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Abstract: Comparing to other modes of transportation, high-speed railway has the advantages of
energy saving, environment friendly, safety and convenience for passengers, and has been more
and more popular. However, unforeseen emergencies may disrupt the normal train operation. In
this paper, an integrated dispatch strategy (IDS) is proposed to synergistically reschedule the train
timetable and rolling stock circulation plan under single-direction disruptions. A two-objective model
is formulated, aiming at minimizing both the delay time of passengers and the operation costs of
railway companies, to reschedule the train operation efficiently and economically. An algorithm
based on Non-dominated Sorting Genetic Algorithms-II (NSGA-II) is designed to solve the model. To
accelerate the solving process, we propose a quick method to generate an assignment plan to serve
disrupted passengers, and based on the practical experiences, the algorithm acceleration strategy
(AAS) is proposed to improve the quality of initial solutions. The model and algorithm are tested on
real-world instances of the Beijing-Shanghai high-speed railway line. The results indicate that the
average minimized delay time of passengers is 6,012,386 min and the average minimized additional
operation costs (operation mileage of standby rolling stocks) are 1623 km, with a decrease of 28.5%
and 18.3%, respectively, indicating the model and algorithm are adaptable to handle single-direction
disruptions on the railway line, and AAS can further accelerate the computing speed and improve
the solutions quality. Finally, the characteristics of disrupted sections of railway lines are well studied
and analyzed.

Keywords: high-speed railway; train timetable; rolling stock circulation plan; integrated dispatch
strategy (IDS); NSGA-II; algorithm acceleration strategy (AAS)

1. Introduction

In recent years, high-speed railway (HSR) has experienced remarkable growth, emerg-
ing as a prominent transportation mode worldwide. It not only has the environmental
protection and energy-saving effects, but more importantly, the main source of HSR is
electricity rather than oil. Therefore, it greatly reduces the dependence on oil, optimizes the
energy consumption structure, reduces carbon emissions, and contributes to the sustainable
development of energy.

To ensure the safety and efficiency of HSR operation, the railway companies schedule
the train timetable and rolling stock circulation plan before operation. The train timetable
specifies the departure time and arrival time of the trains at each station along the journey,
and the rolling stock circulation plan specifies the transport tasks of the rolling stocks; that
is, trains in the timetable will be performed by which rolling stocks. Timetable ensures the
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safety and efficiency of train operation, and rolling stock circulation plan is designed for
completing the operation of the timetable with as little costs as possible.

Under normal circumstances, the trains operate according to the timetable and rolling
stock circulation plan. However, unforeseen emergencies, such as rolling stock equipment
failure, track faults, and severe weather, may disrupt train operations. In a disrupted
situation, the original timetable cannot be performed as scheduled. As the duration of
the disruption increases, more and more trains and passengers will be influenced. From
the passengers’ point of view, the operators need to arrange adjustment measures to
reschedule the timetable and rolling stock circulation plan in a short time, to minimize
the negative influences on passenger service. From the railway companies’ point of view,
some adjustment measures will increase additional operation costs, such as the growth
in operating mileage of rolling stocks, which leads to more energy consumption. Thus, it
contributes to sustainability to study rescheduling train operation with as low additional
operation costs as possible.

On this basis, the study in this paper is conducted to propose a strategy to integrally
reschedule the train timetable and rolling stock circulation plan and obtain a Pareto Front,
considering both passenger service quality and additional operation costs, so as to provide
a set of solutions for operators to handle the disruptions on railway line well. In this
paper, we propose an integrated dispatch strategy (IDS) to synergistically reschedule the
train timetable and rolling stock circulation plan under the circumstance of disruption.
IDS includes not only the adjustment measures of rescheduling the train timetable, like
cancelling trains, adjusting trains sequence, and coupling short trains, but also the measures
of rescheduling rolling stock circulation plan, like adjusting the transport tasks of rolling
stocks and operating standby rolling stocks.

1. Cancelling trains

As the duration of the disruption increases, there will be more and more trains dis-
rupted. After the disruption finishes, so many trains need to operate. However, the capacity
of the railway line is limited, and it cannot be guaranteed that all trains can be arranged.
Thus, in this case, operators should determine which trains will have to be cancelled, to
complete the remaining train services in the timetable efficiently and safely.

For passengers of the cancelled trains, they may have to take other trains or cancel
their trips, which damage the passenger service quality. For railway companies, canceling
trains can reduce the rescheduling complexity.

2. Adjusting trains sequence

As shown in Figure 1a, the gray rectangle indicates a single-direction disruption which
ends at tre, as shown by the yellow dashed line. The red, green and blue lines represent
trains 1©, 2© and 3©, respectively. Letters A−G indicate the stations on the railway line. We
suppose that station E only has one platform, which means at most one train is allowed to
stop, train 1© stops at station E, and trains 2©, 3© have to stop at station F. The transport
tasks shown by the dashed line cannot be performed, since trains are not allowed to pass
through the disrupted section during the disruption. Figure 1b shows the rescheduled
timetable that all trains operate as the original sequence after the disruption finishes. We
can see that t1 is not utilized, which damages the operation efficiency. In Figure 1c, we
adjusting the sequence of trains 1© and 2© in section E–D. Train 1© immediately departs
from station E, instead of waiting for train 2© passing through. Comparing Figure 1b,c, it
can be seen that the timetable with adjusting trains sequence uses less time to complete the
train services (T2 < T1), which can reduce the total delay time of the passengers served by
these trains.
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3. Coupling short trains

Coupling and decoupling short trains is a common operation method in many coun-
tries. In the rescheduling process, we can use the adjustment measure of coupling short
trains. As shown in Figure 2, trains 1© and 2© are two disrupted short trains, and they will
operate as shown by the blue and red dashed line without coupling. If we couple trains
1© and 2© into train 3©, less time will be taken to complete the transport task (t2 < t1),

reducing the delay time of passengers served by the train. Besides, the number of operating
trains is reduced, which improves the train operation efficiency. It is essential to determine
which trains should be coupled and decoupled according to their journey and stops.
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4. Adjusting the transport tasks of rolling stocks

As shown in Figure 3a, trains 1© and 4© are performed by rolling stock I, and trains 2©
and 3© are performed by rolling stock II. If rolling stock II cannot arrive at station A on time,
train 3©may be delayed. If we adjust the transport tasks of rolling stocks like Figure 3b,
trains 3© and 4©will operate as scheduled, which reduces the delay time of passengers.
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Figure 3. Adjusting the transport tasks of rolling stocks.

5. Operating standby rolling stocks

There are depots located near major stations. Depots are responsible for the rolling
stocks parking and maintenance. Besides, there are standby rolling stocks in depots, to deal
with the temporary transport demands.

As shown in Figure 4a, there are 2 depots near stations A and D, and we call them
depots A and D respectively. We suppose that train 1© is disrupted and cannot arrive at its
destination station on time. Generally, there are 2 standby rolling stocks operation routings
we can choose to deal with this situation. The first routing is that we can dispatch standby
rolling stock I from depot A to perform trains 4© and 7© directly, as shown in Figure 4b, and
the second routing is that we can dispatch standby rolling stock II from depot D to perform
trains 4© and 7©, and part of delayed passengers of train 1© can be served by the rolling
stock, as shown in Figure 4c. After the transport tasks finish, the standby rolling stocks
need to return to their depots. We can see that compared to rolling stock I, rolling stock II
has a longer operation mileage, which means higher operation costs, meanwhile, it serves
more delayed passengers, which decreases the delay time of passengers. Thus, it makes
great sense to operate standby rolling stocks efficiently and economically, considering there
are more depots and delayed trains in real-world operation, which means more standby
rolling stocks operation routings to choose.
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From the analysis of the above measures, we formulate a multi-objective model,
including two objectives, that are, from the passengers’ point of view, we want to minimize
the total delay time of passengers, and from the railway companies’ point of view, we
want to minimize the additional operation costs. A series of constraints are adopted to
ensure the safety and efficiency of train operation. An algorithm based on NSGA-II is
designed to solve the model and obtain a Pareto set. To accelerate the solving process, a
quick method is devised to generate an assignment plan to serve the delayed passengers
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and the Algorithm Acceleration Strategy (AAS) is proposed. The model and the algorithm
are tested on Beijing-Shanghai HSR line.

