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Abstract

:

Machine scheduling problems associated with semiconductor manufacturing operations (SMOs) are one of the major research topics in the scheduling literature. Lots of papers have dealt with different variants of SMOs’ scheduling problems, which are generally difficult to tackle theoretically and computationally. In this paper, the single machine, parallel machines, flow shops, and job shops scheduling problems from SMOs have been reviewed, based on different processing constraints, e.g., batch processing, auxiliary resources, incompatible job families, and reentrant flow, etc., with the cycle time, flow time, and throughput-related performance measures. Given the vast and diverse nature of the current literature, it is urgently needed to make a systematic survey in order to identify the important research problems, research trends, and the progress of the related solution methods, as well as clarify future research perspectives. We hope the findings and observations could provide some insights to the researchers and practitioners in this domain.
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1. Introduction


Semiconductor products such as microprocessors, memory chips, and microcontrollers are widely used both in personal appliances and industrial equipment. Integrated Circuits (ICs) are the main parts of semiconductor products, which are produced in semiconductor fabrication plants (also known as “fabs”) based on the miniaturization of the very-large-scale-integration (VLSI) technology [1]. According to the 2021 semiconductor industry association report, the 2020 global semiconductor sales value doubled that of 2000 and reached 440.4 billion US dollars (Report: 2021 State of the U.S. Semiconductor industry, https://www.semiconductors.org/, accessed on 1 July 2022). Though many industries suffered a major setback during the COVID-19 pandemic, the semiconductor industry continues its growth momentum to $573 billion US dollars in 2022 according to the world semiconductor trade statistics forecast, thanks to the fast advancement of information and communication technologies such as Internet-of-Things, 5G, and AI.



Despite such a strong growth trend, the semiconductor industry is facing more competition nowadays. From the demand’s perspective, the product mix is increasing with a shortening product life cycle, which leads to reduced delivery lead-times and stricter quality standards. From the supply’s perspective, the throughput is limited and variable because production capacity is difficult to be expanded shortly and high-quality standards result in uncertain yields, which depend on the maturity of processing steps and products. Furthermore, the global distribution of facilities and increasing numbers of firms specializing in particular stages have let the management of the whole semiconductor supply chain extremely difficult. Many pieces of research have been conducted to study semiconductor supply chain topics such as network design, capacity planning and production planning; see [2,3,4]. Since the pandemic, semiconductor manufacturing has been particularly under the spotlight as many industries including automobiles and smartphones are facing the chip shortage phenomenon. “How to expedite chip production and delivery” is a frequently asked question. Solutions such as capacity expansion and supply chain coordination have been discussed (Report: Chip shortage: how the semiconductor industry is dealing with this worldwide problem, https://www.weforum.org/agenda/2022/02/semiconductor-chip-shortage-supply-chain/, accessed on 1 July 2022). Among those solutions, one potential way is to use advanced production scheduling methodologies to increase machine utilization, reduce cycle time, and improve throughput. In addition, the rapid expansion of the industry also comes with an unexpected high water and energy consumptions with high greenhouse gas emissions [5,6]. These facts intensify the significance of sustainable development of the industry. Indeed, most corporations have proposed their sustainability strategies, e.g., water recycling and energy reduction. From the machine scheduling literature, it is well noted that many recent papers try to focus on the energy-related or pollution-related scheduling problems [7,8]. Machine scheduling indicates how to allocate machines over time to process jobs such that production requirements are satisfied, and one or more performance measures could be optimized [9]. Applying machine scheduling to semiconductor manufacturing operations (SMOs) is challenging. On one hand, most scheduling problems are NP-hard, thus requiring the development of efficient computational algorithms. On the other hand, scheduling methods are difficult to be implemented in practice, as manufacturing systems face unexpected events frequently.



Machine scheduling problems have been examined in different industries because their specific manufacturing processes lead to distinct formulations of relevant scheduling problems; see examples from furniture [10], solar cell [11], and potash [12]. In this paper, we will focus specifically on the semiconductor industry. The reasons are manifold. First, semiconductor manufacturing probably has the most complicated production processes, which provide rich resources for extracting interesting scheduling problems. Second, machines in SMOs are usually extremely expensive, and thus applying suitable scheduling methods to increase machine utilization is an important way to reduce operational costs and increase competitiveness. Third, SMOs are almost completely automated. Wafers are transported in the front opening unified pods (FOUPs) by the automated material handling systems (AMHS). Hence, scheduling algorithms can be much easier to be embedded into the manufacturing control system than other manually operated facilities. Moreover, practical pieces of evidence have shown that fabs have benefited a lot from effective scheduling strategies, although there is still potential for improvement [13].



Plenty of research regarding SMOs’ scheduling problems has appeared since the 1980s. However, SMOs’ scheduling problems remain difficult to analyze. Most of these challenges hinge upon its complicated manufacturing processes, which are summarized as follows:




	(1)

	
Complex processing steps. It is common for a single process flow to consist of 300–900 processing steps over hundreds of machines and perhaps ten or more major process flows in wafer fabrication [14].




	(2)

	
Reentrant flows. Wafers need to revisit some workstations multiple times to build the prescribed circuitry patterns, which complicates the production system greatly.




	(3)

	
Diverse machine types. Wafers are generally transported in a lot of 25 units by FOUPs. Fabs have four typical machine types, i.e., batch processing machines (multiple lots per process), lot processing machines (single lot per process), discrete processing machines (single wafer per process), and cluster tools. A production line is composed of a mixed combination of these machine types, where improper coordination could lead to increased flow variability and excessive delays.




	(4)

	
Distinct processing characteristics. Depending on the nature of machines and jobs, SMOs incorporate distinct processing constraints, e.g., batch processing, auxiliary resources, sequence-dependent setups, and multiple orders per job (MOJ).




	(5)

	
Integral decisions. SMOs scheduling needs to be coordinated with other shop-floor control decisions, e.g., preventive maintenance (PM) and advanced process control (APC).









Several review papers have traced the development of SMOs’ scheduling problems. For example, the production planning and shop floor control problems arising from wafer fabs are presented in [15,16], in which commonly used dispatching rules, order release, and deterministic scheduling methods are discussed. Problem configurations and solution methodologies concerning parallel batch machine scheduling from SMOs are presented in [17]. Job shop scheduling techniques from SMOs are summarized in [18], and deterministic SMOs scheduling problems mainly from the wafer fabrication process are elaborated in [19]. Those papers provide an excellent starting point for understanding relevant problems; however, they tend to focus only on certain aspects such as batch machine scheduling or job shop scheduling, based upon deterministic problem setting.



Our paper is most related to [19], which is used as the baseline for the current state of the art. This paper will review the most relevant papers in the past decade and try to figure out the latest developments for problems and solution techniques that are involved. Moreover, it will not only examine deterministic SMOs scheduling problems, but also stochastic and dynamic SMOs scheduling problems; it will examine SMOs scheduling problems from front-end operations as well as those from back-end operations; it will classify problems based on shop environment and processing characteristics and try to identify key problems in related operations.



Relevant papers are extracted from the Scopus and Web of Science databases based on two keyword groups: “machine scheduling & semiconductor manufacturing” and “machine scheduling & wafer fabrication” from 2011 to date. After removing unrelated topics such as transportation scheduling and production planning, more than 170 papers are left for further study. This paper also excludes the internal scheduling of cluster tools in this paper, as these problems usually utilize Petri net-based models to study tool configuration and schedulable issues, which are largely different from the scheduling problems that will be investigated here. For more information about cluster tool scheduling problems, readers could refer to a recent survey in [20]. Although extracting papers based on the above two keywords seem limited, it still generates sufficient papers that this survey could center around. Furthermore, we also add other relevant papers that are not identified during the above searching process in our survey. Since some scheduling problems are common in many industries, researchers may only explain problem descriptions with general background and focus more on the theoretical properties and algorithmic design. We will try to include these papers as well; however, it is impossible for us to summarize all scheduling papers with similar processing characteristics or job environment considering the extensive review scope, and most importantly it is not our main purpose.



The remainder of this paper is organized as follows. Section 2 outlines major SMOs and corresponding processing characteristics. Section 3, Section 4, Section 5 and Section 6 elaborate and summarize single machine, parallel machines, flow shops, and job shops scheduling problems, respectively, based on deterministic and stochastic problems settings. Section 7 provides discussions of current research progress and future research perspectives.




2. Processing Characteristics, Classifications, and Notations


2.1. Processing Characteristics


In general, semiconductor manufacturing processes can be categorized into four stages, i.e., wafer fabrication, wafer probe, assembly, and final testing, where the first and last two stages are referred to as front-end and back-end operations, respectively. Among these stages, wafer fabrication is the most crucial stage because of its complex technology and high investment. The process starts with blank wafers made of silicon or gallium arsenide, and patterned layers are built up on wafers to produce ICs. Oxidation/diffusion, deposition, photolithography, etching, impurity doping, and planarization are the main operations of the wafer fabrication process. The schematic diagrams of semiconductor manufacturing and wafer fabrication are shown in Figure A1 and Figure A2 in Appendix A. Since SMOs’ scheduling problems are our focus, the involved processing characteristics are emphasized below. For more detailed information about each processing step, readers could refer to [21,22].



	(1)

	
Batch processing. Diffusion furnaces in the oxidation/diffusion and burn-in oven in the final testing operations are typical batch processing machines, where a batch of jobs can be processed simultaneously. However, jobs from different job families cannot be batched together in the diffusion furnace because the chemical elements of job families could be different, which may contaminate jobs from other families. This is usually referred to as incompatible job families. In batch machine scheduling problems, decisions include how to form batches and how to sequence batches. If jobs have unequal release times, the decision of whether to wait for impending jobs to build a fuller batch or to process current jobs in the batch right away should be determined. Mathirajan and Sivakumar [17] presented a literature meta-analysis for deterministic batch machine scheduling problems from SMOs, while Koo and Moon [23] provided a survey on real-time control strategies based on threshold and look-ahead policies for similar problems. More recently, Fowler and Mönch summarized the compatible and incompatible batch scheduling problems and the corresponding solution methodologies [24].




	(2)

	
Auxiliary resource. Several SMOs rely on auxiliary resources to proceed. For instance, the photolithography step consists of coating, exposing, and developing operations to frame various regions in ICs. Patterns are transferred to wafer surfaces through reticles. Jobs can be processed only when both stepper machines and reticles are available. Since the patterns of different products and different layers of a product are not the same, and few reticles for each pattern are stocked, how to schedule jobs, machines, and reticles is a significant problem in this process. Similarly, test stations in the final testing stage require multiple auxiliary resources including tester, kit, and enabler assembly. Sometimes, jobs requiring the same auxiliary resources are processed serially in order to reduce machine setup time, which is also known as serial-batching, compared to the parallel-batching of batch processing machines.




	(3)

	
Sequence-dependent setup times. Machine setup is a common procedure, which is defined as the time required to prepare necessary resources to perform a task. For example, impurity doping introduces controlled amounts of impurities into wafers in order to change their electronic properties, which could be different for various jobs. Hence, the dopant for each job or job family is not the same and thus needs to be changed frequently, in which case the sequence-dependent setup times should be considered. Setup times are sometimes job-family-based, which means jobs from incompatible families require longer setup times. A survey that specifically considers scheduling problems under setup times/costs can be found in [25].




	(4)

	
Reentrant flows. Reentrant flows refer to jobs entering into production lines more than once, which is an intrinsic characteristic for many SMOs, especially for the photolithography and etching stations. Reentrant flows complicate production lines because jobs with different processing status compete for the same production resources. An inappropriate job scheduling with reentrant flows could lead to increased cycle times. Lin and Lee [26] summarized scheduling problems concerning reentrant flows and emphasized the commonly used solution methods.




	(5)

	
Advance process control (APC). APC maintains machine process qualifications so as to prevent process excursions and increase tool utilization. Typical APC constraints include equipment health index, equipment qualification, preventive maintenance, and run-to-run control loop [27]. For instance, Obeid et al. [28] considered a qualification-run constraint, which refers to the action of conducting a test run if a machine has not processed certain job families for a pre-specified period that can either be measured in terms of time (time-based) or the number of jobs processed (count-based). Duc et al. [29] investigated preventive maintenance (PM) together with machine scheduling in the etching operation. As chemical substances are accumulated over time during the process, suitable PM schedules, i.e., regular cleaning should be maintained to prevent yield loss. Sometimes, a maximum processing time window or overlapping/nested time window should be imposed between two or more consecutive operations. Otherwise, wafers could be contaminated. More information about binding scheduling decisions with APC systems for SMOs could be found in [27].




	(6)

	
Multiple order per jobs (MOJ). As shown in [30], if each customer order is assigned to one FOUP in the 300 mm wafer fab, an extremely large number of FOUPs would need to be maintained, which can increase AMHS congestion. In practice, orders from multiple customers are combined into a single job in the FOUP in order to reduce the AMHS workload. This is commonly termed as MOJ scheduling, which are challenging as delivery performance is assessed at the order level while scheduling is made at the job level. Depending on machine types, MOJ scheduling can be further divided into moj(item), moj(lot), and moj(batch) for item-, lot-, and batch-processing machines. For moj(item), job processing time is the sum of processing time of all wafers in all orders; for moj(lot), job processing time is equal to the processing time of a single wafer; for moj(batch), job processing time is equal to the longest processing time of the jobs containing different customer orders. The MOJ scheduling mainly involves two decisions, that is, how to group orders and how to schedule jobs.




	(7)

	
Other characteristics. For instance, machine dedication indicates a machine may only be capable of processing a certain set of jobs. As specifications of new ICs evolve, old machines may not have the required processing capabilities. Hence, jobs should be scheduled to dedicated machines. In addition, process precedence constraint is a common constraint when studying scheduling problems involving multiple sequential operations.








2.2. Classifications and Notations


Similar to most scheduling literature, we adopt the three-field α|β|γ notation to summarize SMOs’ scheduling problems. The α, β, and γ fields represent the shop environment, processing characteristics, and performance measures, respectively.



Fabs are commonly regarded as complex flexible job shops because of the complex processing characteristics mentioned above. Each work area consisting of multiple work centers that are organized based on functions or logistics could be viewed as a flexible job shop or flow shop. Each work center has multiple parallel machines performing similar operations. Single machine refers to tool-based scheduling.



Performance measures of SMOs’ scheduling problems can be mainly classified into three categories, i.e., cycle time-related measures, due date-related measures, and throughput-related measures. Total (weighted) job completion times and total (weighted) job flow times are typical cycle time-related measures. These two measures are the same if jobs have the same release time. Due date-related measures include total (weighted) tardiness, the total (weighted) number of tardy jobs, and maximum lateness. Throughput-related measures include makespan and work in progress (WIP). Other measures such as total setup times and electrical power cost have also been studied. Moreover, some papers consider multiple performance measures. Except for considering multi-measures separately, the multi-criteria analysis can be carried out in the following ways. Assuming     Z   1    ,      Z   2    ,…,      Z   k     are corresponding measures, by taking notations from [31], we let     F   l   (   Z   1    ,      Z   2    ,…      Z   k   )   indicate the objective is to optimize a linear combination of the k measures;   # (   Z   1    ,      Z   2    ,…      Z   k   )   refers to a Pareto optimization of the k measures;   L e x (   Z   1    ,      Z   2    ,…      Z   k   )   refers to a hierarchical analysis by optimizing performance one after the other; and   ∈ (   Z   1   /   Z   2    ,…      Z   k   )   indicates the objective is to optimize     Z   1     while other measures act as constraints that are subject to a pre-defined upper or lower bound.



