Change and the Impacts on Oyster Diseases" Sustainability 15, no. 17: 12775. https://doi.org/10.3390/su151712775
APA StyleOkon, E. M., Birikorang, H. N., Munir, M. B., Kari, Z. A., Téllez-Isaías, G., Khalifa, N. E., Abdelnour, S. A., Eissa, M. E. H., Al-Farga, A., Dighiesh, H. S., & Eissa, E. -S. H. (2023). A Global Analysis of Climate Change and the Impacts on Oyster Diseases. Sustainability, 15(17), 12775. https://doi.org/10.3390/su151712775