2. Literature Review

Sustainable development has been a popular research domain in recent years. Ya-
dav [1] conducted a comprehensive review of the Green Lean Six Sigma (GLSS) approach,
application status and potential benefits, and provided an avenue for future research
work. Yaser [2] reviewed the current work about lean manufacturing and industry
4.0 and proposed a conceptual framework that can guide the implementation of the
integration of lean manufacturing and industry 4.0. Malik [3] conducted a systematic
literature review, summarized various research areas, and provided insight into Industry
4.0 and environmental sustainability.

HSR is a promising topic on sustainability aspect, and there is more and more
research on HSR and sustainability. Azzouz [4] selected and validated social, economic,
and environmental factors to evaluate the sustainable performance of HSRs. Chang [5]
evaluated the sustainability of high-speed railway (HSR) construction projects in a
comprehensive manner.

The train operation rescheduling is one of the main avenues of HSR research, and it
has been extensively studied. In terms of the research scope, research on train operation
rescheduling can be divided into three aspects, which are rescheduling the train timetable,
rescheduling the rolling stock circulation plan, and co-optimization of the train timetable
and rolling stock circulation plan.

As for rescheduling the train timetable, D’Ariano [6] viewed the train scheduling
problem as a huge job shop scheduling problem with no-store constraints, providing a
structured and efficient approach to modeling the scheduling process. Corman [7] studied
train rescheduling in the situation of disturbances at a microscopic level and developed a
real-time traffic management system. Zhu [8] proposed a timetable rescheduling model
where flexible stopping (i.e., skipping stops and adding stops) and flexible short-turning
(i.e., full choice of short-turn stations) are innovatively integrated with three dispatching
measures: retiming, reordering, and cancelling trains. Louwerse [9] focused on which trains
should be operated during the disruption and determining the timetable of these trains,
considering both partial and complete railway line blockades. Kumar [10] rescheduled the
train timetable with an amalgamated fitness function including minimizing train delay,
dwell time, timetable deviation, operational cost service reliability, and the rescheduled
timetable’s feasibility is checked based on the dictionary-based checking technique. Lam-
orgese [11] studied the rescheduling problem by decomposing the problem into smaller
subproblems associated with the lines and stations. Huo [12] proposed a binary mixed-
integer programming model to reschedule the timetable in the emergent incidents based
on priority and train order entropy. Reynolds [13] introduced a model for train timetable
rescheduling that incorporates statistical methods and historical data to improve accu-
racy compared to fixed-speed timetable rescheduling models. Wang [14] formulated a
mathematical model for timetable rescheduling under train operation time constraints,
using reinforcement learning techniques to optimize the departure sequence for trains.
Veelenturf [15] developed an integer linear programming model to solve the timetable
rescheduling problem, aiming to minimize the number of canceled and delayed train
services while adhering to infrastructure and rolling stock capacity constraints.

As for rescheduling rolling stock circulation, Nielsen [16] proposed a rolling horizon
approach to reschedule rolling stock and a model was formulated to address real-time
situations and applied in the rolling horizon framework. Kroon [17] described a real-time
rolling stock rescheduling model that incorporates dynamic passenger flows. An iterative
heuristic was presented to solve the rolling stock rescheduling model with consideration of
these dynamic passenger flows. Wagenaar [18] introduced dead-heading trips and adjusted
passenger demand in the Rolling Stock Rescheduling Problem (RSRP) and formulated a
Mixed-Integer Linear Programming model to address the RSRP, taking passenger demand



Sustainability 2023, 15, 13040 6 of 31

into account more accurately. Budai [19] formulated an integer linear programming model
to address the RSRP and presented two heuristics to improve the speed and quality of
the solution. Zeng [20] proposed an integer linear programming model based on a multi-
commodity flow approach, with the objective of minimizing the difference between the
adjusted and original schedule and reducing trip cancellations caused by rolling stock or
crew shortages. The model integrated the rolling stock and crew rescheduling processes.
van der Hurk [21] studied rolling stock rescheduling in a system with passengers having
free route choice. An optimization-based algorithm was presented to minimize passenger
inconvenience by providing route advice and coordinating rolling stock rescheduling with
passenger advice through a passenger simulation model.

As for the co-optimization of the rescheduling of the timetable and rolling stock
circulation plan, there are few research focused on it. Cadarso [22] proposed an integrated
model for timetable and rolling stock rescheduling, aiming at minimizing the recovery
time, the passenger inconvenience, and the incurred system costs. Hong [23] introduced
an integrated approach for the recovery of a timetable by rescheduling train services and
rolling stock circulation and proposed a novel integer linear programming model, with the
objectives of maximizing the number of disrupted passengers arriving at their pre-planned
destinations and minimizing the total delay of all trains and the number of cancelled trains.

In terms of the models and algorithms, a series of models with different objectives are
formulated and many algorithms are adopted. Cacchiani [24] provided a comprehensive
summary of recovery models and algorithms for real-time railway disturbance and disrup-
tion management. The study encompassed various aspects of train operation rescheduling,
including real-time timetable rescheduling, rescheduling of rolling stock, and crew duties.

As for objectives of models, some research formulated models with single objective,
such as minimizing the delay of passengers [25], minimizing the maximum and average
consecutive delay [7,26], and minimizing deviation from original timetable [22,27]. Some
research weighted multiple objectives into one objective, such as minimizing the train
delays and cancellations [28–30], minimizing the additional cancelled trips the changes
to the rolling stock and crew duties [20], and minimizing headway variations, cancella-
tions, and deviation from original timetable [31]. Few research formulated multi-objective
models. Fernandez-Rodriguez [32] focused on minimizing the running time and energy
consumption of HSR trains.

By summarizing the above models, we find that most of the models mentioned above
include one objective or weight the multiple objectives into one according to the importance
of the objectives. Few research formulates multi-objective models.

As for the algorithm, many algorithms have been widely applied in the field of the
optimization of train operation rescheduling, such as Column generation algorithm [33],
Lagrange relaxation algorithm [34], Ant colony algorithm [35], Simulated annealing algo-
rithm [36], etc. Wu [37] reviewed the applications of particle swarm optimization in the
railway domain, such as [38–41]. In 2002, Deb [42] proposed NSGA-II, which can deal
with multi-objective optimization well. In recent years, NSGA-II has been widely used in
mechanical, electrical, transportation, and other fields. Martinez-Salazar [43] used NSGA-
II to solve a Transportation Location Routing Problem (TLRP). Meng [44] formulated a
multi-objective optimization model based on the fair ramp metering problem and used
NSGA-II to solve the model. Parallel multi-objective Optimization techniques are also
adopted in recent studies, to accelerate the computing speed. Wu [45,46] presented and
discussed a parallel computing scheme and examined the computing performance of par-
allel multi-objective particle swarm optimization (pMOPSO) and parallel multi-objective
genetic algorithm (pMOGA). Recently, artificial intelligence has been used to solve the train
rescheduling problem. Kumar [47] used Brownian motion weighted-based salp swarm
optimization (BMW-SSO) algorithm and Modified weight-based deep learning neural
network (MWDLNN) algorithm to solve the train rescheduling problem.
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By summarizing the above algorithms, we find that most of them mainly solve single
objective model, such as [33–36,38–40]. For multi-objective model, NSGA-II is an effective
algorithm [43,44].