Table 1 summarizes the commonly used three-field notations, which may be not the same as in the original papers. Other notations will be introduced in place in due course. For instance, the    1     r   j   , p - b a t c h , i n c o m p a t i b l e   ∑   w   j     C   j     refers to a single batch machine scheduling problem that considers unequal job release times and incompatible job families with the objective of minimizing total weighted job completion times. Throughout this paper, notation j, b, o, and f refer to job, batch, order, and job family, respectively; N and M refer to the set of jobs and machines, and n and m relate to the number of jobs and machines. The tardiness of job j is defined as     T   j   =   max  ⁡    ( C   j   −   d   j   , 0 )    , where     C   j     and       d   j     are the completion time and due date of job j; the earliness and tardiness of job j is defined as     E T   j   =     C   j   −   d   j      ; and the number of tardy jobs is defined as     U   j   =    ∑  I       max  ⁡  (   C   j   −   d   j   , 0 )      .



Machine scheduling is a typical kind of optimization problems, whose solution methods include exact analytical methods, heuristics, metaheuristics, and simulation methods. Table 2 summarizes the abbreviations of widely applied solution methods that have been used in the papers that are reviewed. In addition to deterministic scheduling problems, we will also investigate stochastic and dynamic SMOs scheduling problems and related solution methods.



The contents of the surveyed papers are evaluated rigorously based on our previous categorization. Detailed analysis is presented in the coming sections. For each shop environment, deterministic scheduling problems are discussed followed by stochastic and dynamic scheduling problems. Within each problem setting, results are presented based on processing characteristics and solution methods, and single measure is discussed followed by multiple measures. To facilitate the context flow, all papers reviewed in each section below are summarized in tables of Appendix B.





3. Single Machine


In single-machine environment, multiple jobs are waiting to be processed. The key decision of single-machine scheduling problems is the sequencing of jobs, i.e., determining jobs’ relevant start processing times.



3.1. Deterministic Scheduling


Deterministic single-machine scheduling problems are presented below. We separate the discussion of batch machine scheduling from other processing characteristics, see Table A1 and Table A2 in Appendix B, respectively.



3.1.1. Batch Machine Scheduling Problems


As shown in Table A1, most batch machine scheduling problems arise from cleaning, oxidation/diffusion, and burn-in operations. Besides relevant problems investigated from SMOs, single batch machine scheduling problems have been studied extensively since the 1980s [32,33]. The simple versions of problems only consider identical/non-identical job sizes and job processing times. Sorting jobs in the longest processing time (LPT) order and fill the batches as full as possible in the descending LPT order minimizes     C   max     if jobs have identical sizes and non-identical processing times [33]. However, if jobs have non-identical sizes and identical processing times, problems are NP-hard because they are equivalent to bin-packing problems. Recent research of single batch machine scheduling problems also considers non-equal job releasing times and incompatible job family constraints.



Single batch machine scheduling problems involve two decisions, i.e., how to form batches and how to sequence batches. For instance, the     1   p - b a t c h ,   a   j   , B   C   max     problem can be mathematically formulated as: minimize     ∑  b      P   b      , s.t.       ∑  b      X   j b   = 1 ,   ∀ j ;     ∑  j      a   j     X   j b   ≤ B ,   ∀ b ;     P   b   ≥   p   j     X   j b   , ∀ j , b ;   X   j b   ∈   0 , 1   , ∀ j , b    , where     P   b     and     p   j     refer to the processing time of batch b and job j. The decision variable     X   j b     indicates whether to assign job j to batch b, and the first two constraints determine the batch formation decision. Minimizing     C   max     is relatively easier compared to other performance measures, because only batch formation decision is required while batch sequencing decision is determined implicitly. The below discussions are expanded from this basic problem. Studies differ mainly in examined performance measures and solution techniques.



Chen et al. [34] studied the       1   p - b a t c h ,   a   j   , B   C   max    . They claimed that jobs with similar processing times should be batched together. Based on this observation, they introduced the waste ratio of batch (WRB) and proved to minimize     C   max     is equivalent to minimizing WRB. Therefore, a constrained agglomerative clustering of batches (CACB) algorithm with worst-case complexity of   O     n   4       was proposed. Experiments testing up to 500 jobs showed that CACB outperforms the best-fit longest processing time heuristic (BFLPT) and a GA method from [35]. Lee and Lee [36] studied a similar problem by constructive-based and improvement-based MILP heuristics, which were developed based on the WRB from [34]. Initial batches were generated from successive knapsack formulation in the constructive-based MILP heuristic, while waste improvement was used in the improvement-based MILP heuristic. Both heuristics were then combined with some greedy rules, e.g., the longest batch processing time and minimum remaining capacity to improve their performances. Experiments showed the constructive-based heuristic with a rolling scheme provides better performance though it requires longer computational time. Moreover, Li and Zhang [37] studied a generalized   1   p - b a t c h ,   a   j   , B     C   max     considering two-dimensional job sizes. They developed a MILP model and two heuristics. The first heuristic is a BRKGA algorithm with initial solutions based on four job sequencing rules including LPT, SPT, largest job size (LS), and smallest processing rime/size ratio (SR) from [33], and a batch formation rule of best-fit first (BFF). The second heuristic is a hybrid bin loading (HBL) algorithm that transforms the original problem into a successive bin-loading problem. Experiments showed that both heuristics provide comparable results in moderate instances and outperform CPLEX in large instances compared to the MILP model.



Parsa et al. [38] investigated the   1   p - b a t c h ,   a   j   , B    ∑    C   j       using a hybrid max-min ant system (MMAS), which includes an MMAS to generate job sequences, a DP algorithm to form initial batches, and a local search to improve solution quality. The algorithm has a computational complexity of   O     t   max     n   a     n   2      , where     t   max     and     n   a     refer to a maximum number of iterations and the number of ants, respectively. Experiments showed the algorithm is able to generate better solutions than the GA from [35] and the heuristics from Jolai and Dupont [39].



When jobs have unequal release times, a machine could be deliberately left idle as waiting for impending jobs to build fuller batches may bring benefits. The   1   p - b a t c h ,     r   j   , a   j   , B     C   max     was studied in [40,41,42]. Shao and Chen [40] applied an ACO algorithm to generate job sequences and a DP algorithm to form batches, in which the ACO uses information of job processing and release times to update pheromone trails. By extending the WRB definition, Xu et al. [41] defined the waste and idle space (WIS), which includes the waste space from non-identical job sizes or processing times and the idle space from unequal job release times. They proved minimizing     C   max     is equivalent to minimizing the WIS, based on which a first-fit WIS earliest release time (FFWIS-ERT) heuristic and an ACO algorithm are developed. Zhou et al. [42] observed that two jobs should be batched as far as possible if they have close processing and release times, and their total job size is less than the residual batch capacity. Based on this observation, they defined the job distance function and then developed the first-row start (FRS), minimum distance start (MDS), and updated distance (UD) heuristics. Experiments showed their methods outperform the ACO in [41]. In addition, Mathirajan et al. [43] studied the   1   p - b a t c h ,     r   j   ,   d   j   , a   j   , B    ∑      w   j   T   j       considering both unequal job release times and due dates. They developed a constructive greedy heuristic (CGH) and an SA algorithm, in which the CGH sequences jobs based on EDD, ERT, and LST rules, and the SA improves initial solutions from CGH based on a forward-backward iteration mechanism.



Some studies consider the incompatible job family constraint. Dauzère-Pérès and Mönch [44] studied the   1   p - b a t c h , i n c o m p a t i b l e ,   a   j   , B    ∑    ( w   j   )   U   j      . They proposed two MILP formulations. The first MILP defined the positional variable as batches where multiple jobs can be assigned to the same position, while the second MILP defined the positional variable as jobs where batches are formed by consecutive jobs from the same family. Both formulations are based on the observation that there exists an optimal schedule such that all on-time jobs are processed before tardy jobs. An RKGA was also developed. Experiments showed the first MILP provides better upper bounds while the second MILP provides better lower bounds, and the RKGA is able to find high-quality solutions for large instances. In addition, Cheng et al. [45] studied the   1   p - b a t c h ,   i n c o m p a t i b l e , a   j   , B     C   max     and the   1   p - b a t c h ,   i n c o m p a t i b l e , a   j   , B    ∑    C   j      . They proved both problems are NP-hard and developed two constructive heuristics with time complexity of   O   m n ·   log  ⁡    n        .



Moreover, Lu et al. [46] specially considered the processing time deterioration effect and resource constraints in a single batch machine scheduling problem. They proved the problem to be NP-hard, and a VNS algorithm is designed to solve the problem.




3.1.2. Non-Batch Machine Scheduling Problems


Processing characteristics including MOJ, APC, PM, and interfering jobs have been investigated in single non-batch machine scheduling problems. MOJ has been examined under the   m o j ( i t e m )   and   m o j ( l o t )  , and mainly involve two decisions, i.e., how to group different orders into jobs and how to schedule these jobs. Mason and Chen [47] proved the   1   m o j   i t e m      ∑    C   o       and   1   m o j   l o t      ∑    C   o       are both NP-hard. They developed a MILP formulation and proved optimal schedules for each problem. For   1   m o j   l o t      ∑    C   o      , they showed that jobs are sequenced in non-increasing order of the number of orders in the job is optimal. For   1   m o j   i t e m      ∑    C   o      , they showed that the total number of jobs in the optimal schedule is the minimum between the number of orders and the number of FOUPs, and the smallest order size first (SOSF) rule is optimal when the number of orders is not greater than the number of FOUPs. Sobeyko and Mönch [48] studied the   1   m o j   i t e m      ∑      w   o   C   o       and   1   m o j   l o t      ∑      w   o   C   o      . They indicated that the main decision of both problems is job formation since job sequencing can be determined optimally by non-increasing     ∑  o ∈ j      w   o       for   m o j   l o t      and non-increasing       ∑  o ∈ j      w   o      /    ∑  o ∈ j      a   o         for   m o j   i t e m    . They used a grouping genetic algorithm (GGA) to form jobs, which was shown to outperform an RKGA that first sequences orders and then forms jobs. Sarin et al. [49] studied the   1   m o j   i t e m      ∑    C   o        under both uncapacitated and capacitated carriers. Structural properties are provided for both problems, based on which a B&B method is developed. Experiments showed their formulation is better than [47]. Sobeyko and Mönch [50] proved the   1   m o j   i t e m      ∑      w   o   T   o      ,   1   m o j   i t e m      ∑      w   o   U   o      ,   1   m o j   l o t      ∑      w   o   T   o      , and   1   m o j   l o t      ∑      w   o   U   o       problems are NP-hard. They developed a GGA for each problem, whose main difference is the way of tackling reinsertion and mutation procedures. Experiments showed the GGA provides a better solution than the GA used in [51]. Rocholl and Mönch [52] studied the   1   m o j   l o t   ,   i n c o m p a t i b l e    ∑    E T   j       with common non-restrictive due dates. They proposed a GA-based method that first assigns orders to jobs and then assigns jobs to early and tardy sets.



Cai et al. [53] studied the APC with a count-based qualification-run in the   1     s   k l   , A P C    ∑  L e x     C   max   ,   U   j        . In this problem, both job schedules and machine qualification-run schedules need to be determined. The problem is proved to be strongly NP-hard. In addition, the optimal schedule for the two-family case was derived, and the structure of optimal schedules for the multi-family case was analyzed. Based on these properties, they developed a constructive-based heuristic, which is efficient in solving up to 20 job families with 10–30 jobs in each family.



Similar to APC, when considering PM activities in machine scheduling, decisions on job schedules and PM schedules have to be determined. Pang et al. [54] studied the   1     r   j   , c l e a n i n g   # (  ∑      w   j   T   j   ,    ∑    C   j   )    , where machines should be stopped for cleaning before the maximum allowable contamination has accumulated. They showed this problem is NP-hard and developed a scatter SA algorithm. Chung et al. [55] studied   1   c l e a n i n g    ∑    C   j      . They provided a MILP formulation and explored the properties of optimal schedules, based on which a constructive-based heuristic that solves up to 500 jobs was built.



Furthermore, Ramacher and Mönch [56] studied the   1 | | #    ∑      w   j   C   j     ,   L   m a x      ,   1 | | #    ∑    C   j     ,   L   m a x      , and    1 | | #    ∑      w   j   C   j     ,  ∑      w   j   C   j         with two interfering agents that have their own jobs and private objectives. They proposed a decentralized automated negotiation mechanism where the mediator proposes contracts based on VNS. Experiments showed solutions generated by this mechanism are closer to the Pareto frontier compared to a centralized approach with full information.





3.2. Stochastic and Dynamic Scheduling


Relatively few papers have tackled stochastic and dynamic single-machine scheduling problems. The   1   p - b a t c h ,   i n c o m p a t i b l e ,   r   j   , a   j   , B    ∑    w   j     T   j       is studied in [57], in which a hybridized GGA with initial solutions from a BATC-II list scheduling approach based on a time window decomposition scheme is developed. Jia et al. [58] studied   1     r   j   , i n c o m p a t i b l e , r e c r c    ∑    w   j     T   j      . They developed a job-family-oriented MILP formulation, which is then combined with a rolling horizon (RH) strategy for real-time scheduling. In addition, Huang et al. [59] applied the queueing control model to study production and PM joint scheduling problems. They indicated that the state-dependent   c μ  -rule is optimal under the constant service ratio assumption. Jun and Lee [60] proposed the learning of dispatching rules, which consist of a decision tree approach that generates rules automatically from existing schedules and a feature-construction-based genetic programming to improve the rule.



From above single-machine scheduling problems, it can be inferred that many scheduling problems exist depending on different processing characteristics and performance measures. Batch machine, auxiliary resources, and sequence-dependent setup times are commonly investigated characteristics.





4. Parallel Machines


This section elaborates scheduling studies on parallel machines environments, in which a group of identical or non-identical machines are assigned to process similar operations. Different from single-machine environments, decisions on how to allocate jobs to machines and how to sequence jobs on each machine should be made.



4.1. Deterministic Scheduling


Similar to the single-machine environment, batch scheduling problems and non-batch scheduling problems are discussed separately; see Table A3 and Table A4 in Appendix B, respectively. Furthermore, the specific machine environment such as identical or unrelated parallel machines is listed inside the parentheses after the process characteristics.



4.1.1. Batch Machine Scheduling Problems


In parallel batch machine scheduling problems, decisions include how to form jobs into batches, how to allocate formed batches to machines, and how to sequence batches for each machine. Most parallel batch machine scheduling problems are strongly NP-hard, see [61]. Parallel batch machine scheduling problems have been studied under different processing constraints, e.g., unequal job release times, incompatible job families, and machine dedication.



The     P   m       p - b a t c h , r   j   ,   a   j   , B     C   max     is studied in [62,63]. Chen et al. [62] designed a GA and an ACO algorithm to form batches and used an ERT-LPT rule to schedule batches. Furthermore, two lower bounds based on job splitting were developed. Results showed GA outperforms ACO in small instances while ACO dominates GA in large instances. In their method, batch allocation and sequencing decisions are tackled by a single ERT-LPT rule. Similar to [42], the job distance definition and proposed three distance matrix-based heuristics (DMBHs) is used to form batches [63]. Then, a modified greedy longest processing time (GRLPT) heuristic was used to schedule batched jobs to machines. Experiments showed their methods outperform the GA and ACO in [62]. Both [62,63] used rule-based heuristics to tackle batch allocation and sequencing decisions.