1. Summarizing the literature mentioned above, we sum up the main work in train
operation rescheduling domain and conduct the analysis as follows: Most research
in train operation rescheduling domain studies the train timetable and rolling stock
circulation plan independently or through a two-stage approach. However, the
train timetable and rolling stock circulation plan are highly interrelated and have a
significant impact on each other’s performance. Thus, it will make great sense to
reschedule the train timetable and rolling stock circulation plan synergistically.

2. Most of the research on train rescheduling focuses on minimizing the delay of trains,
while few research considers the influenced passengers on these trains adequately.
When a delay occurs, passengers may take other trains in the original timetable or
standby trains. As the duration of disruption increases, more and more passengers
may cancel their trip. Thus, a delayed passenger assignment plan needs to be proposed
to serve them, to reduce the damage to passenger service quality.

3. The train operation rescheduling problem involves many optimization objectives, such
as minimizing the delay time, minimizing the number of cancelled trains, minimizing
deviation from the original timetable, etc. Some research formulates a single-objective
model, which can obtain the satisfied solution in one aspect, while few of them
considering the operation costs in rescheduling process well. Some research weights
multiple objectives to one single objective according to their importance in the model
formulating process, while there is not an acknowledged method to determine the
weighting factors, and the relationship between the objectives cannot be described
comprehensively. Thus, the operation costs need to be considered, and the objectives
of the model need to be described better.

Based on the analysis mentioned above, we sum up the gap in train operation
rescheduling. There are three main points. Firstly, few research focuses on synergisti-
cally rescheduling the train timetable and rolling stock circulation plan. Secondly, most
research does not consider the influenced passengers adequately. Thirdly, few research
takes additional operation costs into account.

Gearing towards addressing the gap mentioned above, this paper has three inno-
vations. Firstly, we propose IDS to synergistically rescheduling the train timetable and
rolling stock circulation plan. Secondly, we design quick method to generate an assignment
plan to serve influenced passengers in the rescheduling process. Thirdly, we formulate a
two-objective model and obtain a Pareto Front, considering both minimizing the delay time
of passengers and additional operation costs.

The contributions of this paper are mainly in the following aspects:

1. We propose an integrated dispatch strategy called IDS, including five adjustment
measures, which affect not only the operation time and stops of the trains but
also the transport tasks of the rolling stocks. In the rescheduling process, we use
the measures in IDS integrally, to optimize the train timetable and rolling stock
circulation plan synergistically.

2. We propose a quick method to generate an assignment plan for the influenced pas-
sengers, which will not only improve passenger service quality but also simplify the
solution process, making it more practical and feasible for real-world implementation.

3. We formulate a model including two objectives, i.e., minimizing the delay time of
passengers and the additional operation costs, which can reduce the negative influence
on passenger service and the energy consumption. The algorithm is designed based
on NSGA-II, and a Pareto Front will be outputted. Railway companies could choose
appropriate solutions according to the actual rescheduling scenario.

4. By analyzing the influence of using adjustment measures on train operation and
passenger service, we propose an algorithm acceleration strategy (AAS) to prepro-
cess the initial solution. The quality of the initial solution and the solving efficiency
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are both improved, and the overall effectiveness of the rescheduling approach can
also be enhanced.

The rest of this paper is organized as follows. In Section 3, a two-objective model is
formulated to model the train operation reschedule problem. In Section 4, we introduce
the algorithm, including the passenger assignment plan and AAS. In Section 5, based
on the disrupted conditions on Beijing-Shanghai HSR line, we present and analyze our
computational results. In Section 6, conclusions and future research are discussed.

3. Model Formulation
3.1. Problem Description

The HSR line in this paper has double tracks in each section, with one track for each
direction. When a single-direction disruption occurs in one section, trains cannot pass
through the section in the direction, until the disruption finishes. We have two objectives
which are minimizing the delay time of passengers and the additional operation costs.

Figure 5 gives an example of the problem which we deal with in this paper. There are
six stations and two depots. A disruption with the direction of station E to D occurs. Trains
running in the direction of the disruption are called upstream trains, such as trains 1©, 2©,
3©, and 4©, and trains running in the opposite direction are called downstream trains, such

as trains 5©, 6©, and 7©. Part of the upstream trains in the original timetable are disrupted,
such as trains 1© and 2©, and we call these trains disrupted trains. The set of passengers
with same origin and destination station in one train is called one passenger demand of
this train.
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As mentioned in IDS, the upstream trains ( 1©, 2©, 3©, and 4©) can be cancelled and
coupled, and their operation sequence can be adjusted. The downstream trains ( 5©, 6© and
7©) can be performed by the rolling stocks which perform the upstream trains in the original

timetable, or the standby rolling stocks from depots A and C, and if one downstream train
is not performed by any rolling stock, the train and the passenger demand served by it will
have to be cancelled. The disrupted passenger demands of upstream trains can be served
by standby rolling stocks, and the cancelled passenger demands of upstream trains can be
served by other upstream trains which depart later than them.

To ensure the safety of the train operation, some constraints must be met. Firstly, the
rolling stocks need a period to be prepared between performing two consecutive trains.
The minimum time of this period is called the minimum turn-back time. Then, for any two
adjacent trains in any section, the departure and arrival time of them, which can be called
headway, should not be less than the minimum of it, to ensure a safe distance between
the two trains. Besides, if one train stops at one station, arriving at or departing from
the station will take extra time, and we call them arrival supplement time and departure
supplement time, respectively.
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3.2. Symbol Definition

The sets, parameters, and decision variables are illustrated in Tables 1–3, respectively.

Table 1. Sets.

Symbols Definition

Ta Set of disrupted trains in original train timetable, train t ∈ Ta

Tu Set of upstream trains in original train timetable, train t ∈ Tu, Ta ∈ Tu

Td Set of downstream trains in original train timetable, train t ∈ Td

To Set of trains in the original timetable, train t ∈ Td, Tu + Td = To

Xt Set of passenger demands of train t, demand x ∈ Xt

I Set of standby rolling stocks, rolling stock i ∈ I
SEC Set of sections in the HSR line, section k ∈ SEC

J Set of stations in the HSR line, station j ∈ J

Table 2. Parameters.

Symbols Definition

AOj
t The arrival time at station j of train t in the original timetable

DOj
t The departure time at station j of train t in the original timetable

SORj
t Whether train t stops at station j in the original timetable. If yes, SORj

t = 1, else SORj
t = 0.

OSt The origin station of train t
DSt The destination station of train t
OSk The origin station of section k
DSk The destination station of section k
BOSi The origin station of standby rolling stock i
BDSi The destination station of standby rolling stock i
OSt,x The origin station of passenger demand x served by train t
DSt,x The destination station of passenger demand x served by train t
Qt,x The passenger’s number of demand x served by train t

CAPt The maximum number of passengers train t can serve in one section
CAPi The maximum number of passengers standby rolling stock i can serve in one section
TRMk Travel time for trains in section k
MILt The operation mileage of train t
DISj′

j
The distance between station j and j′

LENt Whether train t is short train, if train t is short train, LENt = 1, else LENt = 0
EXA Arrival supplement time
EXD Departure supplement time

MINST The minimum stop time for one train at one station
MAXST The maximum stop time for one train at one station
HEAD The minimum headway for railway trains
MANT Minimum turn-back time

LSTt The latest time that train t can depart from origin station
SPi The station which is nearest to the depot of the standby rolling stock i

DISOS The origin station of the disrupted section
DISDS The destination station of the disrupted section

DIT The time that the disruption starts
RET The time that the disruption finishes

M A large enough integer
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Table 3. Decision variables.