Similar problems have also been examined under unrelated parallel machines, where machines have either non-identical processing times or capacities. Arroyo and Leung [64] studied the     R   m       p - b a t c h , r   j   ,   a   j   , B     C   max    , in which machines have non-identical job processing times. They proposed three constructive heuristics considering ERT, first fit (FF), and best fit (BF) rules. They showed that the heuristic that forms and schedules batches in a single phase outperforms the other two heuristics, and solutions deteriorate as job sizes increase or release times decrease. Hulett et al. [65] studied     R   m     p - b a t c h ,   a   j   ,   B   m      ∑    w   j     T   j       with nonidentical machine capacities. They proposed a PSO algorithm that uses the smallest position value rule to construct batching and scheduling decisions.



Lin et al. [66] studied the     R   m     p - b a t c h ,   a   j   , B     # ( C   max   ,  ∑    w   j     C   j   ,    ∑    w   j     T   j   )    . They proposed two LP-based heuristics for     # ( C   max   ,  ∑    w   j     C   j     )   and   # (  ∑    w   j     C   j   ,    ∑    w   j     T   j   )     and designed a GA that sorts populations based on the Pareto ranking of     # ( C   max   ,  ∑    w   j     C   j   ,    ∑    w   j     T   j   )    . Experiments showed the GA outperforms the LP-based heuristics in terms of solution quality and the number of non-dominated solutions. Jia et al. [67] studied the     P   m       p - b a t c h , r   j   ,   a   j   , B     # ( C   max   , E P C )  , in which the EPC is computed as the sum of processing power and idle power multiplied by the electricity price function. They developed a Pareto-based ACO algorithm, whose computational complexity is   O     T   max     N   a   m   n   2       where     T   max     and     N   a     refer to the maximum number of iterations and number of ants.



The     P   m     p - b a t c h ,   a   j   , B , i n c o m p a t i b l e    ∑    w   j     T   j       is studied in [68,69]. Alemeder and Mönch [68] designed an ACO and a VNS with initial solutions from the ATC-BATC rule and decomposition heuristics. Lausch and Mönch [69] developed an ALNS. Experiments showed the ALNS outperforms the ACO while being comparable to the VNS in [68]. Mönch and Roob [70] studied a similar problem with regular sum objectives and indicated that batch formation decisions can be regarded as a transportation problem. Therefore, a minimum cost flow problem was formulated to tackle batch formation decisions, and a BRKGA was designed to tackle the batch assignment and sequencing decisions. Experiments showed this method is competitive with the VNS in [68] for the     P   m     p - b a t c h ,   a   j   , B , i n c o m p a t i b l e    ∑    w   j     T   j       and the MILP heuristic in [44] for the   1   p - b a t c h , i n c o m p a t i b l e ,   a   j   , B    ∑    ( w   j   )   U   j      .



Moreover, incompatible job families together with unequal job release times scheduling problems are examined in [71,72,73]. Chiang et al. [71] studied the     P   m     p - b a t c h ,   r   j   ,   a   j   , B , i n c o m p a t i b l e    ∑    w   j     T   j      . They proposed an MA that encodes batch formation and batch sequence simultaneously in the chromosome and decodes machine allocation by assigning batches to machines at the earliest available time. Experiments showed that the MA outperforms GA methods through benchmark examples from [74]. Rocholl et al. [72] studied the     P   m     p - b a t c h ,   r   j   ,   a   j   , B , i n c o m p a t i b l e   #    ∑    w   j     C   j     , E P C    . They formulated a MILP for the general problem and a simplified MILP based on the properties of optimal schedules for a special problem with the same job size and release time. Rocholl et al. extended the above problem to the Pareto optimization of    ∑    w   j     T   j       and   E P C   [73]. Similar approaches were applied for the reduced problem, and three versions of grouping GA with distinct solution representations and decoding schemes were developed as well.



In addition, processing characteristics such as auxiliary resources [75], machine dedication [76], and process precedence [77] have also been studied. Such characteristics let related problems become more challenging. For instance, the     R   m     p - b a t c h ,   a   j   , B ,     M   j   ,   t w   j   , i n c o m p a t i b l e     L e x ( C   max   ,  ∑    w   j     C   j   ,    ∑    T   j   )     is studied in [76], where jobs can only be processed by a subset of machines. A VND algorithm based on six neighborhood structures was designed to tackle the problem.




4.1.2. Non-Batch Machine Scheduling Problems


Many papers tackled auxiliary resources in parallel non-batch machine scheduling problems. Other processing characteristics including APC, batch arrivals, job precedence, and limited waiting time have also been considered (see Table A4).



We first discuss auxiliary resources scheduling problems. Since auxiliary resources are usually limited in fabs, decisions regarding resource allocation and job scheduling should be made simultaneously. One of the popular auxiliary resources in fabs is reticles that are used in photolithography operations. Klemmt et al. studied a parallel machine scheduling problem considering auxiliary resources [78]. They designed a multistage MILP approach, in which multiple objectives and multiple constraints were considered based upon hierarchical four-stage optimization models. Since reticles need to be recalibrated after a certain period of time, Yan et al. studied a similar problem by considering the reticle expiration objective [79]. They proposed a B&C method to obtain near-optimal solutions and developed a two-phase heuristic that considers a subset of constraints in each phase so as to improve the computation efficiency. Furthermore, resource transportation time is considered in [80,81]. Bitar et al. [80] studied the     R   m     a u x ,   s   l k        ∑    w   j     C   j   ,   t h r o u g h p u t    , in which only one reticle is stocked for each job type, and a unitary transport time is needed for each movement. They proposed an MA whose coding and decoding schemes are based upon some neighborhood structure properties. Ham [81] formulated a similar problem as a MILP and showed that the CP model combined with variable ordering heuristic is able to find optimal solutions for large instances, e.g., up to 200 jobs, 30 machines, and 200 reticles. Chung et al. [82] studied the     P   2     a u x     C   max    . They proposed three LPT-based heuristics, which were proven to have a worst-case performance ratio of 3/2. Ham et al. [83] studied an integrated machine and vehicle scheduling problem in the photolithography area, in which a constraint programming method is proposed.



Given resource changeovers will incur long setup times, it is suggested that jobs requiring the same resource should be processed sequentially to reduce machine setup time. Deng et al. considered such a situation in the burn-in operations, where machine–resources–temperature combinations are preset before job scheduling so that long setup times can be avoided [84]. They modeled the problem as a MILP and designed a two-phase reactive GRASP. Experiments showed the MILP generates larger gaps than the GRASP when resources are highly limited. Wang et al. utilized an EDD with the least recipe changeover (EDDLC) rule for the     R   m     a u x ,   r   j   ,   s   l k         F   l   ( C   max   ,   U   j   )   [85]. Chen et al. studied the     R   m       r   j   ,   s   l k   ,   t w   j       L e x ( t h r o u g h p u t ,   C   max   )   considering sequence-dependent setup times and job expiration time [86]. A two-phase MILP model and a hybrid TS algorithm were applied, in which experiments showed the latter performs better on solution quality and computational time. Moser et al. studied     R   m       s   l k   ,   M   j     L e x    ∑    T   j     ,   C   max       [87]. They modelled the problem as a MILP and proposed several variants of SA with different neighbourhood search procedures.



In addition, Zhang et al. studied the     Q   m     a u x ,   r e c r c ,   s   l k     t h r o u g h p u t   considering multiple resources coordination, i.e., a tester, a handler, and an enabler, in the final testing operation [88]. They proposed a state-action-reward-state-action (SARSA)-based reinforcement learning algorithm that incorporates five actions defining how to choose jobs and test resources. Experiments showed the SARSA method outperforms rule-driven industrial methods by nearly 70%. Multi-resource scheduling problems regarding wafer probe operation are studied in [89,90,91]. Ying and Lin [91] designed a hybrid artificial immune system (HAIS), which was shown to outperform the iterated greedy heuristic in [90] and the GA, ACO, and TS in [89]. Furthermore, Munoz et al. [92] examined a dual-resource constrained machine scheduling problem from the photolithography area, i.e.,     P   m       r   j   ,   s   l k   , a u x    ∑    C   j      . They proposed a hybrid model that includes a MILP with initial solutions from a constructive heuristic to reduce solution space. Similarly, Ref. [93] studied     R   m       r   j   ,   s   k l   , a u x   ∑     w   j   C   j      from the photolithography operation. They proposed two MILP formulations and integrates VNS into GA as the solution improvement procedure. Ref. [94] studied a similar problem considering machine deterioration and preventive maintenance. They first theoretically identified the optimality property, based on which an exact scheduling algorithm is developed.



Some studies tried to incorporate APC decisions into parallel machine scheduling problems. For example, Refs. [95,96] studied the     R   m     i n c o m p a t i b l e , A P C ,   s   l k       F   l      ∑    C   j      ,     ∑   m a c h i n e   d i s q u a l i f i c a t i n s        considering time-based qualification-run APC. Obeid et al. showed the problem is strongly NP-hard. They developed two MILP models with job-based and family-based decision variables separately [95]. Moreover, a scheduling-centric heuristic (SCH) to minimize machine setup times and a qualification-centric heuristic (QCH) to minimize machine disqualifications were also developed. Experiments showed the MILP with a family-based decision variable is more effective, and there is a trade-off between the total completion time and the total number of machine disqualification times. In contrast to [95], Ref. [96] proposed a new MILP model so that machine disqualification at the end of the schedule could be considered. They developed a CP model, and two improvement procedures for the SCH and QCH, which generates better solutions than [95]. Kao et al. considered the machine health factor (MHF), which indicates that job quality risk is modeled by the MHF function and machine processing capability [97]. They proposed two MILP formulations in the case of static and dynamic MHF separately. The MHF deteriorates based on scheduling decisions in the dynamic model. Experiments showed that incorporating MHF into scheduling decisions helps maintain a balance between productivity and quality. Pang et al. studied the     R   m       r   j   ,   d   j   ,   P M     C   max     with periodic maintenance activities considering machines will deteriorate over time [98]. They showed the problem is NP-hard and developed an iterative feature-based method. Zhang and Chen considered both machine health conditions and PM as the APC tools in the related scheduling problem [99]. They developed a VNS heuristic that integrates with a B&B algorithm for large instances.



Chung et al. studied the     P   m       r   b a t c h      ∑    C   j       with batch arrivals [100]. They applied a B&B algorithm considering several dominance properties of partial schedules and designed an iterative heuristic based on the MILP model of     P   m   | | ∈ (   C   max   /  ∑    C   j   )     that solves each arrival per stage.



Wang et al. examined the     R   m       r   j   ,   s   l k   ,   t w   j     ∈    ∑      w   j   C   j     /  ∑  e x c e e d e d   t i m e       with the limited waiting time [101]. They formulated the problem as an MINLP model and developed a GA based on multi-subpopulation parameters with a hybrid estimation of distribution (MSPHEDA). Rolim et al. studied the     R   m     r e s t r i c t i v e   d u e   d a t e   ∑     w   j   E T   j    , in which two MILP and two constructive heuristics are developed [102].



In addition, Rocholl and Mönch examined the     P   m     m o j   i t e m   , i n c o m p a t i b l e    ∑    E T   j       and     P   m     m o j   l o t   , i n c o m p a t i b l e    ∑    E T   j       with non-restrictive common due dates, which were proved as NP-hard [103]. They developed a MILP model and proved some properties of optimal schedules for each problem. A BRKGA decomposition method was also designed, which is shown to outperform simple listing scheduling and bin-packing heuristics.





4.2. Stochastic and Dynamic Scheduling


Stochastic and dynamic parallel machine scheduling problems are shown in Table A5 of Appendix B. Batch machine scheduling problems and non-batch machine scheduling problems are discussed separately.



4.2.1. Batch Machine Scheduling Problems


Since jobs arrive continuously in dynamic scheduling problems, mathematical programming methods cannot be applied directly because the system does not know how many jobs need to be scheduled. However, this issue could be tackled by limiting the time horizon of the scheduling problem and then solving it iteratively. This procedure is commonly referred as time-window decomposition or the rolling horizon (RH) method. Klemmt et al. [104] studied the     R   m       r   j   , p - b a t c h ,   i n c o m p a t i b l e     C   max   ,  ∑      w   j   C   j     ,  ∑      w   j   T   j      . They developed a time window decomposition approach where each subproblem was solved by a related MILP model. Then, a simulation model was applied to evaluate solutions, which outperform the BATC rule. Kohn and Rose [105] combined the VNS with time window decomposition for the     R   m       r   j   ,   M   j   , p - b a t c h ,   i n c o m p a t i b l e    ∑    T   j      . They indicated that the length of decomposition intervals has a large effect on the scheduling quality. Usually, small intervals generate better scheduling results. However, the trade-off between solution quality and computational complexity should be balanced for real-time scheduling in fabs. Tajan et al. developed an online model predictive control (MPC) heuristic for the     P   m       r   j   , p - b a t c h ,   i n c o m p a t i b l e    ∑    C   j       [106]. The MPC tackled the batch decision sequentially by limiting the number of job families and future job arrivals. In addition, Jia et al. studied the     P   m       r   j   , p - b a t c h ,   i n c o m p a t i b l e , r e c r c    ∑      w   j   T   j       [107]. They proposed batch-oriented and family-oriented scheduling algorithms, which are integrated into an RH strategy in a real-time scheduling simulation platform. Results showed the family-oriented algorithm outperforms the batch-oriented algorithm.



Rule-based methods have also been applied. For instance, Kim et al. [108] proposed three rule-based scheduling algorithms with or without look-ahead checks for the     P   m       r   j   ,   s   l k   , p - b a t c h    ∑    T   j      . Jia et al. studied the     P   m       r   j   , p - b a t c h ,   i n c o m p a t i b l e , r e c r c    ∑    w   j     T   j       based on a real-time closed-loop control heuristic, which uses a pull-pull-push-push strategy if the number of jobs of certain families is less than the maximum batch size, and a GA otherwise [109]. Chen et al. developed a learning-based adaptive dispatching method (LBADM) for the     P   m       r   j   , p - b a t c h ,   i n c o m p a t i b l e     F   l      ∑    w   j     T   j   ,     C   max       [110]. The LBADM includes an adaptive ACO to obtain initial solutions, a dispatching rule that considers multiple indicators, and a parameter learning method that dynamically modifies the parameters of the dispatching rule.




4.2.2. Non-Batch Machine Scheduling Problems


Hung et al. studied a photolithography rescheduling problem when new events make the original schedule unavailable [111]. The rescheduling starts with the best solution of original schedules as initial solutions that are then re-optimized by SA, GA, and TS.



Photolithography scheduling problems are studied in [112,113,114]. Ham and Cho proposed a two-stage model that includes a MILP formulation for the job-reticle-machine assignment in the first stage, and the real-time dispatching (RTD) for job sequencing in the second stage [112]. Different from fixed periodic RH methods, Zhang et al. used a variable time interval-based RH to study online scheduling for the     R   m       r   j   ,   M   j   , a u x    ∑    C   j       [113]. The variable time interval is determined by the cumulative processing time of arrival jobs. Within this RH framework, they proposed an improved imperialist competitive algorithm (ICA) and a local search method. They verified the superiority of their method through real fab applications. Kim et al. applied a Deep-Q-Network (DQN) with an action filter to solve the     P   m       r   j   ,   s   l k   ,   M   j   , a u x    ∑    T   j       [114].



Chien and Lan integrated the DQN and a hybrid GA (HGA) to solve the     R   m       r   j   ,   s   l k   , i n c o m p a t i b l e     C   max     [115]. Cao et al. studied the     R   m       r   j   ,   p   j   ,   s   l k       C   max     considering stochastic processing time depends on gamma or log-normal distribution [116]. They designed a simulation optimization approach, in which the first stage uses a GA to generate initial solutions with great potential and the second stage uses an optimal computing budget allocation (OCBA)-based simulation to accurately evaluate the solutions. Lee et al. proposed a deep Q-learning (DQL) for a     R   m       p   j   ,   s   l k   ,   M   j   ,   PM     F   l   ( ∑   s   l k   , ∑   T   j   )   [117].