Symbols Definition

cant Binary variable, if cant = 1, train t is cancelled
bi Binary variable, if bi = 1, standby rolling stock i is operated

cpt,t′ Binary variable, if cpt,t′ = 1, train t and train t′ are coupled
set

k The sequence of train t in section k
sj

t Binary variable, if sj
t = 1, train t stops at station j

bti The time that standby rolling stock i is prepared to perform trains
arj

t The arrival time of train t at station j after rescheduling

drj
t The departure time of train t at station j after rescheduling

et′
t Binary variable, if et′

t = 1, train t′ is performed by the rolling stock which performs train t
bet

i Binary variable, if bet
i = 1, train t is performed by standby rolling stock i

xet,x
t′ Binary variable, if xet,x

t′ = 1, train t′ serve the passenger demand x which is originally served by train t

xbt,x
i

Binary variable, if xbt,x
i = 1, standby rolling stock i serve the passenger demand x which is originally

served by train t

3.3. Objective Function

1. Additional operation costs

The additional operation costs are represented by the operation mileage of the standby
rolling stocks. The minimization of additional operation costs can be expressed as:

min∑i∈I ∑t∈Td bet
i ×
(

DISSPi
OSt

+ MILt + DISDSt
SPi

)
(1)

where, DISSPi
OSt

is the distance between the origin station of train t and the depot of the

standby rolling stock i. MILt is the operation mileage of train t. DISDSt
SPi

is the distance
between the destination station of train t and the depot.

2. The delay time of passengers

The minimization of the delay time of passengers can be expressed as:

min∑ t∈To ∑ x∈Xt Qt,x × (Φb + Φe + Φc)

Φb = ∑t′∈Tb xbt,x
t′ × (ar

DSt,x
t′ − AO

DSt,x
t )

Φe = ∑t′∈To xet,x
t′ × (ar

DSt,x
t′ − AO

DSt,x
t )

Φc =
(

1−∑t′∈Tb xbt,x
t′ −∑t′∈To xet,x

t′

)
× 1440

(2)

where, only one of Φb, Φe and Φc is non-zero. If Φb is non-zero, the passenger demand
is served by standby rolling stocks; if Φe is non-zero, the passenger demand is served by
trains in the original timetable; and if Φc is non-zero, the passenger demand is not served.
For the not served demands, we assign a delay time of 1440 min.

3.4. Constraints
3.4.1. Constraints of Operating Standby Rolling Stocks

If standby rolling stock i is operated, it must perform one train, as shown in constrain (3)

∑t∈Td bet
i
= bi, ∀i ∈ I (3)

The origin and destination station of standby rolling stock i should meet the
Constraints (4) and (5).

BOSi = SPi, ∀i ∈ Ii (4)

BDSi = ∑t∈Td bet
i
×OSt, ∀i ∈ I (5)
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As for serving passengers, if one passenger demand is served by standby rolling stock i,
the origin and destination station of them should be same, as shown in Constraints (6) and (7).

xbt,x
i ×OSt,x = BOSi, ∀i ∈ I, ∀t ∈ Ta, ∀x ∈ Xt (6)

xbt,x
i × DSt,x = BDSi, ∀i ∈ I, ∀t ∈ Ta, ∀x ∈ Xt (7)

Constraint (8) ensures that passengers served by standby rolling stock i should be less
than the passenger capacity of the rolling stock.

∑t∈Ta ∑x∈Xt xbt,x
i ×Qt,x ≤ bi × CAPi, ∀i ∈ I, (8)

Constraint (9) ensures that after finishing serving passenger demands, standby rolling
stock i must be prepared for at least the minimum turn-back time before performing the
downstream train.

bti ≥ xbt,x
i × AODSt,x

t + MANT, ∀i ∈ I, ∀t ∈ Ta, ∀x ∈ Xt (9)

Since the standby rolling stocks cannot pass through the disrupted section during the
disruption, the standby rolling stocks whose depot is before the disrupted section cannot
be operated, as shown in Constraint (10).

SPi × bi ≤ DISDS, ∀i ∈ I (10)

3.4.2. Constraint of Coupling Short Trains

The decision variable cpt,t′ must satisfy constraint (11)

cpt,t′ = cpt′ ,t, ∀t, t′ ∈ Tu (11)

Constraint (12) ensures that only short trains can be coupled.

LENt × cpt,t′ = 0, ∀t, t′ ∈ Tu (12)

If two trains are coupled, the initial station and the terminal station of them must be
same, as shown in Constraints (13) and (14).

cpt,t′ × (OSt −OSt′) = 0, ∀t, t′ ∈ Tu (13)

cpt,t′ × (DSt − DSt′) = 0, ∀t, t′ ∈ Tu (14)

Constraints (15) and (16) ensure that each short train can be coupled at most one time.

∑t′∈Tu cpt,t′ ≤ 1, ∀t ∈ Tu (15)

∑t′∈Tu cpt′ ,t ≤ 1, ∀t ∈ Tu (16)

Constraint (17) ensures that one train cannot be coupled to itself.

cpt,t = 0, ∀t ∈ Tu (17)

If two short trains are coupled, they should have the same departure time, arrival time,
and stops, as shown in Constraints (18)–(20).

(1− cpt,t′)×M ≥
∣∣∣drj

t − drj
t′

∣∣∣, ∀t, t′ ∈ Tu, ∀j ∈ J (18)
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(1− cpt,t′)×M ≥
∣∣∣arj

t − arj
t′

∣∣∣, ∀t, t′ ∈ Tu, ∀j ∈ J (19)

1− cpt,t′ ≥
∣∣∣sj

t − sj
t′

∣∣∣, ∀t, t′ ∈ Tu, ∀j ∈ J (20)

where, M is a large enough integer. We can see that the constraints are nonlinear. The
Constraints (18)–(20) are transformed to linear constraints as follows:

(1− cpt,t′)×M ≥ drj
t − drj

t′ , (1− cpt,t′)×M ≥ drj
t′ − drj

t,
(1− cpt,t′)×M ≥ arj

t − arj
t′ , (1− cpt,t′)×M ≥ arj

t′ − arj
t,

1− cpt,t′ ≥ sj
t − sj

t′ , 1− cpt,t′ ≥ sj
t′ − sj

t,
∀t, t′ ∈ Tu, ∀j ∈ J

If one of the coupled trains stop at one station in the original timetable, the two trains
must stop at the station, as shown in Constraints (21)–(22).

sj
t ≥ cpt,t′ ×max

{
SORj

t, SORj
t′

}
, ∀t, t′ ∈ Tu, ∀j ∈ J (21)

sj
t′ ≥ cpt,t′ ×max

{
SORj

t, SORj
t′

}
, ∀t, t′ ∈ Tu, ∀j ∈ J (22)

3.4.3. Constrains of Cancelling Trains

Constraint (23) ensures that if one upstream train is cancelled, the rolling stock of the
train in the original circulation plan cannot perform downstream trains anymore.

∑
t′∈Td

et′
t ≤ 1− cant, ∀t ∈ Tu (23)

Constraint (24) ensures that each downstream train will be performed by standby
rolling stocks or rolling stocks which perform trains in the original timetable. Otherwise, it
will have to be cancelled.

∑i∈I bet′
i + ∑t∈Tu et′

t = 1− cant′ , ∀t′ ∈ Td (24)

If the disrupted trains which have already departed from the origin station are cancelled,
the passengers on them will have to transfer to other trains, which damages passenger service
quality seriously. Thus, these trains cannot be cancelled, as shown in Constraint (25).