In parallel machine scheduling problems, the commonly investigated processing characteristics and performance measures are similar to a single machine environment. However, depending on the machine differences, the machine dedication and PM-related constraints have also been studied. In addition, since the decisions are more involved in parallel machine settings than in single machine, researchers also focus more on designing efficient computational algorithms instead of theoretically characterizing optimal schedules.






5. Flow Shops


An m-stage flow shop comprises m machines ordered in series, where each job has to be processed by each machine in the same order. Only one machine exists at each stage in m-stage flow shops while there is more than one machine in at least one stage in hybrid flow shops as an effect of increasing stage processing capacity. In addition, some stages can be skipped by some jobs in (hybrid) flexible flow shops. In both deterministic and stochastic flow shop scheduling problems, discussions of flow shop scheduling problems will be presented followed by hybrid (flexible) flow shops. Within each class, non-reentrant flow shops will be discussed before reentrant flow shops, and flow shops with a specific number of stages will be discussed before those with a non-specific number of stages.



5.1. Deterministic Scheduling


Table A6 presents deterministic flow shop scheduling problems whose specific machine environment is also listed inside the parentheses after main process characteristics.



5.1.1. Flow Shops


Liu studied the     F   3     m o j   i t e m , l o t , b a t c h   ,   r   j   ,   a   j   ,   d   j        ∑    w   j     T   j     [118]. They designed a GA whose chromosome includes three segments so that job formation, batch formation, and job sequencing decisions can be tackled simultaneously.



Yao et al. studied the     F   2       r   j   , p - b a t c h → d i s c r e t e , B ,   ( t w   j   ) , ( i n c o m p a t i b l e )     C   max     considering a batch processing machine is followed by a discrete machine [119]. They proved that the above problem with incompatible job families, either with/without time window constraint, is NP-hard, and proposed time-symmetric EDD-FIFO heuristics (TSEDD-FIFO) whose worst-case performance ratios are no larger than 2. However, without considering incompatible families, the above problem either with/without time window constraint is polynomially solvable.



Kim and Lee studied the     F   3       t w   j 1   ,   t w   j 2       C   max    , which considers overlapping time window constraints between consecutive machines [120]. Under this constraint, jobs need to satisfy the processing time window of both machines 1 and 2 and machines 1 and 3. They modeled the problem as a MILP and developed a B&B algorithm utilizing several dominance properties on partial schedules.



Celano et al. studied the     F   m     i n c o m p a t i b l e ,   l i m i t e d   b u f f e r   c a p a c i t y ,     s   l k       C   max     in wafer probe operations [121]. Considering sequence-dependent setup times and limited buffer capacity, they developed a GA to solve the problem. Moreover, benchmark comparisons were carried out to the modified NEH [122] and the TS [123], which showed the GA performs better. Noroozi et al. studied the     F   m     p - b a t c h     F   l      ∑    E T   j     ,   C   max       [124]. A hybrid GA, hybrid SA, and improved PSO combined with adaptive learning-based evolution procedures were applied.



Refs. [125,126,127,128] investigated flow shop scheduling problems in wet-etching operations, which consist of successive chemical and water baths with no-intermediate storage (NIS), and a single robot is used to transfer wafers between baths. Wafers that are processed in chemical baths must be moved out immediately, otherwise they will become contaminated. However, wafers in water baths could have a minimum residence time. These features are known as zero-wait (ZW) and local storage (LS) constraints, respectively. Decisions in these problems include job sequencing and robot move schedule. Ref. [125] developed a MILP model, while Refs. [126,127] proposed a MILP-based decomposition method such that the job schedule and transfer schedule can be dealt with separately. Ref. [128] addressed a similar problem, in which job sequencing is tackled by an integrated exact optimization approach and a GA-based heuristic method. Nevertheless, their results have not been compared.




5.1.2. Hybrid (Flexible) Flow Shops


Wang et al. studied the     H F   2       r   j   , d i s c r e t e → p - b a t c h ,   M   j       C   max     considering discrete machines in the first stage are followed by batch machines in the second stage [129]. They developed a MILP and a reduced MILP based upon a balanced workload among machines. Heuristics such as the batch first in first out (BFIFO) rule has also been applied to large instances. Qin et al. designed dispatching rules based on genetic programming (GP) to examine the     H F   2       r   j   , p - b a t c h → d i s c r e t e ,   B ,   t w   j       C   max     [130].



Wu and Chiou [131] examined the in-line steppers scheduling problem under a new process introduction, i.e.,   H   F   c     a u x ,   l i m i t e d   b u f f e r   c a p a c i t y     C   max    . They designed a GA with four crossover operators and three mutation operators and showed the method outperforms the common rule-based heuristics. Fu et al. [132] studied a back-end scheduling problem represented as the     H F F   c       s   l k   ,   M   j   , P M , a u x , s k i p , i n c o m p a t i b l e    ∑    T   j      . They developed a two-stage deterministic scheduling system, which includes an optimizer to generate production plans based on a relaxed MILP model and a scheduler to schedule jobs based on priority rules.



Tan et al. [133] proved the     H F   2       r   j   , p - b a t c h , i n c o m p a t i b l e    ∑    w   j     T   j       is NP-hard. They developed an iterative stage-based decomposition method, where each stage was tackled by a VNS method. Experiments indicated that stage-based decomposition is superior to the time window decomposition method.



Some studies also tackled the reentrant hybrid flow shops. For example, Hekmatfar et al. studied the     H F   2       r e c r c ,   r   j   ,   s   l k       C   max    , where the first stage is a reentrant stage consisting of parallel machines [134]. A MILP model was formulated for the problem. In addition, two metaheuristics, i.e., an RKGA and a hybrid GA (HGA), and four constructive heuristics were designed. Experiments showed the HGA outperforms other methods. The     H F   c     r e c r c ,   a u x ,   s   l k     L e x     d e v i c e   s h o r t a g e ,   t h r o u g h p u t ,   m a c h i n e   u t i l i z a t i o n , C   max       is studied in [135,136]. Bard et al. [135] proposed a three-phase approach based on the GRASP that tackles multi-pass and machine changeovers separately, while Gao et al. [136] developed a decomposition method that tackles machine setups, job sequencing, and machine resets sequentially. Experiments on real instances showed [136] generate better solutions than [135]. Lin et al. studied reentrant hybrid flow shop scheduling problems considering limited inventory buffers on each workstation and a central stocker [137]. By designing a hybrid harmony search GA (HSSGA) to tackle the problem, experiments showed the manufacturing condition with both inventory buffer and stocker could improve productivity.





5.2. Stochastic and Dynamic Scheduling


Table A7 presents stochastic and dynamic flow shop scheduling problems.



5.2.1. Flow Shops


Refs. [138,139,140] considered a flow shop that consists of two sequential batch machines. Ref. [138] studied the     F   2       r   j   ,   p - b a t c h → p - b a t c h , t w   j       C   max    , in which a MILP-based heuristic that limits the number of jobs scheduled each time was developed. Refs. [139,140] investigated the     F   2       r   j   ,   p - b a t c h → p - b a t c h , t w   j   , r e c r c , i n c o m p a t i b l e     C   max    . Jia et al. [139] designed a pull-based heuristic algorithm to ensure full-batch processing, while Jia et al. [140] combined a slack-based MILP model with a periodic RH strategy to update schedules iteratively. Both methods are tested on a virtual semiconductor test line. However, their results have not been compared.



Branke et al. studied the     F   m       r   j   , a u x , r e c r c    ∑    F   j      , in which machines and operators for loading and unloading operations should be scheduled simultaneously [141]. They proposed a simulation-based genetic programming method that evaluates and selects rules based on system status. Experiments showed this method provides better solutions than benchmark rules including SPT and FCFS.




5.2.2. Hybrid (Flexible) Flow Shops


Kim et al. studied the     H F   2       r   j   , p - b a t c h ,   r e c r c , a u x    ∑    T   j       from the burn-in and its related loading/unloading operations [142]. They developed a set of job dispatching rules and loading/unloading rules for the problem.



Bang and Kim studied the     H F   4       r   j   ,   s   l k      ∑    T   j       [143]. A bottleneck-focused scheduling method was employed, in which the bottleneck station is scheduled based on a progress-based scheduling heuristic, and the upstream/downstream workstations are scheduled based on backward and forward list scheduling algorithms. Furthermore, this method was integrated into an RH framework to deal with dynamic job arrivals.



As machines’ processing times can be considerably different, Jung et al. found it difficult to define time window length in the RH framework [144]. Instead of periodic RH, they limited the number of runs of each machine and developed a MILP-based method within each period.



Dugardin et al. [145] developed a Lorenz non-dominated sorting genetic algorithm (L-NSGA) based on Lorenz dominance properties for the     H F   c       r   j   , r e c r c   #    ∑    C   j     ,   m a c h i n e   u t i l i z a t i o n    . Gong et al. proposed an opposition-based symbiotic organisms search with a catastrophe phase algorithm (OBSOS-CA) for a scheduling problem related to in-line stepper workstations [146].



Since solutions generated by metaheuristics are usually evaluated by simulation for stochastic and dynamic scheduling problems, [147,148] integrated the OCBA technique into simulation so as to reduce long simulation replications.



Instead of finding a single-sophisticated dispatching rule, Kim et al. proposed a per-machine dispatching rule learning approach that generates a specific linear dispatching rule for each machine based on the gradient evolutionary strategy [149].



In a flow shops environment, the reentrant flows and processing time windows have also been considered. When the shop environment and processing characteristics becoming more complex, we see more papers rely on simulation to model the system instead of mathematical programming.






6. Job Shops


An m-stage job shop consists of m different machines where other than flow shops each job has its own predefined processing route. Flexible job shops indicate more than one machine exists in at least one stage. Sometimes, flexible job shops with complex processing constraints are referred to as complex flexible job shops. Since most job shops from SMOs are complex flexible job shops, we omit the related shop environment of each problem. Table A8 and Table A9 present deterministic and stochastic job shop scheduling problems respectively.



6.1. Deterministic Scheduling


The shifting bottleneck heuristic (SBH) with disjunctive graph representation is an effective method for job shop scheduling problems. The main idea of SBH is to iteratively solve the most critical stage of unscheduled stages by utilizing specific subproblem solution procedures (SSPs) until all stages are scheduled [150]. The SBH has also been applied to SMOs’ scheduling problems where new adaptations were developed to tackle batch machines, auxiliary resources, and reentrant flow constraints. Jampani and Mason studied the     F J   c       r   o   , p - b a t c h , r e c r c ,   m o j   l o t      ∑      w   o   C   o       [151]. They modeled the problem as a disjunctive network flow MILP formulation that was tackled by the column generation (CG) method. Experiments on the mini-fab model showed the CG method provides a computational advantage, especially in the case of equal job releasing times. Knopp et al. examined a resource-dependent flexible job shop scheduling problem, i.e., the     F J   c       r   j   , a u x , r e c r c     C   max     [152]. They combined the disjunctive graph representation with route graphs to model resource dependencies. Then, they utilized a constructive heuristic to solve SSPs, and applied an SA to improve initial solutions. Knopp et al. studied the     F J   c       r   j   ,   s   l k   , p - b a t c h , B ,   r e c r c     f   j       C   j       based on a batch-oblivious conjunctive graph that encodes batch decisions into edge weights [153]. They used a GRASP to tackle the resequencing and reassigning decisions, which were then improved by the local search and SA methods. Experiments on industrial-scale instances showed this method performs much better than rule-based methods. Tamssaouet et al. [154] generalized the method of [153] by considering both batch machines and machine processing qualifications. They integrated the disjunctive graph representation into a batch-oblivious graph and a routing graph. In addition, Yugma et al. studied a multi-criteria flexible job shop scheduling problem [155]. They used a disjunctive graph representation, in which a priority-rule-based insertion algorithm (PBIA) was used to generate initial solutions that are then improved by iterative sampling and SA algorithms.



Flexible job shop scheduling problems considering multi-resources, i.e.,     F J   c       s   l k   ,   M   j   ,   a u x     C   max     are studied in [156,157,158,159]. Ref. [156] developed a hybrid estimation of distribution algorithm (HEDA), Ref. [157] proposed a knowledge-based multi-agent evolutionary algorithm (KMEA), and Ref. [158] designed a cooperative coevolutionary invasive weed optimization (IWO) algorithm that generates machine assignment and operation sequences simultaneously. Experiments showed that IWO outperforms HEDA and KEMA in relation to solution quality and computational time. In addition, Ref. [159] designed a cuckoo search algorithm combined with reinforcement learning and surrogate modeling, which was shown to outperform KMEA. However, the results of [158,159] have not been compared.



Chou et al. [160] studied the     F J   c       s   l k   ,   M   j   , i n c o m p a t i b l e , p r e c   #     C   max   ,   T S C ,  ∑    w   j     U   j        . They proposed a multi-objective hybrid GA (MO-HGA) that hybridizes with a VND algorithm as a local search method and a TOPSIS-based technique to derive the best non-dominated solution. Chung et al. [161] studied the     F J   c       s   l k   , p r e c     F   l     m a c h i n e   u t i l i z a t i o n ,   T S C    . They proposed a GA-based framework that includes a GA optimizer to generate initial job sequences, a simulator to obtain and evaluate feasible schedules, and a genetic operator recommender to accelerate convergence by selecting preferred operators.



A related flexible job shop scheduling problem from the die attach and wire bonding operations in the semiconductor packaging line is studied in [162,163]. By introducing state, action, and reward representations based on job and machine information, Park et al. [162] proposed a Q-learning method in which each agent determines setup decisions in a decentralized manner and learns a centralized policy by sharing a neural network among agents, while Park and Park [163] designed a deep reinforcement learning (DRL) approach in which a global agent determines job–machine pair in a centralized manner.



Wu et al. [164] examined a job shop scheduling problem from diffusion operations. Based on a DP formulation, they first identified several structural properties to reduce the solution space, and then applied a GA to rapidly generate near-optimal solutions. Experiments on practical production lines indicated the method leads to improved throughput and scheduling efficiency.




6.2. Stochastic and Dynamic Scheduling


Refs. [165,166] constructed nonlinear fluctuation smoothing rules to reduce the average and standard deviation of cycle times. Ref. [165] used fuzzy c-means (FCM) and fuzzy back propagation network (FBPN) to estimate job remaining cycle time, while Ref. [166] combined the HGA with FCM and FBPN to improve estimation accuracy. Ref. [167] used classification and regression trees to predict job remaining cycle time. The method was then combined with load balancing and job emergency rate to build a relevant list scheduling method. Ref. [168] used a deep neural network (DNN) to predict shop status, based on which machine allocation in consideration of limited AMHS capacity is carried out.



Some studies proposed rules to optimize jobs’ on-time delivery. Lee and Kim studied a stepper scheduling problem based on an accumulated urgency index (AUI), which considers job delayed and advanced time as well as the WIP volume [169]. Chiang and Fu proposed an enhanced critical ratio (ECR3) rule based on job urgency and the due date extension procedure [170]. Experiments showed the ECR3 outperforms benchmark rules such as EDD and ATCSR. Yao et al. [171,172] considered multi-criteria-based rules. Ref. [171] applied the TOPSIS method to evaluate the performance of on-time delivery, mean and standard deviation of cycle time, and machine utilization. Ref. [172] developed a decentralized multi-objective method to control the workload on each workstation.