(DIT − DOOSt
t )× cant ≤ 0, ∀t ∈ Ta (25)

3.4.4. Constrains of Train Operation Sequences

Trains operating in the sections should meet the constraints of headway, to ensure the
operation safety, as shown in Constraints (26) and (27).∣∣∣drOSk

t − drOSk

t′

∣∣∣≥∣∣∣set
k − set′

k

∣∣∣×HEAD, ∀t, t′ ∈ Tu, ∀k ∈ SEC (26)

∣∣∣arDSk

t − arDSk

t′

∣∣∣≥∣∣∣set
k − set′

k

∣∣∣×HEAD, ∀t, t′ ∈ Tu, ∀k ∈ SEC (27)

These two constraints are also expressed as that in any section, the departure and
arrival time difference between two adjacent trains should not be less than the minimum
headway. Let’s introduce a binary variable setrt,t′

k . If setrt,t′
k = 1, trains t and t′ are adjacent
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and train t′ operates after train t in section k. Constraints (26) and (27) can be expressed as
Constraints (28) and (29), to transform the constraints to linear ones.

setrt,t′
k × (drOSk

t′ − drOSk

t ) + (1− setrt,t′
k )×M ≥ HEAD, ∀t, t′ ∈ Tu, ∀k ∈ SEC (28)

setrt,t′
k × (arDSk

t′ − arDSk

t ) + (1− setrt,t′
k )×M ≥ HEAD, ∀t, t′ ∈ Tu, ∀k ∈ SEC (29)

set
k, set′

k and setrt,t′
k have the relationship as shown in Constraint (30).

(1− setrt,t′
k )×M ≥ set′

k − set
k − 1, ∀t, t′ ∈ Tu, ∀k ∈ SEC (30)

3.4.5. Constraints of Performing Downstream Trains

If one downstream train is performed by one standby rolling stock or one rolling stock
which performs the upstream train in the original timetable, the rolling stock should get
ready before the latest departure time of the downstream train, as shown in Constraint (31).

∑i∈I bet′
i × bti + ∑t∈Tu et′

t × (arDSt
t + MANT) ≤ LSTt′ , ∀t′ ∈ Td (31)

If one rolling stock performs one upstream train and one downstream train consecu-
tively, the destination station of the upstream train and the origin station of the downstream
train must be same, as shown in Constraint (32).

(1− et′
t )×M ≥

∣∣∣DSt −OSt′
∣∣∣, ∀t ∈ Tu, ∀t′ ∈ Td (32)

The constraint can be transformed linearly as follows:

(1− et′
t )×M ≥ DSt −OSt′ , ∀t ∈ Tu, ∀t′ ∈ Td,

(1− et′
t )×M ≥ OSt′ − DSt, ∀t ∈ Tu, ∀t′ ∈ Td

3.4.6. Constraints of Trains Serving Passengers

If one train is cancelled, no passenger demands will be served by it, as shown in
Constraint (33), where M is a large enough integer.

∑t′∈To ∑x∈Xt′ xet′ ,x
t ≤ (1− cant)×M, ∀t ∈ To (33)

For the trains which are not cancelled and disrupted, the passenger demands served by
them in the original timetable will not be served by other trains, as shown in Constraint (34).

xet,x
t ≤ 1− cant, ∀t ∈ To, t /∈ Ta (34)

In each section, the passengers served by one train cannot exceed its capacity, as shown
in Constraint (35).

∑t∈Tu ∑x∈Xt xet,x
t′ ×Qt,x × αk

t,x ≤ (1− cant′)× CAPt′ , ∀t′ ∈ Tu, ∀k ∈ SEC (35)

where, αk
t,x represents whether the passenger demand x of train t includes section k.

Constraints (36) and (37) ensure that if one passenger demand is served by train t′, the
sections which the demand passes through must be included in the operation sections of
the train.

xet,x
t′ ×OSt,x ≤ OSt′ , ∀t, t′ ∈ Tu, ∀x ∈ Xt (36)

xet,x
t′ × DSt,x ≥ DSt′ − (1− xet,x

t′ )×M, ∀t, t′ ∈ Tu, ∀x ∈ Xt (37)
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Constraint (38) ensures that if one passenger demand is served by one train, the
departure time at the origin station of the demand should not be earlier than the scheduled
time of the demand in the original timetable,

drOSt,x
t′ ≥ DO

OSt,x
t × xet,x

t′ , ∀t, t′ ∈ Tu, ∀x ∈ Xt (38)

Constraints (39) and (40) ensure if one train serves one passenger demand, the train
must stop at the origin and destination station of the demand.

sOSt,x
t′ − xet,x

t′ ≥ 0, ∀t, t′ ∈ Tu, ∀x ∈ Xt (39)

sDSt,x
t′ − xet,x

t′ ≥ 0, ∀t, t′ ∈ Tu, ∀x ∈ Xt (40)

3.4.7. Constraints of Operation Time

For each train, the departure and arrival time in each station should meet the constraint
of travel time, as shown in Constraint (41).

drOSk

t + sOSk

t × EXD + TRMk + sDSk

t × EXA ≤ arDSk

t , ∀k ∈ SEC, ∀t ∈ Tu (41)

If one train stops at a station, the stop time should not be less than the minimum stop
time or more than the maximum stop time, and if it passes through a station, the departure
time at the station should be equal to the arrival time, as shown in Constraint (42)

sj
t ×MINST ≤ drj

t − arj
t ≤ sj

t ×MAXST, ∀t ∈ Tu, ∀j ∈ J (42)

Constraint (43) ensures that no trains are allowed to operate in the disrupted section
before the disruption finishes.

drDISOS
t ≥ RET, ∀t ∈ Tu (43)

4. Algorithm

NSGA-II is an effective algorithm for multi-objective optimization. It can output a set
of solutions and has such advantages of fast solving speed, low computational complexity,
retention of elite individuals, and so on. In recent years, it has wildly used in mechanical,
electrical, transportation, and other fields. The algorithm in this paper is designed based
on NSGA-II, and in order to accelerate the solving process, based on practical experience,
an algorithm acceleration strategy (AAS) is proposed and adopted.

4.1. Conceptual Illustration

1. Pareto dominance

We suppose that xa and xb are the two solutions of the multi-objective minimization
problem with k objective functions. The solution xa can be viewed as better than xb if
Condition (44) is satisfied:{

fi(xa) ≤ fi(xb), f or all i = {1, 2, . . . , k}
fi(xa) < fi(xb), f or at least one i = {1, 2, . . . , k} (44)

where, fi(x) is the value of the ith objective function for decision vector x. In this case, we
can say that xa dominates xb, or xb is dominated by xa.

2. Non-dominated sorting

The process begins with picking up all the non-dominated individuals from the initial
population and assigning them the first rank. Then these first-ranked individuals are
removed from the original population. After that, non-dominated individuals are picked
from all the remaining individuals and assigned the second rank. This procedure continues
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until the whole population individuals are assigned different ranks. The individuals with
the first rank form the Pareto Front, as shown in Figure 6.
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3. Crowding distance

The density of the solutions in a population can be estimated by the crowding
distance. If the crowding distance of a solution is large, it can be considered in a less
crowded region, and selecting the solutions with a large crowding distance to the next
generation can ensure the population diversity. The crowding distance of ith individual
crowdi is defined as follows:

crowdi =
k

∑
j=1

f i+1
j − f i−1

j

f max
j − f min

j
(45)

where, k is the number of objective functions, f i+1
j and f i−1

j are the values of the jth objective

function for the (i + 1)th and (i− 1)th individual, respectively, and f max
j , f min

j are maximum
and minimum values of the jth objective function.

4.2. Representation Scheme

In the algorithm, for each individual, part of the decision variable is encoded into one
chromosome, including four gene fragments, as shown in Figure 7.
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Gene fragment I represents the cancelling train scheme of the trains in the original
timetable. The length of gene fragment I equals the number of the trains. The value of
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each gene in this fragment is 1 or 0, indicating the train is cancelled or not. As shown in
Figure 7a, trains 2© and 5© are cancelled.

Gene fragment II represents the operating standby rolling stocks scheme. The value of
each gene in this fragment is 1 or 0, indicating the standby rolling stock is operated or not.
As shown in Figure 7b, rolling stocks ii and v are operated.

Gene fragment III is a 0–1 matrix to represent the coupling trains scheme. If the value
is 1, the two respective trains are coupled. As shown in Figure 7c, trains 1© and 2©, trains
3© and 5© are coupled.