Rules for specific processing constraints have also been developed. Bard et al. [173] and Jia et al. [174] built rules to overcome frequent setups in assembly and test operations. Chung et al. [175] suggested a dedication load-based dispatching rule so that jobs could use the same machine in reentrant photolithography operations. Cui and Li [176] proposed a load balancing-based rule to distribute machine workloads.



Furthermore, Refs. [177,178] applied adaptive dispatching rules (ADR) to accommodate system status. Li et al. considered an ADR based on the due date, workload, and job occupation time [177]. The parameters of the ADR were dynamically adjusted by a backward propagation neural network (BPNN) and a PSO algorithm. In contrast to fixed performance measures, Li and Min applied the feature selection method to adapt the rule based on system information, and then used a linear regression method to adjust related parameters [178]. Lee et al. used a combination of multiple dispatching rules to schedule jobs in the photolithography and decomposition operations, in which the weights of dispatching rules are adjusted by a sequential search method [179]. Yu et al. proposed a dynamic dispatching rule based on self-organization [180].



Maintaining a pool of rules while selecting the most suitable one for each workstation based on shop status could improve system performance. Two kinds of techniques have been utilized. One is the machine learning-based selection mechanism, which relies on a set of training examples carried out beforehand. For instance, Shiue et al. developed an intelligent multi-controller that includes a simulation model to generate training data, a data preprocessing mechanism to provide feature selection, and a self-organizing map (SOM)-based rule for real-time scheduling [181]. Ma et al. used an extreme learning machine algorithm to select appropriate rules [182]. Lim et al. applied the case-based reasoning method to implicitly extract rules for new problems based on similar cases from a case-base built from previously solved problems [183]. Chan et al. used a set of features to represent shop situations and applied a machine learning model to predict the best dispatching rules in multiple online simulation runs [184]. Similarly, Shiue et al. used the reinforcement learning method to dynamically select the appropriate dispatching rules based on the current shop information [185]. The other method is simulation optimization, which combines optimization procedures elaborately within the simulation routine [186]. Chang et al. proposed a GA-based simulation optimization method, which includes an online scheduler to monitor combined rules for lot dispatching, batch dispatching, and AGV dispatching, and an offline scheduler to search for the best-combined rules [187]. Kuck et al. proposed an adaptive simulation optimization approach. The optimization procedure used a GA, whose initial solutions also consider the best solutions to the problem before system changes [188]. Ghasemi et al. developed a related simulation optimization model that consists of a learning procedure using a genetic programming (GP) metamodel and an evolutionary optimization structure embedded within ordinal optimization to solve stochastic job shop scheduling problems [189]. Lin et al. designed a learning-based grey wolf optimizer to address a stochastic flexible job shop scheduling problem. Within the method, an OCBA procedure is used to reduce simulation samples and a reinforcement learning algorithm is used to dynamically adjust the parameters of the metaheuristic [190]. Other AI-based methods, such as convolutional neural network and asynchronous advanced actor critic-based method (CNN-A3C) [191], case-based reasoning [192], and DQL [193], have also been utilized recently.



Some studies have utilized closed-loop control strategies for production release and dispatching in order to control job flows. For example, Yoon and Kim proposed a strategy that uses constant work-in-progress (CONWIP) for job releasing, based on which the operations due date was derived for job sequencing so as to reduce variations in cycle times [194]. By predicting the average queuing time of the target WIP distribution, Li et al. proposed a so-called pull virtual production lines-based effective workload control for production release and a queuing time ratio (QTR) rule for job dispatching [195]. Experiments that were carried out on the Minifab model showed the method outperforms the open-loop release policy and common dispatching rules. Moreover, to accurately reflect system workload, Singh and Mathirajan proposed a job release control method to maintain shop floor workload distributed into stages at a specific level [196]. Qiao et al. proposed a closed-loop adaptive scheduling solution that consists of production data acquisition, dynamic disturbance identification, scheduling strategy adjustment, and schedule scheme generation four phase [197].



In addition, analytical methods have been integrated into the RH framework to solve stochastic and dynamic job shop scheduling problems. For instance, Drießel and Mönch studied the     F J   c       p - b a t c h , r   j   ,   s   l k   , i n c o m p a t i b l e , r e c r c    ∑    w   j     T   j       by considering the AMHS movement [198]. They integrated the SBH into the RH decomposition framework. They decomposed the whole problem into subproblems for workstations and transport operations, which were then tackled by the VNS method separately. Guo et al. studied a similar problem based on the RH decomposition, where a classified ACO algorithm was used to solve subproblems [199]. Kopanos et al. studied a relevant problem by developing a hybrid-optimization scheduling tool, which includes iterative MILP or heuristic procedures for sub-problems identified as bottleneck toolsets [200]. Barhebwa-mushamuka et al. developed a global scheduling approach that aims at meeting product cycle time targets, based on which production quantities for each product at each operation could be derived at each scheduling horizon [201].



Furthermore, Refs. [202,203] applied event-driven schedule repair methods. Qiao et al. presented a partial repair rescheduling method, whose key is to detect a match-up point so that the segment of the original schedule to be repaired can be determined [202]. Zhong et al. developed an operation-group-based soft scheduling approach, in which the critical scheduling decisions were preset offline while the remaining decisions were determined online during the execution of the initial soft schedule [203]. Zhong et al. designed a job-priority-based soft scheduling approach to tackle stochastic job arrival and processing times in the oxidation/diffusion operation [204]. The approach involves two layers, in which the first offline layer uses a harmony search algorithm to generate initial soft schedules while the second online layer uses rule-based heuristics to make remaining decisions. Experiments indicate results outperform the methods in [202,205].





7. Discussion and Future Research Perspectives


7.1. Current Research Progress


This survey includes more than 170 scheduling problems associated with semiconductor manufacturing processes, which appear in major academic journals and conferences. We do not claim to have documented every paper in this domain. However, this survey has covered a large percentage of the most relevant papers, based on which some observations on research progress could be traced.



First, it is noted that the average number of papers published each year stays around 13; see from Figure 1. Although there was a declining trend around 2015, the number increased subsequently, especially in recent years. Figure 2 below presents the distribution of publication places with more than three papers published. This figure indicates that SMOs’ scheduling problems are covered in a variety of journals and conferences, mostly in the fields of engineering, computer science, automation, operations research, and management science.



Second, regarding problem classification, Figure 3 presents problem types based on shop environment and problem settings. We classify related scheduling problems into deterministic and stochastic/dynamic settings. From the figure, it is found that more than 60% of the papers dealt with single-stage problems in the deterministic problem setting. Although multi-stage deterministic problems are tackled less, more papers have appeared in recent years, while more than 70% of papers tackled multi-stage problems in the stochastic/dynamic setting. This phenomenon is expected, since analytical methods such as MILP models are more applicable to single-stage scheduling problems, while simulation methods are less intractable to tackle multi-stage systems. Moreover, many studies attempted to examine rules-based methods in flow shops and job shops.



Third, through the distribution of considered operations from Figure 4, we find some SMOs’ scheduling problems have been investigated more frequently than others. This actually relates to corresponding processing characteristics from each work center, which are studied at a different rate. For example, scheduling problems from diffusion furnaces in oxidation/diffusion operations and burn-in ovens in final testing operations usually investigate batch machine scheduling issues, either with compatible or incompatible job families, and equal or unequal job release times. It could be found that more than 40% of papers study batch machine scheduling problems in the single-stage shop environment. Scheduling problems from photolithography and wafer probes usually consider how to schedule machines and auxiliary resources simultaneously. Around 50% of the papers investigate auxiliary resource constraints in non-batch parallel machine scheduling problems. In these problems, better coordination between machines and resources is required to reduce cycle time. Time windows from cleaning operations, sequence-dependent setups from ion implantation and assembly operations, and MOJ from wafer fabrication have also been investigated. Some studies integrated APC and PM requirements into related scheduling decisions, where appropriate job schedules and test/maintenance schedules should be maintained at the same time. In addition, many papers that indicated their problems are from semiconductor manufacturing but did not mention the exact operation are put in the “non-specific” category. Those papers are usually more methodology-oriented. It also means semiconductor manufacturing is serving as a rich resource for many scheduling problems.



Regarding performance measures, Figure 5 presents the percentage of examined performance measures in deterministic scheduling context. For stochastic and dynamic problem settings, the performance measures have a larger variation, e.g., throughput, cycle time, waiting time, movement time, and machine idle time, etc., which could be easily evaluated through simulation. From Figure 5, it is shown that     C   max     has attracted the most interest, which is followed by    ∑  (   w   j   )   C   j      ,    ∑    (   w   j   ) T   j       and throughput.     C   max     is used frequently, because it indicates machine utilization and relates directly to throughput and yield performance.    ∑  (   w   j   )   C   j       is important because it helps measure the WIP information on shop floors, while    ∑    (   w   j   ) T   j        relates to the on-time delivery performance. Since the increasing competition among semiconductor manufacturing companies, on-time delivery has become more important. Therefore, due date-related measures should be investigated more often. Measures such as total setup cost and    ∑    (   w   j   ) E T   j       has also been examined. Recently, [67,72,73] tried to consider the electric power cost because of the initiative of gas emission reduction, which actually relates to machine utilization rate. Moreover, numerous papers considered multiple measures in different ways. Sometimes, it is natural to consider multiple measures in related problems. For example, in addition to the above measures, the total number of machine disqualifications has been considered specifically in the APC scheduling problems, and the total number of testers used has been considered in some final testing scheduling problems. While an increasing number of papers have investigated the trade-off effect among commonly used measures recently, such as     C   max    ,    ∑  (   w   j   )   C   j       and    ∑    (   w   j   ) T   j      . Moreover, using simulation models to compare different measures has been widely applied in stochastic/dynamic scheduling problems.




7.2. Existing Solution Methods


Solution methods for machine scheduling problems can be generally classified into analytical methods, heuristics, metaheuristics, and simulation methods. This classification is not exclusive, because hybrid methods can combine multiple solution techniques from these categories together. Since methods applied to deterministic and stochastic/dynamic scheduling problems are largely different, we separate their discussions below.



7.2.1. Deterministic Scheduling Problems


MILP models have been extensively used in deterministic SMOs scheduling problems. It is natural to formulate related scheduling problems as MILP models because many binary variables are involved. On one hand, MILP models can provide optimal solutions for small-scale instances, based on which researchers may characterize optimal schedules properties and then develop effective heuristics. On the other hand, MILP models can be used to provide upper bounds for large-scale instances where optimal solutions cannot be obtained or to provide lower bounds by relaxing several constraints.



Some theoretical findings of deterministic scheduling problems are summarized in Table A10 in the Appendix C. These theoretical findings can either prove the properties of optimal schedules, provided dominance properties of partial schedules, or prove the worst-case performance of relevant heuristics. Effective lower bounds can be designed to evaluate the performances of proposed algorithms. For example, Chen et al. [62] constructed two lower bounds by allowing jobs to be split and processed in different batches for the     P   m       p - b a t c h , r   j   ,   a   j   , B     C   max    . Xu et al. [42] proposed a lower bound by considering the relationship between the latest job and other jobs for the   1   p - b a t c h ,     r   j   , a   j   , B     C   max    . Based on the release time and job size of the latest job and other jobs, they derived a formulation for the maximum completion time of the latest job. Chung et al. proposed a lower bound for the   1   c l e a n i n g    ∑    C   j       with irregular maintenance activities by introducing a dummy schedule [55]. It is worth noting that the designing of effective lower bounds depends mainly on the understanding of problem structures.



In addition, lower bounds have been applied in the B&B technique extensively. By integrating with upper bounds from heuristics, and fathoming criteria from partial schedules or dominance properties, B&B can converge to the optimal solution faster. Chung et al. applied the B&B to tackle the     P   m       r   b a t c h      ∑    C   j       [82]. Their proposed heuristic serves as the upper bound. Two lower bounds are used, which are based on equal batch arrival time and treating each batch individually. Multiple dominance properties serve as fathoming criteria, although experiments showed the effectiveness of those fathoming criteria is very different. Sarin et al. [49] and Kim and Lee [120] also applied the B&B to investigate the   1   m o j   i t e m      ∑    C   o       and the     F   3       t w   j 1   ,   t w   j 2       C   max    , respectively. Though the underlying solution procedures are similar, how to develop effective upper bound, lower bound, and fathoming criteria relies on the exploitation of the optimal or near-optimal solutions. Before designing new bounds, it is usually beneficial to obtain insights from similar problems in past studies. Relatively few studies have applied valid inequalities to strengthen the lower bound of related MILP formulations. One example is from Dauzère-Pérès and Mönch for the   1   p - b a t c h , i n c o m p a t i b l e ,   a   j   , B    ∑    ( w   j   )   U   j      , in which three valid inequalities were proposed based on the observations of optimal schedules including the number of batches per family and job sequencing decisions [44].



The other exact solution technique is the DP. Shao and Chen tackled the   1   p - b a t c h ,     r   j   , a   j   , B     C   max     with a hybrid method that uses an ACO to generate job sequences and a DP to form batches [40]. Yao et al. proposed DP algorithms for the     F   2       r   j   , p - b a t c h → d i s c r e t e , B ,   t w   j   , ( i n c o m p a t i b l e )     C   max     and proved their related time complexity [119]. Wu et al. developed a DP algorithm to tackle a job shop scheduling problem [164]. Moreover, the efficiency of the DP was improved based on several dominance properties that reduced the solution space. The successful applications of DP rely on the recognition of state variables and state transition equations, as well as their connections with the objective function. Though DP is useful for getting optimal solutions, it is usually applied in small-instance problems because of the large memory and computational requirement.



SMOs scheduling problems generally involve a lot of constraints, especially for the auxiliary resources and APC processing. Recently, some researchers have incorporated the CP technique to solve relevant scheduling problems [81,83,96]. The concept of CP is to satisfy constraints by using deductive reasoning to reduce the solution space. CP usually can be faster than MILP models to find feasible solutions but may take some time to obtain the optimal solution which depends on the number of constraints. CP can also be combined with other heuristics to improve search efficiency.



Metaheuristics that are capable of providing high-quality solutions within a reasonable amount of time have been widely used to solve SMO scheduling problems. Table A11 in Appendix C presents the studies that have applied related metaheuristics. Studies from both problem settings are aggregated in the same table because their application procedures are similar. In general, metaheuristics can be classified into single solution-based methods and population-based methods, based on whether a single solution or a family of solutions is generated and updated during the implementation. Single solution-based metaheuristics that are adopted in SMO scheduling problems include VNS, SA, TS, and GRASP, which are distinguished by their solution exploration procedures and updating schemes. TS maintains a tabu list that forbids solutions in the list from being visited again; SA uses the strategy that worse solutions can be selected with certain probabilities; VNS explores solution space by following the steps of shaking, local searching, and moving; GRASP uses a randomized greedy heuristic to construct new solutions. Population-based metaheuristics, including GA, MA, ACO, and PSO, have been used in SMO scheduling problems. Furthermore, population-based metaheuristics can be divided into two subclasses: those that use evolutionary computation to modify a population of solutions through recombination and mutation operators, e.g., GA and MA, and those that use swarm intelligence to exploit a simple analogy of social interaction, e.g., ACO and PSO.



From Table A11, we find GA has been used the most often, which is followed by VNS, SA, GRASP, ACO, and PSO. MA and TS are used less frequently. The performance of these metaheuristics depends on their capability to explore and exploit neighborhood solutions as well as problem characteristics. For instance, ACO is applied frequently in batch scheduling problems, as ant pheromone information can be used to find similar jobs to form a batch. Indeed, more than 50% of papers that utilized the ACO algorithm tackled batch machine scheduling problems. Although some papers seem to use the same metaheuristics, they are quite different because the definition of neighborhood structures and updating schemes are not the same. For example, although both [48,50] applied grouping GA to deal with single-machine MOJ scheduling problems, the crossover, mutation, reinsertion, and mutation procedures are largely not the same. As experiments in [50] showed, the mutation procedure of [48] for tackling   ∑     w   j   C   o     is not effective for tackling   ∑     w   j   T   o    . Hence, to escape from local optima, they designed a distinct mutation procedure. Furthermore, it is known that combining metaheuristics with local search methods provides better solutions. Some metaheuristics, e.g., GA, SA, and TS, require initial solutions, which can be generated from list scheduling methods [37,89] or dispatching rules [62,198]. For example, batch formation decisions can utilize bin packing-related heuristics, and EDD can be used for due date-related measures problems.




7.2.2. Stochastic/Dynamic Scheduling Problems


Different from deterministic scheduling problems where mathematical models are used to describe corresponding scheduling problems, simulation has been applied widely in stochastic and dynamic scheduling problems. On one hand, it is difficult for mathematical models to capture the stochastic nature and complicated processing constraints of dynamic scheduling problems. However, these issues can be tackled by simulation programs [206]. On the other hand, simulation models help evaluate different scheduling solutions. For more details on how to build simulation models for wafer fabrication processes, readers may refer to [207]. Dynamic scheduling methods can be generally classified into completely reactive scheduling, predictive-reactive scheduling, and robust proactive scheduling [208]. Most papers that are examined used completely reactive scheduling and predictive reactive scheduling.



In completely reactive scheduling, no firm schedules are generated in advance, and decisions are made locally in real-time. Priority-based rules are widely used, which select the next job with the highest priority from a set of jobs when a machine becomes available. Job priority is usually determined by job and machine attributes. Though rules that consider only local information are myopic, they have been frequently used in SMOs scheduling problems because of their relatively easy and fast implementation. No single rule consistently outperforms other rules in all situations. Therefore, to enhance the performance of rule-based methods, studies have specifically focused on the following aspects: (1) proposing new rules based on related processing conditions; (2) designing adaptive rules whose parameters can be dynamically adjusted based on system status; (3) maintaining multiple rules while selecting the best one for each machine whenever new events occur; and (4) forming a closed loop control strategy for production release and dispatching; see Table A12 in the Appendix C. Recent literature shows that rule-based methods have evolved from single rules to adaptive rules and multi-rule methods, which modify or change the rule based on system status, while job release strategies have also been integrated into dispatching rules to form a closed-loop control.



Predictive-reactive scheduling is a scheduling/rescheduling process that revises previous schedules in response to real-time events. Two important issues arise in the rescheduling process, i.e., how to reschedule and when to reschedule. Regarding how to reschedule, schedule repair and complete rescheduling can be used. Schedule repair builds a new schedule based on the simple adjustment of the previous schedule, while complete rescheduling constructs a new schedule from scratch. Schedule repair is commonly used in practice because it reduces computational complexity and preserves schedule stability. Similar to deterministic problems, metaheuristics can be utilized to obtain new schedules [116,199]. Regarding when to reschedule, periodic, event-driven, and hybrid methods can be used. In periodic rescheduling, time decomposition or the RH method is applied where rescheduling takes place at the beginning of each time interval, while in the event-driven method rescheduling takes place only when the system’s status changes. Within this framework, dynamic scheduling problems can be decomposed into multiple static scheduling problems that can be solved iteratively. The length of the schedule span determines the effectiveness of these methods. Most papers used deterministic periods, while [144] examined the RH method by limiting the number of runs for each machine, and [113] used a variable time interval-based RH strategy. In addition, few papers applied event-driven rescheduling methods, where rescheduling takes place only when unexpected events change system status [202,203,204].



In addition, simulation optimization that combines optimization procedures in simulation routines can enhance the performance of simulation models [186]. Many studies have utilized the simulation optimization method to analyze SMO scheduling problems [148,187,188,189,190]. For example, [148] developed a simulation-optimization approach for a hybrid flow shop scheduling problem, in which the approach included a simulation model for performance evaluation, an optimization strategy that used a genetic algorithm, and an acceleration technique via an optimal computing budget allocation.





7.3. Future Research Perspectives


The discussions in previous sections including solution methodologies and problem composition, i.e., shop environment, processing constraints, and performance measures, make the fact clear that most SMOs’ scheduling problems are different. To further the research efforts in this domain, it is expected that two kinds of research could be carried out, one is new-problems-oriented, and the other is new-methods-oriented.



7.3.1. New Problems Oriented


Regarding new-problems-oriented research, studies could consider the following ways to promote current research boundaries. It is known that the scheduling system in the fabs serves as the bridge between production planning and process control systems; new scheduling problems should consider the conditions and requirements of these two systems to achieve better coordination.



First, production planning and job releasing strategies need to be integrated into proposed scheduling problems. Only a few papers have tackled this issue. Lee et al. dealt with a daily production planning and scheduling problem from wafer probe operations [209]. They developed a mathematical programming model for production planning that provides planning data for a related scheduling heuristic. Xiao et al. developed an integrated model for a parallel machine capacitated lot-sizing and scheduling problem and applied Lagrangian relaxation to decompose the original problem into a lot-sizing subproblem and a machine-scheduling subproblem [210]. However, more integrated models are still lacking.



Second, in order to improve the production yields, SMOs scheduling problems should consider APC requirements, which can include machine health status, maintenance, and processing qualification. More studies have coped with the scheduling problems in consideration of APC recently [95,96,97,98,99]. Among those, Refs. [95,96] tackled the qualification run issue; Refs. [97,99] tackled the deteriorated machine health status issue; Ref. [98] considered the periodic maintenance issue. More studies are needed to continue this research stream, especially with other APC requirements such as the run-to-run control loop and wafer quality index identified in [27]. In addition, most papers tackling maintenance issues assumed static machine health status that requires machines to be stopped for maintenance after a certain amount of processing times or processed jobs. However, recent studies showed dynamic (deteriorated) machine health status is more practical in preventing yield loss [29,97].



Third, due to the increased order-mix and reduced order size, MOJ and interfering job set constraints become common situations in fabs. Currently, most MOJ scheduling problems considered the single-machine environment [47,48,49,50]. Parallel machines [52] and multi-stage shop environments [118] are less investigated. Since FOUPs usually carry the same jobs through fabs, it is desirable to study multi-stage scheduling problems with the MOJ. Moreover, interfering job sets with private performances is studied in [56]. Since the pilot line can be integrated into the production line, and customer orders can have distinct performance indicators, which compete for the same processing capability, it is interesting to investigate scheduling problems with interfering job sets and performances.



Fourth, SMOs’ scheduling problems should be integrated with the AMHS scheduling. Most studies have treated AMHS scheduling problems independently, although they are one important branch of scheduling problems in fabs. Only few papers attempted to integrate machine scheduling into AMHS scheduling [198]. Since modern fabs are fully automated, it is interesting to combine AMHS with machine scheduling to create a more coordinated scheduling system.



Concerning performance measures, on one hand, new problems could be designed by generalizing previous performances, such as extending    ∑    C   j       and    ∑    T   j       to    ∑    w   j     C   j       and    ∑      w   j   T   j      . It is worth noting that a heuristic that performs well on one performance is not necessarily going to have good results on a more generalized performance. On the other hand, performances related to sustainable development have been examined more often recently. For example, the electrical cost measure has been studied recently in [67,72,73] in diffusion operations, because of its high energy consumption. Machine scheduling under carbon reduction policies is examined in [211]. Problems could also be examined more based on multiple measures.



In addition, since unpredicted events such as machine breakdowns, rush orders, and due dates changes are common in practice, it is desirable to investigate more stochastic/dynamic SMOs scheduling problems, especially for the single-stage environment, in order to obtain more insights into the related scheduling problem. As [212] indicated, stochastic scheduling policies can give counterintuitive results when compared to their deterministic counterparts because idling machines can sometimes benefit from future information.




7.3.2. New Methodologies Oriented


Methodologies for deterministic and stochastic/dynamic SMOs scheduling problems are discussed below separately.



Regarding deterministic scheduling methods, it is first noticed that MILP formulations have been applied in both single-stage and multi-stage scheduling problems. To accelerate the convergence of optimal solutions, the B&B technique based on partial schedules or dominance properties has been frequently utilized. However, more advance exact solution techniques, such as CG [151], B&C [79], and branch and price, are seldom applied. It is thus interesting to examine the structure of MILP formulations of related scheduling problems and design advanced exact solution algorithms.



Second, metaheuristics such as GA, VNS, and ACO have been widely applied to SMOs scheduling problems. Different metaheuristics have been utilized for the same problem. For example,     P   m     p - b a t c h ,   a   j   , B , i n c o m p a t i b l e    ∑    w   j     T   j       have been tackled by the GA, ACO, and ALNS [68,69]. Sometimes, the same type of metaheuristics has tackled similar problems, even though the definition of neighborhood structure and solution updating schemes were different. For example, both Refs. [40,41] utilized the ACO to deal with the   1   p - b a t c h ,     r   j   , a   j   , B     C   max    . Hence, it is suggested that a set of benchmark problems could be established so that the performance of different methods can be compared. In addition, new studies that usually extend former studies by considering extra constraints or more generalized performance measures can be considered as special cases of former studies. However, the comparisons of methods that tackle these problems are mostly neglected.



Third, hybrid approaches that combine metaheuristics with constructive heuristics or analytical methods have been increasingly employed in recent years. The hybrid approaches help tackle SMOs’ scheduling problems with complicated constraints, as well as large systems such as flexible job shop problems. For example, Ref. [96] combined the CP with MILP-based heuristics for APC scheduling problems; Ref. [133] combined the VNS with a decomposition heuristic for a two-stage flow shop scheduling problem. Providing better initial solutions or local search methods usually enhances the performance of some metaheuristics, hence it is desirable to investigate those combinations. Moreover, the better coordination of decomposition strategy and subproblem solution procedures of the SBH methods should also be dealt with [113,144].



Regarding stochastic/dynamic scheduling methods, first, past studies are aware that single static rule-based methods may lead to a large loss. Therefore, recent papers attempted to apply adaptive rules [149,190] or multiple rules [182,184] for a single system, by utilizing machine learning-related methods for updating rule parameters or choosing new rules based on system status. Since dispatching rules are fast and easy to implement in fabs, more studies should be conducted in this stream to design more effective methods.



Second, we view that integrating the RH strategy into deterministic scheduling methods is promising for dynamic scheduling problems, which should be examined more. Simulation-based optimization can be utilized for event-driven rescheduling problems, in which simulation is used to track real-time events while optimization is used to update related schedules [186]. Some current fab simulation testbeds can be used to compare different methodologies, such as the Minifab model [150], Kayton’s model [213], and MIMAC dataset [214]. Although researchers tend to build their experimental models, it is suggested that more testbed problems should be set up.



Third, it is surprising that all papers used reactive and predictive-reactive methods for stochastic/dynamic SMOs scheduling problems. It is promising to apply robust optimization and stochastic programming methods for robust proactive scheduling, at least for single-stage problems, in order to obtain more insights [207].



Fourth, given that current stochastic/dynamic SMOs scheduling papers only consider shop efficiency performance, future research should also study schedule stability performance, because frequent and vast changes to previous schedules may not be practical.



In addition, regarding the practical application of scheduling methods, practitioners may obtain some insights from the deterministic scheduling algorithms, though most of them focus on the theoretical aspects and thus are hard to implement in practice. Although fabs are commonly referred as complex job shops, decomposing them based on work station or work centers makes the scheduling problems much more tractable, through which scheduling methods proposed for single machine and parallel machines could be leveraged. Recently, some scheduling methods that are proposed in the stochastic and dynamic scheduling settings have been tested in large systems. Most of them are rule-based methods, which are relatively easy to be implemented. For instance, adaptive scheduling solutions that automatically choose the most suitable dispatching rules based on system status have been used in [60,197]. The AI-based technologies, e.g., DQL and case-based reasoning, could also be leveraged to train the system and reduce computational time [191,192,193].
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Figure A1. Semiconductor manufacturing stages. 
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Figure A2. Wafer fabrication process flow (adapted from [204]). 
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	References
	Operations
	Main Characteristics
	Objectives
	Approach/Result





	[34]
	burn-in oven
	p-batch,     a   j    , B
	     C   max     
	WRB, CACB,   O     n   4      



	[36]
	burn-in oven
	p-batch,     a   j    , B
	     C   max     
	WRB, decomposition-based MILP heuristics



	[37]
	cleaning
	p-batch, 2D packing,     a   j    , B
	     C   max     
	MILP, constructive heuristics, BRKGA, HBL



	[38]
	burn-in oven
	p-batch,     a   j    , B
	   ∑   C   j     
	MILP, HMMAS,   O     t   max     n   a     n   2      



	[40]
	burn-in oven
	p-batch,      r   j    ,     a   j    , B
	     C   max     
	ACO, DP



	[41]
	burn-in oven
	p-batch,     r   j    ,     a   j    , B
	     C   max     
	MILP, WIS, FFWIS-ERT, ACO



	[42]
	burn-in oven
	p-batch,     r   j    ,     a   j    , B
	     C   max     
	job distances, FRS, MDS, UD



	[43]
	burn-in oven
	p-batch,      r   j    ,     a   j    , B
	   ∑     w   j   T   j     
	constructive heuristic, SA



	[44]
	oxidation

/diffusion
	p-batch, incompatible,     a   j    , B
	   ∑ (     w   j   ) U   j     
	MILP, lower bound, RKGA



	[45]
	non-specific
	p-batch, incompatible,     a   j    , B
	    C   max    ,   ∑   C   b    
	constructive heuristics,

NP-hard, O    m n ·   log  ⁡    n        



	[46]
	non-specific
	P-batch, aux, deterioration
	     C   max     
	VNS, structural properties
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	References
	Operations
	Main Characteristics
	Objectives
	Approach/Result





	[47]
	non-specific
	moj(lot), moj(item)
	   ∑   C   o     
	MILP, constructive heuristics, structure properties, NP-hard



	[48]
	non-specific
	moj(lot), moj(item)
	   ∑     w   j   C   o     
	GGA, RKGA



	[49]
	non-specific
	moj(item)
	   ∑   C   o     
	MILP, B&B, structural properties



	[50]
	non-specific
	moj(item), moj(lot)
	   ∑     w   j   T   o        ,   ∑     w   j   U   o     
	MILP, GGAs, NP-hard



	[52]
	non-specific
	moj(lot), incompatible, common due date
	   ∑   E T   j     
	MILP, GA, RKGA, NP-hard



	[53]
	non-specific
	s-batch,     s   k l    , APC
	  L e x ( ∑   U   j      ,     C   max    )
	MILP, structural properties, constructive heuristic, NP-hard



	[54]
	cleaning
	PM,     r   j    
	   # ( ∑     w   j   T   j        ,   ∑   C   j   )   
	MILP, DP, SSA, NP-hard



	[55]
	cleaning
	PM
	   ∑   C   j     
	MILP, heuristic, lower bound



	[56]
	non-specific
	interfering job sets
	  ∑   C   j     (  ∑     w   j   C   j    ),

    L   max     (  ∑     w   j   C   j    )
	negotiation mechanism, VNS
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	References
	Operations
	Main Characteristics (Machine Environment)
	Objectives
	Approach/Result