Gene fragment IV is a matrix to represent the train sequence in each section, in which
the rows represent the sections, and the columns represent the trains. For example, as
shown in Figure 7d, the operation sequence of train 2© in section S3 is 3. According to the
operation sequence in Figure 7d, a brief timetable can be plotted, as shown in Figure 7e. If
one train is cancelled, or does not run in one section, the respective value in the matrix is 0.

4.3. Initial Solution Generation and Infeasible Solution Adjustment

The initial gene values in gene fragments I, II, and III are generated randomly. As for
fragments IV, trains run in many sections, and the influence of adjusting train sequence
will be propagated. In most cases, generating a train operation sequence randomly cannot
obtain a good solution. In the algorithm, the train operation sequence in the original
timetable is used to generate the initial train sequence matrix.

The chromosome of some solutions may not satisfy the constraints. Therefore, each
solution chromosome needs to be examined, and the infeasible solutions should be adjusted.
The adjustment process is as follows:

1. If the value of the jth gene in fragment I is 1, which means train j is cancelled, all the
values in the row j and column j of the matrix in fragment III should adjust to 0, and
values in the column j of the matrix in fragment IV should adjust to 0, which means
train j will not be coupled, and has no operation sequence.

2. If the value of row i and column j (expressed as (i, j) hereinafter) in the matrix in
fragment III is 1, which means trains i and j are coupled, the other values in row i and
column j should be adjusted to 0, which means one train can be coupled at most one
times, and (j, i) should be adjusted to 1.

3. If (i, j) in the matrix in fragment III is 1, in the matrix in fragment IV, the values of
column i in each row should be adjusted to equal the values in column j, which means
the coupled trains have the same operation sequence.

4. Non-zero values of each row in the matrix in fragment IV should be adjusted to
continuous. Specially, the sequence of coupled trains should also be the same. For
example, if values of one row are 0, 1, 4, 2, 0, and 5, they should be adjusted to 0,
1, 3, 2, 0, and 4, which means the operation sequence of trains 2, 3, 4 and 6 in the
corresponding section are 1, 3, 2 and 4, respectively.

4.4. Decoding

The chromosomes include four gene fragments which represent cancelling train
scheme, operating standby rolling stocks scheme, coupling trains scheme, and train oper-
ation sequence. Thus, the chromosomes must be decoded, to derive the train timetable
and rolling stock circulation plan, as well as assignment plan for passengers. The decoding
process is divided into three parts.

4.4.1. Calculating Train Timetable

The gene values of the four chromosomes can be assigned to four decision variables,
which are cant, bi, cpt,t′ and set

k, respectively, as mentioned in Section 3.2. For the stop

schemes of trains (sj
t), if one train stops at one station in the original timetable, it must also

stop in the rescheduled timetable. On this basis, a rescheduled timetable for upstream
trains can be calculated, with the objective of all upstream trains finishing operation as
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early as possible. We formulate a sub-model to obtain a train timetable, and the objective
function and constraints of it can be expressed as shown in (46) and (47):

min∑t∈Tu arDSt
t , ∀t ∈ Tu (46)

s.t.



(1− cpt,t′)×M ≥
∣∣∣drj

t − drj
t′

∣∣∣, ∀t, t′ ∈ Tu, ∀j ∈ J,

(1− cpt,t′)×M ≥
∣∣∣arj

t − arj
t′

∣∣∣, ∀t, t′ ∈ Tu, ∀j ∈ J,

1− cpt,t′ ≥
∣∣∣sj

t − sj
t′

∣∣∣, ∀t, t′ ∈ Tu, ∀j ∈ J

sj
t ≥ SORj

t, ∀t ∈ Tu, ∀j ∈ J∣∣∣drOSk

t − drOSk

t′

∣∣∣≥∣∣∣set
k − set′

k

∣∣∣×HEAD, ∀t, t′ ∈ Tu, ∀k ∈ SEC∣∣∣arDSk

t − arDSk

t′

∣∣∣≥∣∣∣set
k − set′

k

∣∣∣×HEAD, ∀t, t′ ∈ Tu, ∀k ∈ SEC

drOSk

t + sOSk

t × EXD + TRMk + sDSk

t × EXA ≤ arDSk

t , ∀k ∈ SEC, ∀t ∈ Tu

sj
t ×MINST ≤ drj

t − arj
t ≤ sj

t ×MAXST, ∀t ∈ Tu, ∀j ∈ J
drDISOS

t ≥ RET, ∀t ∈ Tu

(47)

The variables and parameters are illustrated in Section 3.2. We use CPLEX to solve
the sub-model, so as to obtain a group of values of sj

t, drj
t and arj

t, and generate a new
timetable for upstream trains. In this part, the value of cant, bi, cpt,t′ , set

k, sj
t, drj

t and arj
t can

be determined.

4.4.2. Rescheduling Rolling Stock Circulation Plan

After calculation in Section 4.4.1, we can get the arrival time of all upstream trains at
the destination station, some downstream trains cannot be performed as scheduled due to
the delay. In the rescheduling process, these downstream trains can be performed by other
rolling stocks in the original circulation plan or standby rolling stocks. The rescheduling
process is as follows:

Step 1: Find all the downstream trains which cannot be performed as scheduled and
generate the set for these trains (PT).

Step 2: Judging whether the trains in PT can be performed by other rolling stocks
in the original circulation plan. We sort the trains according to their departure time at
the origin station. Judging from the earliest train, if there is at least one rolling stock
ready to perform the train before the departure time of it, make the earliest rolling stock
perform this train, then remove it from PT and judge the next train, until all trains in PT
have been judged.

Step 3: Dispatching standby rolling stocks to perform the remaining trains in PT. We
sort the remaining trains according to the number of passengers served by the trains and
make standby rolling stocks perform the trains with more passengers preferentially.

For the remaining trains in PT after the three steps, there is no rolling stock performing
them, and the passengers of them have to cancel their trip. In this part, the value of et

t′ and
bet

i can be determined, and the rolling stock circulation plan is rescheduled.

4.4.3. Generating Assignment Plan for Passengers

We design a quick method to generate an assignment plan for passengers, to serve
the influenced passengers better and simplify the solution. The assignment plan is
divided into two main parts. For the passenger demands of disrupted upstream trains,
they can be arranged to standby rolling stocks, as illustrated in steps 2–4; for the pas-
senger demands of cancelled upstream trains, they can be arranged to other trains in
the original timetable, as illustrated in steps 5–7. The passenger demands of the trains
which are not cancelled or disrupted are still served by the original trains. The steps of
the assignment plan are as follows:
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Step 1: Generate four sets, which are the set of passenger demands of disrupted
upstream trains (DS), the set of passenger demands of cancelled upstream trains (CS), the
set of operated standby rolling stocks (BS), and the set of uncancelled upstream trains (TS).
Suppose that DS, CS, BS, and TS include m, n, p, and q elements, respectively. Define ids,
ics, ibs, and its as the index of the four sets. For example, passenger demand ids is the idsth
demand in DS. Make ids = 1, ics = 1, ibs = 1, and its = 1, and go to step 2.

Step 2: Judging whether ibs = p + 1. If yes, go to step 5; if no, go to step 3.
Step 3: Judging whether ids = m + 1. If yes, make ids = 1, ibs = ibs + 1, and go to step 2; if

no, go to step 4.
Step 4: Judging whether standby rolling stock ibs can serve disrupted passenger

demand ids. If standby rolling stock ibs can serve passenger demand ids, five conditions
need to be met. (1) The origin and destination station of them need to be the same. (2) The
original departure time of demand ids should be later than the rescheduled departure time
of standby rolling stock ibs. (3) The arrival time demand ids should be earlier than the latest
arrival time of standby rolling stock ibs, so as not to delay the downstream train served by
it. (4) The number of passengers served by standby rolling stock ibs should not exceed its
capacity of it. (5) Demand ids has not been served by other standby rolling stocks yet. If yes,
assign demand ids to standby rolling stock ibs. Make ids = ids + 1 and go to step 3.