	[62]
	burn-in oven
	p-batch,     r   j    ,     a   j    , B
	     C   max     
	lower bounds, ERT-LPT heuristic, GA, ACO



	[63]
	burn-in oven
	p-batch,     r   j    ,     a   j    , B
	     C   max     
	MILP, DMBHs, GRLPT



	[64]
	burn-in oven
	p-batch,     r   j    ,     a   j    , B (    R   m    )
	     C   max     
	MILP, lower bound, constructive heuristics



	[65]
	burn-in oven
	p-batch,     a   j    , Bm (    R   m    )
	   ∑   w   j     T   j     
	MILP, PSO



	[66]
	non-specific
	p-batch,     a   j    , B (    R   m    )
	  # (   C   max    ,   ∑   w   j     C   j    ,   ∑   w   j     T   j    )
	LP-based heuristics, GA



	[67]
	non-specific
	p-batch,     r   j    ,     a   j    , B
	  # (   C   max    , EPC)
	MILP, PACO,   O     T   m a x     N   a   m   n   2      



	[68]
	oxidation/

diffusion
	p-batch,     a   j    , B, incompatible
	   ∑     w   j   T   j     
	ATC-BATC, ACO, VNS



	[69]
	oxidation/

diffusion
	p-batch,     a   j    , B, incompatible
	   ∑   w   j     T   j     
	MILP, GA, ACO, ALNS



	[70]
	oxidation/

diffusion
	p-batch,      a   j    , B, incompatible
	   ∑   f   j       C   j       
	BRKGA, DH



	[71]
	oxidation/

diffusion
	p-batch,     r   j    ,     a   j    , B, incompatible
	   ∑   w   j     T   j     
	MA, GA



	[72]
	oxidation/

diffusion
	p-batch,     r   j    ,      a   j    , B, incompatible
	  # ( ∑   w   j     C   j    , EPC)
	MILP,   ε  -constraint method, structural properties



	[73]
	oxidation/

diffusion
	p-batch,     r   j    ,      a   j    , B, incompatible
	  # ( ∑     w   j   T   j    , EPC)
	MILP,   ε  -constraint method, grouping GA, NSGA



	[75]
	burn-in oven
	p-batch, aux, incompatible (    R   m    )
	backorder, throughput
	MILP, LP relaxation,

greedy heuristic



	[76]
	non-specific
	p-batch,     a   j    ,      t w   j   ,     M   j    , incompatible, B, (    R   m    )
	     L e x ( C   m a x   , ∑   w   j     C   j   , ∑   T   j   )   
	VND



	[77]
	oxidation/

diffusion
	p-batch,     r   j    , prec,     a   j    , B incompatible
	   ∑   w   j     T   j     
	VNS, GRASP
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	References
	Operations
	Main Characteristics (Shop Environment)
	Objectives
	Approach/Result





	[78]
	photolithography
	aux,     M   j    ,     s   k l     (    R   m    )
	Lex(throughput, load balancing, TSC)
	multi-stage MILP-based decomposition



	[79]
	photolithography
	aux,     s   k l     (    R   m    )
	    F   l   (  load balancing, reticle expiration, TSC)
	B&C, two-phase MILP-based heuristic



	[80]
	photolithography
	    s   k l    , aux,     M   j     (    R   m    )
	  ∑   w   j     C   j    , throughput
	MA



	[81]
	lithography
	    r   j    ,     s   k l    , aux (    R   m    )
	     C   max     
	MILP, CP



	[82]
	photolithography
	aux, incompatible (P2)
	     C   max     
	MILP, heuristics, worst-case performance



	[83]
	photolithography
	aux, vehicles
	     C   max     
	CP



	[84]
	back-end operations
	      s   l k   ,   aux
	    F   l   (  throughput,   ∑   w   j     U   j    )
	MIP, GRASP



	[85]
	non-specific
	aux,     r   j    ,     s   k l     (    R   m    )
	    F   l   (   C   max    ,   ∑   U   j    )
	MILP, EDDLC



	[86]
	ion implantation
	    r   j    ,     s   k l    ,     t w   j     (    R   m    )
	Lex(throughput,     C   max    )
	MILP, hybrid TS



	[87]
	non-specific
	    s   k l    ,     M   j       (   R   m    )
	Lex(  ∑  Tj,     C   max    )
	MILP, SA



	[88]
	final testing
	recrc, aux,     s   k l     (    R   m    )
	throughput
	SARSA



	[89]
	wafer probe
	    s   k l    , aux
	Lex(TSC, testers used)
	ACO, TS, GA



	[90]
	wafer probe
	    s   k l    , aux
	Lex(TSC, testers used)
	iterated greedy heuristic



	[91]
	wafer probe
	    s   k l    , aux
	Lex(TSC, testers used)
	MILP, HAIS



	[92]
	photolithography
	    r   j    ,     s   k l    , aux (    R   m    )
	   ∑   C   j     
	MILP, constructive heuristic



	[93]
	photolithography
	    r   j    ,     s   k l    , aux, PM deterioration (    R   m    )
	Lex(total quality loss,  ∑  Tj)
	MILP



	[94]
	photolithography
	    r   j    ,     s   k l    , aux (    R   m    )
	   ∑     w   j   C   j     
	MILP, GA, VNS



	[95]
	non-specific
	incompatible,     s   k l    , APC (    R   m    )
	    F   l     ( ∑   C   j   , ∑ m a c h i n e  

  d i s q u a l i f i c a t i o n s  )
	NP-hard, MILP, SCH, QCH



	[96]
	non-specific
	incompatible,     M   j    , APC (    R   m    )
	    F   l   ( ∑   C   j    ,   ∑  m a c h i n e    

  d i s q u a l i f i c a t i o n s  )
	MILP, CP, recursive heuristic, SA



	[97]
	oxidation/

diffusion
	static/dynamic MHF,     M   j     (    R   m    )
	    F   l   (  throughput, quality risk)
	MILP



	[98]
	cleaning
	    r   j    ,     d   j    , PM (    R   m    )
	     C   max     
	NP-hard, MILP, Feature-extraction, DP



	[99]
	non-specific
	APC, PM, MHF
	    F   l   ( ∑   T   j    , quality risk)
	MILP, VNS, B&B



	[100]
	final testing
	batch arrivals
	   ∑   C   j     
	B&B, iterative heuristic



	[101]
	implantation
	    r   j    ,     s   k l    ,      t w   j     (    R   m    )
	   ∈   ∑     w   j   C   j   / ∑ e x c e e d e d   t i m e     
	MINLP, GA, MSPHEDA



	[102]
	non-specific
	Common due window (    R   m    )
	   ∑     w   j   E T   j     
	MILP, constructive heuristics



	[103]
	non-specific
	moj(item), moj(lot),     d   j    , incompatible
	   ∑   E T   j     
	MILP, structural properties, BRKGA



	[210]
	non-specific
	    r   j    ,     s   k l    , prec
	   ∑     w   j   T   j     
	ATCSR, VNS



	[211]
	non-specific
	  c a r b o n   e m i s s i o n    (    R   m    )
	    F   l   (   C   max    , production cost)
	NSGA-II



	[215]
	planarization
	s-batch, finite buffer capacity
	   ∑   C   j     
	DP, structural properties



	[216]
	final testing
	aux,     s   k l    
	     C   max     
	SA, TS, GA



	[217]
	final testing
	aux,     s   k l     (    R   m    )
	     C   max     
	MILP, GA
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	References
	Operations
	Main Characteristics

(Shop Environment)
	Objectives
	Approach/Result





	[104]
	oxidation/

diffusion
	    r   j    , p-batch, incompatible (Rm)
	    C   max    ,   ∑   w   j     C   j    ,   ∑   w   j     T   j    
	MILP, time window decomposition



	[105]
	oxidation/

diffusion
	    r   j    ,     M   j    , p-batch, incompatible (Rm)
	   ∑   T   j     
	VNS, time window decomposition



	[106]
	oxidation/

diffusion
	    r   j    , p-batch, incompatible
	   ∑   C   j     
	MILP, DP, MPC



	[107]
	photo-lithography
	p-batch, recrc, incompatible
	   ∑   w   j     T   j     
	batch-oriented and family-oriented scheduling algorithm



	[108]
	oxidation/

diffusion
	    r   j    ,     s   l k    , p-batch, incompatible
	   ∑   T   j     
	dispatching rules, look-ahead checks



	[109]
	oxidation/

diffusion
	    r   j    , p-batch, incompatible, recrc
	   ∑   w   j     T   j     
	real-time closed loop control



	[110]
	oxidation/

diffusion
	    r   j   ,   p-batch, incompatible
	     F   l     ∑   w   j     T   j   ,     C   m a x       
	LBADM, adaptive dispatching rule



	[111]
	photo-lithography
	aux,     M   j    ,     s   k l     (Rm)
	     F   l   (   C   max   ,   L   max   ,   

   T S C )   
	SA, TS, GA



	[112]
	photo-lithography
	    s   l k    ,     M   j    , aux (Rm)
	    C   max    ,    ∑   C   j    , load balancing
	MILP, RTD



	[113]
	photo-lithography
	    r   j    ,     M   j   ,   aux, recrc (Rm)
	   ∑   C   j     
	improved ICA, variable time interval-based RH, local search



	[114]
	photo-lithography
	    r   j    ,     s   l k   ,       M   j   ,    aux (Rm)
	   ∑   w   j     T   j     
	DQN



	[115]
	non-specific
	    r   j    ,     s   l k   ,   incompatible (Rm)
	     C   max     
	DRL, HGA



	[116]
	non-specific
	    p   j    ,     s   l k     (Rm)
	     C   max     
	GA, OCBA



	[117]
	non-specific
	    p   j    ,     s   l k    ,     M   j   ,    PM (Rm)
	     F   l   ( ∑   s   l k   , ∑   T   j   )   
	DQL
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	References
	Operations
	Main Characteristics(Shop Environment)
	Objectives
	Approach/Result





	[118]
	non-specific
	    r   j      ,     a   j   ,   d   j    , moj (item, lot, and batch), (F3)
	   ∑   w   j     T   j     
	MILP, GA



	[119]
	oxidation/

diffusion
	    r   j   , p - b a t c h → d i s c r e t e , B  ,    incompatible ,     t w   j     (F2)
	     C   max     
	P/NP analysis, DP, TSEDD-FIFO, worst-case performance



	[120]
	non-specific
	    t w   j 1   ,   t w   j 2    , overlapping time window (F3)
	     C   max     
	MILP, dominance properties, B&B, lower bounds



	[121]
	wafer probe
	      s   l k   ,   limited buffer capacity, incompatible (Fm)
	     C   max     
	MILP, GA, TS, NEH



	[124]
	final testing
	    a   j    , p-batch (Fm)
	     F   l     ∑ E   T   j   ,   C   max       
	MILP, HGA, HSA, PSO, adaptive learning



	[125]
	wet-etch station
	NIS, ZW, LS, single robot (Fm)
	     C   max     
	MILP



	[126]
	wet-etch station
	NIS, ZW, LS, single robot

(Fm)
	     C   max     
	MILP-based decomposition



	[127]
	wet-etch station
	ZW, LS, NIS, single robot (Fm)
	     C   max     
	MILP-based decomposition and aggregation heuristic



	[128]
	wet-etch station
	      s   l k   ,   p-batch, LS, ZW, NIS, single robot (Fm)
	     C   max     
	GA



	[129]
	non-specific
	    r   j      ,   d i s c r e t e → p - b a t c h ,   M   j     (HF2)
	     C   max     
	MILP, BFIFO, local search



	[130]
	back-end operations
	    r   j   , p - b a t c h → d i s c r e t e , B    ,     t w   j     (HF2)
	     C   max     
	MILP, GP, constructive heuristic



	[131]
	photolithography
	aux, limited buffer capacity (HFc)
	     C   max     
	GA



	[132]
	back-end operations
	    s   l k   ,   M   j      ,   P M , a u x , s k i p   j o b s  , incompatible (HFFc)
	   ∑   T   j     
	MILP, two-stage heuristic



	[133]
	oxidation/

diffusion
	    r   j    , p-batch,

incompatible (HF2)
	   ∑   w   j     T   j     
	MILP, NP-hard, stage-based decomposition, VNS



	[134]
	wafer fabrication and probe
	  recrc ,     s   l k     (HF2)
	     C   max     
	MILP, RKGA, HGA, constructive heuristics



	[135]
	back-end operations
	    s   l k    , recrc, aux (HFc)
	Lex   ( device   shortages ,   throughput ,   utilization ,     C   max   )   
	partial MILP, three-phase approach, GRASP



	[136]
	back-end operations
	    s   l k    , recrc, aux (HFc)
	Lex   ( device   shortages ,   throughput ,   utilization ,     C   max   )   
	three-phase decomposition, MILP



	[137]
	non-specific
	recrc, inventory buffer, stocker (HFc)
	     F   l       C   max   ,   ∑   F   j   ,     
	HSSGA



	[218]
	wet-etch station
	recrc (HFc)
	   # ( ∑   T   j   ,   C   max   )   
	self-braking symbiotic organisms search algorithm



	[219]
	photolithography
	    r   j    , recrc, cluster tools (HFc)
	     C   max     
	MILP, constructive heuristic, GA



	[220]
	non-specific
	    t w   j   ,    s k i p   jobs (F2)
	waiting time variation
	MILP, dominance properties, constructive heuristic
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	References
	Operations
	Main Characteristics

(Machine Environment)
	Objectives
	Approach/Result





	[138]
	diffusion
	    r   j   ,   p - b a t c h → p - b a t c h , t w   j     (F2)
	     C   max     
	IP-based RTD heuristic



	[139]
	non-specific
	    r   j   ,   p - b a t c h → p - b a t c h , t w   j   ,  

  r e c r c , i n c o m p a t i b l e   (F2)
	     C   max     
	pull-based scheduling algorithm



	[141]
	non-specific
	    r   j   , a u x , r e c r c   (Fm)
	   ∑   F   j     
	simulation-based genetic programming



	[142]
	burn-in stations
	    r   j   , p - b a t c h ,   r e c r c , a u x   (HF2)
	   ∑   T   j     
	list scheduling algorithms



	[143]
	wafer probe
	    r   j   ,   s   l k     (HF4)
	   ∑   T   j     
	bottleneck-focused scheduling, progress-based scheduling, RH



	[144]
	oxidation/

diffusion
	    r   j   ,   s   l k   ,   t w   j   , p - b a t c h   (HFc)
	     F   l   ( ∑   C   j   , t i m e   

   w i n d o w   v i o l a t i o n s )   
	MILP, RH



	[145]
	wafer probe
	    r   j   , r e c r c   (HFc)
	   # ( ∑   C   j   ,   

   m a c h i n e   u t i l i z a t i o n )   
	L-NGSA, NSGA2, SPEA2, simulation



	[146]
	photolithography
	    s   l k     (HFc)
	     C   max     
	OBSOS-CA, simulation



	[147]
	assembly
	    r   j   ,   stochastic processing time (HFc)
	   ∑   w   j     F   j     
	simulation optimization, PSO, OCBA



	[148]
	back-end operations
	    r   j   ,     s   l k    , demand and supply variations (HFc)
	   ∑   w   j     F   j     
	simulation optimization, OCBA, GA



	[149]
	non-specific
	recrc (HFc)
	   ∑    C   j      ,    ∑    T   j      
	learning-based dispatching rule










 





Table A8. Deterministic job shops scheduling problems.






Table A8. Deterministic job shops scheduling problems.





	References
	Operations
	Main Characteristics
	Objectives
	Approach/Result





	[151]
	wafer fabrication
	    r   j    , moj(lot), p-batch, recrc
	   ∑   w   o     C   o     
	MIP, CG heuristic



	[152]
	oxidation

/diffusion
	     r   j   , a u x , r e c r c   
	     C   max     
	route graph, constructive heuristic, SA



	[153]
	oxidation

/diffusion
	    r   j    ,       s   l k   ,   p-batch, B, recrc
	     f   j       C   j       
	GRASP, batch-oblivious route-aware graph, SA



	[154]
	oxidation

/diffusion
	      s   l k   ,      M   j    ,      t w   j    ,p-batch, B
	  L e x ( ∑   w   j     C   j    , throughput, batch coefficient)
	batch-oblivious route-aware graph



	[155]
	oxidation

/diffusion
	    r   j    ,      M   j    ,     t w   j    ,p-batch, B, prec
	    F   l   ( t h r o u g h p u t ,   waiting time, batching coefficient  )  
	SBH, PBIA, SA



	[156]
	final testing
	      s   l k   ,        M   j   ,   aux
	     C   max     
	KMEA



	[157]
	final testing
	      s   l k   ,        M   j   ,   aux
	     C   max     
	HEDA



	[158]
	final testing
	      s   l k   ,        M   j   ,   aux
	     C   max     
	IWO



	[159]
	final testing
	      s   l k   ,        M   j   ,   aux
	     C   max     
	cuckoo search, reinforcement learning



	[160]
	assembly
	    s   l k    ,     M   j   ,   incompatible, prec
	   # (   C   max   , T S C ,   ∑   w   j   U   j   )   
	MILP, MO-HGA, VND



	[161]
	packaging
	      s   l k   ,   prec
	     F   l     m a c h i n e   u t i l i z a t i o n , T S C     
	MILP, GA, simulation



	[162]
	packaging
	recrc,      s   l k    
	     C   max     
	Q-learning



	[163]
	packaging
	recrc,      s   l k    
	     C   max     
	DRL



	[164]
	oxidation

/diffusion
	p-batch, recrc,      r   j    ,      d   j    ,     t w   j    , B
	throughput
	DP, GA



	[205]
	non-specific
	    s   l k    , prec
	     C   max     
	hybrid PSO, GA
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	References
	Operations
	Main Characteristics
	Objectives
	Approach/Result





	[165]
	non-specific
	stochastic processing time
	mean and standard deviation of cycle time
	FCM, FBPN, nonlinear fluctuation smoothing rule



	[166]
	wafer fabrication
	stochastic processing time
	mean and standard deviation of cycle time
	nonlinear fluctuation smoothing rule, GA, FBNP



	[167]
	wafer fabrication
	p-batch
	cycle time, machine utilization, on-time delivery, throughput
	dispatching rule



	[168]
	wafer fabrication
	limited AMHS capacity
	utilization, throughput
	DNN



	[169]
	photolitho-graphy
	demand variation
	order fill rate, inventory, shortage, cycle time
	AUI rule



	[170]
	wafer fabrication
	    r   j    ,     s   l k    , p-batch, recrc, machine breakdown
	on-time delivery rate,

mean tardiness,     L   max    
	ECR3 rule



	[171]
	wafer fabrication
	dynamic job arrivals and line balance information
	on-time delivery, mean and standard deviation of cycle time, machine utilization
	multi-objective dispatching rule, TOPSIS



	[172]
	wafer fabrication
	dynamic job arrivals and line balance information
	mean and standard deviation of cycle time, on-time delivery
	decentralized multi-objective scheduling method



	[173]
	back-end operations
	    r   j    ,     s   l k   ,   M   j    , recrc, aux
	key device shortages, number of machines used, throughput
	MILP, GRASP-based dispatching rules, simulation



	[174]
	back-end operations
	    r   j    ,     s   l k   ,   M   j    , recrc, aux
	key device shortages, number of machines used, throughput
	GRASP-based dispatching rules



	[175]
	photolitho-graphy
	    r   j    ,     M   j    , aux
	machine utilization, on-time delivery
	dedication load-based dispatching rules



	[176]
	wafer fabrication
	p-batch, recrc
	wafer movement,

utilization, throughput
	closed-loop control based on load balancing



	[177]
	wafer fabrication
	hot jobs, p-batch
	WIP, bottleneck utilization
	ADR, BPNN, PSO



	[178]
	wafer fabrication
	hot jobs, p-batch
	WIP movement
	ADR, linear regression, GA



	[179]
	wafer fabrication
	p-batch, aux, recrc
	throughput, TSC
	dispatching rules



	[180]
	wafer fabrication
	      r   j   , s   l k    , etc.
	throughput, cycle time, on-time delivery rate, movement
	dynamic dispatching rule



	[181]
	wafer fabrication
	dynamic job arrivals, load balancing
	throughput, cycle time
	SOM-based multi-rules selection method



	[182]
	wafer fabrication
	    r   j    , p-batch, aux
	throughput, utilization
	extreme learning stochastic machine, multiple dispatching rules



	[183]
	assembly
	      r   j   , s   l k    , aux, recrc
	machine utilization
	case-based reasoning, GA



	[184]
	wafer fabrication
	p-batch, recrc
	throughput, cycle time
	machine learning, simulation, dispatching rules



	[185]
	wafer fabrication
	p-batch, aux, recrc
	   c y c l e   t i m e   
	reinforcement learning



	[187]
	wafer fabrication
	    r   j    , lot processing, p-batch, AMHS
	average delay, average WIP, average cycle time
	simulation optimization, GA, multiple dispatching rules



	[188]
	wafer fabrication
	    r   j    , recrc
	average cycle time
	adaptive simulation-based optimization, GA



	[189]
	non-specific
	      r   j   , s   l k    , etc.
	   c y c l e   t i m e   
	simulation optimization, genetic programming



	[190]
	non-specific
	      r   j   , s   l k    , etc.
	     C   max     
	learning-based grey wolf optimizer



	[191]
	wafer fabrication
	uncertain processing times, urgent orders etc.
	on-time delivery rate
	CNN-A3C, DRL



	[192]
	packaging
	aux, recrc etc.
	machine loss times, job waiting times
	case-based reasoning



	[193]
	wafer fabrication
	p-batch, aux, recrc etc.
	throughput
	DRL, dispatching rules



	[194]
	wafer fabrication
	    r   j    , p-batch, recrc
	mean and standard deviation of cycle time
	closed-loop control, CONWIP, operation due date rule



	[195]
	wafer fabrication
	p-batch, machine breakdown
	average and standard deviation of cycle time, WIP
	closed-loop control, production release strategy, QTR rule



	[196]
	wafer fabrication
	      r   j   , s   l k    , etc.
	average and standard deviation of cycle time, WIP, throughput
	release control



	[197]
	non-specific
	      r   j   , s   l k    , etc.
	throughput, mean cycle time, flow time, movement
	closed-loop adaptive scheduling



	[198]
	wafer fabrication
	    r   j    ,     s   l k    , p-batch, recrc, incompatible, transportation
	   ∑   w   j     T   j     
	RH, SBH, VNS



	[199]
	wafer fabrication
	    r   j    , prec, recrc
	     C   max     
	RH, SBH, MILP, ACO



	[200]
	wafer fabrication
	p-batch, recrc
	   ∑   w   j     C   j     
	hybrid-optimization scheduling



	[201]
	wafer fabrication
	p-batch, aux, recrc
	   c y c l e   t i m e   
	global scheduling approach



	[202]
	wafer fabrication
	p-batch, recrc, prec
	schedule stability, machine utilization
	scheduling repair method



	[203]
	wafer fabrication
	uncertain processing time, machine breakdown
	cycle time
	operation-group-based soft scheduling approach



	[204]
	oxidation/

diffusion
	p-batch,     r   j    ,      p   j    
	   ∑   C   j     
	job-priority based soft scheduling



	[221]
	wafer fabrication
	lot merging and splitting
	  ∑   T   j    , cycle time, throughput
	listing scheduling



	[222]
	wafer fabrication
	    r   j    , recrc
	operational due date
	two-dimensional dispatching rule, local search, simulation
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Table A10. Theoretical findings for some deterministic scheduling problems.
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Shop Environment

	
Reference

	
Problems

	
Theoretical Properties






	
Single machine

	
[34]

	
       1   p - b a t c h ,   a   j   , B   C   max     

	
Batch jobs with similar processing time, WRB with   O     n   4       complexity >> the BFLPT




	
[41]

	
   1   p - b a t c h ,     r   j   , a   j   , B     C   max     

	
Minimize Cmax is equivalent to minimizing the WIS




	
[42]

	
   1   p - b a t c h ,     r   j   , a   j   , B     C   max     

	
Batch jobs with close processing and release times if there is residual capacity




	
[44]

	
   1   p - b a t c h , i n c o m p a t i b l e ,   a   j   , B    ∑    ( w   j   )   U   j       

	
Optimal schedule inidicates all on-time jobs are processed before tardy jobs




	
[47]

	
  1   m o j   i t e m      ∑    C   o      ,   1   m o j   l o t      ∑    C   o      

	
Optimal schedules are proved




	
[48]

	
  1   m o j   i t e m      ∑      w   o   C   o      ,   1   m o j   l o t      ∑      w   o   C   o      

	
Optimal job sequencing decisions are proved for both cases




	
[49]

	
   1   m o j   i t e m      ∑    C   o       

	
B&B with strutural properties of smaller lot first sequencing




	
[53]

	
   1     s   k l   , A P C    ∑  L e x     C   max   ,   U   j         

	
Optimal schedule for the two job-family case is proved




	
[55]

	
   1   c l e a n i n g    ∑    C   j       

	
Lower bound based on a dummy schdule considering jobs and contamination sequencing




	
Parallel machines

	
[62]

	
     P   m       p - b a t c h , r   j   ,   a   j   , B     C   max     

	
Lower bounds based on job splitting




	
[64]

	
     R   m       p - b a t c h , r   j   ,   a   j   , B     C   max     

	
Lower bound is provided




	
[82]

	
     P   2     a u x     C   max     

	
LPT-based heuristics with worst-case performance ratio of 3/2




	
[100]

	
     P   m       r   b a t c h      ∑    C   j       

	
B&B with dominance properties from partial schedules




	
[103]

	
     P   m     m o j   i t e m , l o t   , i n c o m p a t i b l e    ∑    E T   j       

	
Structure properties of optimal schedules are proved




	
Flow shops

	
[119]

	
     F   2       r   j   , p - b a t c h → d i s c r e t e ,   ( t w   j   ) , ( i n c o m p a t i b l e )     C   max     

	
Optimal schedules when not considering incompatiable jobs, and heuristics with worst-case performance less than 2 is provided




	
[120]

	
     F   3       t w   j 1   ,   t w   j 2       C   max     

	
Dominance properties based on partial schedules are provided




	
[220]

	
     F   2       t w   j   , s k i p   j o b s   w a i t i n g   t i m e   v a r i a t i o n   

	
Dominance properties based on partial schedules are provided











 





Table A11. Studies of applying relevant metaheuristics (both problem settings).
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	Metaheuristics
	References





	Variable neighborhood search (VNS)
	[46,56,68,77,87,94,99,105,133,198,210]



	Simulated annealing (SA)
	[96,111,124,152,153,155,216]



	Tabu search (TS)
	[86,89]



	Greedy randomized adaptive search procedure (GRASP)
	[77,84,107,135,153,173]



	Genetic algorithms (GA)
	[52,62,66,69,71,73,89,94,111,116,118,121,128,131,134,141,148,157,161,164,166,178,183,187,188,205,211,216,217,219]



	Memetic algorithms (MA)
	[71,80]



	Ant colony optimization (ACO)
	[40,41,62,67,68,69,89,199]



	Particle swarm optimization (PSO)
	[65,124,147,177,205]










 





Table A12. Studies of applying relevant completely reactive scheduling methods.
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	Methods
	References





	New dispatching rules
	[138,165,166,169,170,171,172,175]



	Adaptive rules
	[110,149,177,178,180,188,190,191,193]



	Maintain multiple rules
	[60,182,183,184,185]



	Closed-loop control
	[109,139,176,194,195,196,197]
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Figure 1. Number of relevant publications per year. 
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Figure 2. Distribution of publication places. 
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Figure 3. Classification of scheduling problems. 
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Figure 4. Distribution of scheduling problems from different operations. 
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Figure 5. Distribution of studied performance measures (deterministic scheduling). 
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Table 1. α, β, γ fields descriptions for relevant SMOs scheduling problems.
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   α    (Shop Environment)

	
   β    (Processing Characteristics)

	
   γ    (Performance Measures)




	
Notation

	
Description

	
Notation

	
Description

	
Notation

	
Description






	
1

	
single machine

	
p-batch

	
parallel batch

	
   ∑     ( w   j   ) C   j     

	
total (weighted) completion time




	
Pm

	
identical m parallel machines

	
s-batch

	
serial batch

	
   ∑     ( w   j   ) F   j     

	
total (weighted) flow time




	
Qm

	
uniform m parallel machines

	
incompatible

	
incompatible job families

	
   ∑     ( w   j   ) T   j     

	
total (weighted) tardiness




	
Rm

	
unrelated m parallel machines

	
aux

	
auxiliary resources

	
   ∑     ( w   j   ) U   j     

	
total (weighted) number of tardy jobs




	
Fm

	
m-machine flow shop

	
recrc

	
reentrant flows

	
   ∑     ( w   j   ) E T   j     

	
total (weighted) earliness and tardiness




	
HFc

	
c-stage hybrid flow shop

	
prec

	
process precedence

	
     L   max     

	
maximum lateness




	
HFFc

	
c-stage hybrid flexible flow shop

	
     r   j     

	
release time of job j

	
     C   max     

	
makespan




	
Jm

	
m-machine job shop

	
    a   j    , (B)

	
job size (batch capacity)

	
TSC

	
total setup time/cost




	
FJc

	
c-stage flexible job shop

	
     s   k l     

	
sequence-dependent setup times from job k to job l

	
throughput

	
total number of finished jobs




	

	

	
     M   j     

	
machine dedication

	
EPC

	
electric power cost




	

	

	
     t w   j     

	
time window

	
   ∑     f   j   ( C   j   )   

	
regular objectives











 





Table 2. Abbreviations of solving methods.
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Analytical Methods

	
Metaheuristics

	
Rule-Based Methods






	
MILP

	
Mixed Integer Linear Programming

	
VNS/

VND

	
Variable Neighborhood Search (Descent)

	
(B)ATC

	
(Batched) Apparent Tardiness Cost




	
MINLP

	
Mixed Integer Nonlinear Programming

	
(B)RKGA

	
(Biased) Random Key Genetic Algorithm

	
ATCSR

	
Apparent Tardiness Cost with Setups and Ready times




	
B&B

	
Branch and Bound

	
GA

	
Genetic Algorithm

	
FIFO

	
First In First Out




	
B&C

	
Branch and Cut

	
MA

	
Memetic Algorithm

	
FCFS

	
First Come First Serve




	
DP

	
Dynamic Programming

	
ACO

	
Ant Colony Optimization

	
ERT

	
Earliest Release Time




	
CG

	
Column Generation

	
SA

	
Simulated Annealing

	
LST

	
Latest Start Time




	
CP

	
Constraint Programming

	
TS

	
Tabu Search

	
SPT

	
Shortest Processing Time




	

	

	
PSO

	
Particle Swarm Optimization

	
LPT

	
Longest Processing Time




	

	

	
ALNS

	
Adaptive Large Neighborhood Search

	
EDD

	
Earliest Due Date




	

	

	
GRASP

	
Greedy Randomized Adaptive Search Procedure
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