Step 5: Judging whether its = q + 1. If yes, go to step 8; if no, go to step 6.
Step 6: Judging whether ics = n + 1. If yes, make ics = 1, its = its + 1, and go to step 5; if

no, go to step 7.
Step 7: Judging whether train its can serve passenger demand ics. If train its can serve

passenger demand ics, four conditions need to be met. (1) Train its must stop at the origin
and destination station of demand ics. (2) The original departure time of demand ics should
be later than the rescheduled departure time of train its. (3) The number of passengers
served by the train should not exceed the capacity of it in any section. (4) Demand ics has
not been served by trains yet. If yes, assign demand ics to train its. Make ics = ics + 1 and go
to step 6.

Step 8: End.
The process of the assignment plan of influenced passengers is shown in Figure 8.
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4.5. Fitness Functions

There are two fitness functions in the algorithm, which are the operation mileage of
standby rolling stocks (Z1), as shown in (48), and the delay time of passengers (Z2), as
shown in (49).

Z1 = ∑i∈I ∑t∈Td bet
i ×
(

DISSPi
OSt

+ MILt + DISDSt
SPi

)
(48)

Z2 = ∑t∈To∨Tb ∑x∈Xt Qt,x × (Φb + Φe + Φc)

Φb = ∑t′∈Tb xbt,x
t′ × (ar

DSt,x
t′ − AO

DSt,x
t )

Φe = ∑t′∈To xet,x
t′ × (ar

DSt,x
t′ − AO

DSt,x
t )

Φc =
(

1−∑t′∈Tb xbt,x
t′ −∑t′∈To xet,x

t′

)
× 1440

(49)

In each iteration, after calculating the two fitness functions, the Pareto Fronts can be
obtained according to the method mentioned in Section 4.1.

4.6. Genetic Operator

There are three genetic operators, which are selection, crossover, and mutation, respec-
tively. The selection operator can select excellent individuals from the current population
and generate a new population; the crossover operator combines chromosomes from
two chosen individuals to generate a new individual; the mutation operator evolves the
chromosomes by changing the value of genes with a certain probability.

4.6.1. Selection

In the selection process, we need to select excellent individuals from the current popu-
lation and generate a new population. Firstly, non-dominated sort the current individuals
and assign different ranks to them. Then, from rank 1, judge whether all the individuals
with the rank can be added to the new population. If the number of individuals does
not exceed the population size after adding the individuals with the current rank, add
these individuals to the new population, and judge the individuals with the next rank.
Otherwise, calculate the crowding distance of the individuals with the current rank, and
add the individuals with the largest crowding distance to the population, until the number
of individuals reaches the population size.

The selection process is shown in Figure 9.
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4.6.2. Crossover

For each chromosome, we choose another chromosome from the current population
to cross with it. Each chromosome is chosen with the probability of Pc. The higher the
non-dominated sorting rank, the higher Pc. We suppose that there are n non-dominated
sorting ranks in total. Pc is obtained as follows.

Pc =
Pm

Nm
(50)

where Pm is the probability of choosing a chromosome from rank m, and Nm is the number
of individuals included in rank m. Pm can be expressed as follow.

Pm = (1− 0.6)m−1 × 0.6, ∀m < n
Pm = (1− 0.6)m−2 × 0.4, m = n

(51)

Specially, if there’s only one rank, the chosen probability of every individual is equal,
as shown in Equation (52).

Pc =
1
N

(52)

where N is the number of individuals in the current population.
Then we use the two chromosomes to generate a new chromosome. The values of the

gene in fragments I, II, and III are obtained from one of the two chromosomes at random,
and we select one train sequence matrix from the two chromosomes as the gene fragment
IV of the new chromosome. After crossover, the new chromosomes should be examined,
and the infeasible solutions should be adjusted, as mentioned in Section 4.3.

4.6.3. Mutation

The mutation probability is set to 10% in the algorithm. We respectively apply the
mutation process for each fragment.

For gene fragment I and II, we randomly select a gene and change the value of it. Since
their genes are 0–1 binary variable, the value of the genes will change from 0 to 1 or 1 to 0.

For gene fragment III, we randomly decouple two coupled trains and randomly select
two uncoupled short trains and couple them. The gene value of the decoupled trains will
change from 1 to 0, and the gene value of coupled trains will change from 0 to 1.

For gene fragment IV, we randomly select two adjacent trains in one section and make
one of the two trains overtake another one. Figure 10 shows an example of mutation. The
train sequence matrix before mutation is shown in Figure 10a, and the brief timetable
plotted according to the sequence is shown in Figure 10b. Then there is one mutation. Train

4© overtakes train 2© at section S3, as shown in Figure 10d. The sequence matrix after the
mutation is shown in Figure 10c.
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4.7. Termination Conditions

After 50 consecutive generations without new individuals being added to Pareto Front,
the algorithm terminates.

4.8. Algorithm Procedure

The algorithm process is shown in Figure 11.
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4.9. Algorithm Acceleration Strategy (AAS)

In practice, there are many experiences about using the adjustment measures included
in IDS, which are more likely to obtain better results in the rescheduling process. However,
in the algorithm, the initial solutions are generated randomly, and the quality of them
may be poor. Therefore, we propose the Algorithm Acceleration Strategy (AAS). AAS
is a strategy which can improve the quality of initial solutions based on the practical
experiences. In AAS, some adjustment measures in initial solutions are replaced by new
measures with a certain probability, including cancelling trains, coupling short trains,
and operating standby rolling stocks. According to the experiences, the new adjustment
measures may be more reasonable than the original ones. The new measures are called AAS
measures, and the probability is called AAS probability. The AAS measures for different
adjustment measures are illustrated as follows.

As for cancelling trains, according to the experiences, more passengers and more stops
may result in a longer delay time. Thus, for each cancelled train in the initial solution, the
AAS measure is that selecting another train with more passengers and stops to replace the
train to be cancelled. The rule for selecting trains is as follows. Firstly, non-dominated sort
all the uncancelled trains according to their passenger quantity and stops and assign them
different ranks. Then, randomly select one train from rank 1 to replace the cancelled train.

As for coupling short trains, according to the experiences, the more stop difference
may result in longer delay time. Thus, for each two coupled trains in the initial solution,
the AAS measure is selecting two trains with the least difference in stop scheme from all
uncoupled short trains and coupling them to replace the original coupled trains.

As for operating standby rolling stocks, according to the experiences, the number of
standby rolling stocks dispatching from each depot should be proportional to the number of
disrupted passengers at the station nearest to the depot. In other words, the more disrupted
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passengers at the station nearest the depot, the more standby rolling stocks should be
dispatched from the depot. Thus, the AAS measure is as follows. Firstly, we calculate the
number of disrupted passengers at the stations nearest to the depots. Then, keeping the
total number of operated standby rolling stocks constant, change the proportion of standby
rolling stocks dispatching from each depot to make it as close as possible to the proportion
of the disrupted passengers at the respective station nearest to the depot.

In the following research, we test whether using AAS can accelerate the solving process
and improve the quality of solutions.

5. Case Study

In this paper, we use the real-world operation data of the Beijing-Shanghai HSR line
in 2019 for analysis. Beijing-Shanghai HSR line is one of the longest railway lines in China.
There are 23 stations and 6 depots along the line. To describe the case simply, we number
each station, as shown in Figure 12. For example, Beijing South Station is called station 1.
The 6 depots locate near stations 1, 3, 6, 11, 16, and 23, and we call them depot 1, 3, 6, 11, 16,
and 23, respectively.
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Table 4 shows the parameters used in the case, and Table 5 shows the number of
standby rolling stocks allocated in each depot.

Table 4. Operation data and parameters.

Parameter Value

Upstream trains 292
Downstream trains 295

Minimum turn-back time 20 min
Departure supplement time 2 min

Arrival supplement time 3 min
Minimum headway 4 min
Maximum stop time 10 min
Minimum stop time 2 min
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Table 5. Number of standby rolling stocks.

Depot Number

1 3
3 1
6 3
11 2
16 4
23 3

5.1. Computational Results

We design a single-direction disruption from station 13 to 12, which starts at 10:00 and
lasts for 60 min. During the disruption, trains are not allowed to pass the disrupted section
in the disrupted direction.

5.1.1. Solving Model without Using AAS

Firstly, we solve the model by using NSGA-II without AAS. If no new individuals
have been added to the Pareto Front for 50 consecutive generations, the iterative process
will end. It takes 1263 s to solve the model in total, with 386 iterations. The Pareto Fronts
before and after optimization include 7 and 12 individuals respectively, and the delay time
of passengers and additional operation costs of them are shown in Table 6.

Table 6. Pareto Front before and after optimization.

Before Optimization After Optimization

No. The Delay Time of
Passengers (min)

Additional
Operation Costs (km) No. The Delay Time of

Passengers (min)
Additional

Operation Costs (km)

1 10,457,345 437 1 6,635,283 0
2 9,423,462 796 2 6,584,721 205
3 8,934,562 1575 3 6,348,169 506
4 8,245,236 1783 4 6,279,810 626
5 7,634,532 2365 5 6,124,290 912
6 7,364,132 2977 6 6,103,395 1196
7 6,823,785 3495 7 6,020,239 1638
- - - 8 5,973,819 2253
- - - 9 5,880,655 2450
- - - 10 5,506,119 2559
- - - 11 5,470,830 3165
- - - 12 5,221,298 3967

Average 8,411,865 1918 Average 6,012,386 1623

It can be seen that the solutions have been greatly improved from the initial solution,
with an average decrease of 28.5% in the delay time of passengers and 18.3% in additional
operation costs. Besides, there are more individuals in Pareto Front after iteration, which
means the diversity of the Pareto Front has increased. A set of good solutions can be
obtained in a relatively short time, indicating that the model and algorithm are feasible to
deal with the rescheduling problem under single-direction disruptions.

5.1.2. Improvement of Initial Solutions by Using AAS

AAS is a strategy to accelerate the solution by improving the initial solutions. Be-
fore the iteration process, the original adjustment measures in each initial solution are
replaced by AAS measures under a certain probability called AAS probability. We set AAS
probabilities to 30%, 60%, and 90%, and call the AAS with these probabilities AAS-30,
AAS-60, and AAS-90, respectively. AAS-0 indicates that no AAS measures are adopted,
since the probability of taking AAS measures is 0. In order to quantitatively measure the
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improvement of AAS on enhancing the quality of initial solutions, AAS-30, AAS-60, and
AAS-90 are used to deal with the initial solution, and three Pareto Fronts of improved initial
solutions can be obtained. The average delay time of passengers and additional operation
costs of the initial solutions’ Pareto Fronts before and after using AAS are shown in Table 7.

Table 7. The objectives’ values and improvement of the initial solutions by using AAS.

Average Delay Time
of Passengers

Average Additional
Operation Costs

Value(min) Improvement Value (km) Improvement

AAS-0 (not improved) 8,411,865 - 1918 -
AAS-30 7,445,634 11.5% 1617 15.7%
AAS-60 7,193,463 14.5% 1725 10.0%
AAS-90 6,987,856 17.0% 1800 6.2%

We can see that AAS can enhance the quality of the initial solution, with an average
improvement of 11.5%, 14.5%, and 17.0% in delay time of passengers and 15.7%, 10.0%,
and 6.2% in additional operation costs.

5.1.3. Solving Model with Using AAS

In order to examine the effect of AAS, we solve the model with AAS-30, AAS-60,
and AAS-90 respectively. The comparison of solving time and iteration times between
AAS-30, AAS-60, AAS-90, and AAS-0 (1263 s, 386 times, as mentioned in Section 5.1.1)
are shown in Table 8.

Table 8. Comparison of the solving time and iteration times.

Solving Time Iteration Times

Value(s) Decrease
Percentage Value Decrease

Percentage

AAS-0 (without AAS) 1263 - 386 -
AAS-30 808 36.0% 243 36.6%
AAS-60 904 28.4% 273 29.4%
AAS-90 874 30.8% 266 31.1%

We can find that comparing to solving the model without AAS, AAS can greatly
accelerate the computing speed, with a decrease of 36.0%, 28.4%, and 30.8% in solving time
and a decrease of 36.0%, 28.4%, and 30.8% in iteration times, respectively.

The Pareto Fronts of AAS-30, AAS-60, and AAS-90 include 12, 12, and 11 individuals,
respectively, and the two objectives of them, which are delay time of passengers and
additional operation costs, are shown in Table 9, and the average value of the two objectives
of AAS-0, AAS-30, AAS-60, and AAS-90 are shown in Table 10.

We can see that using AAS can improve the quality of the Pareto Front. Compared to
AAS-0, the other three Pareto Fronts have shorter average delay time of passengers, with
a decrease of 2.0%, 2.4% and 8.3%, respectively, and lower average additional operation
costs, with a decrease of 34.3%, 28.9% and 4.1%, respectively, indicating that the passenger
service quality is improved, and the standby rolling stocks are operated more economically.

Besides, we find that in the results of AAS-30, AAS-60, and AAS-90 in Table 10, as the
AAS probability increases, average delay time decreases and additional operation costs
increase, indicating that when AAS probability is higher, more standby rolling stocks tend
to be operated, and less time is delayed.
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Table 9. Pareto Fronts of using AAS with three probabilities.

AAS-30 AAS-60 AAS-90

No.
The Delay Time

of Passengers
(min)

Additional
Operation
Costs (km)

No.
The Delay Time

of Passengers
(min)

Additional
Operation
Costs (km)

No.
The Delay Time

of Passengers
(min)

Additional
Operation
Costs (km)

1 6,603,452 0 1 6,594,534 0 1 6,583,452 0
2 6,548,756 196 2 6,523,452 237 2 6,295,674 516
3 6,347,345 498 3 6,423,423 364 3 6,204,523 705
4 6,289,567 545 4 6,282,342 607 4 6,120,234 923
5 6,253,474 657 5 6,153,474 800 5 5,934,532 1434
6 6,173,453 744 6 6,092,352 996 6 5,693,452 1745
7 6,137,457 855 7 6,073,642 1103 7 5,456,345 1976
8 6,114,534 950 8 6,000,345 1352 8 4,734,352 2364
9 5,745,345 1534 9 5,712,341 1601 9 4,678,567 2390

10 5,045,634 2088 10 5,298,078 1994 10 4,537,649 2499
11 4,845,634 2287 11 4,945,342 2178 11 4,424,563 2574
12 4,594,563 2438 12 4,364,551 2617 - - -

Table 10. Comparison of the average delay time of passengers and additional operation costs.

Average Delay Time
of Passengers

Average Additional
Operation Costs

Value (min) Decrease
Percentage Value (km) Decrease

Percentage

AAS-0 (without AAS) 6,012,386 - 1623 -
AAS-30 5,891,601 2.0% 1066 34.3%
AAS-60 5,870,323 2.4% 1154 28.9%
AAS-90 5,514,849 8.3% 1556 4.1%

It should be noted that the average delay time of passengers and additional operation
costs of the individuals in the Pareto Front can only indicate the quality in general, and
it cannot show the relationship between individuals. We plot the Pareto Fronts of AAS-0,
AAS-30, AAS-60, and AAS-90, to study the individuals in the Fronts, and Figure 13 shows
the comparison of the Pareto Front of AAS-0 with the Pareto Fronts of AAS-30, AAS-60,
and AAS-90, respectively.

By analyzing Figure 13, we can find that:

1. According to the calculation, there are 9, 8, and 8 individuals in the Pareto Front of
AAS-0 dominated by Pareto Fronts of AAS-30, AAS-60, and AAS-90, respectively,
indicating that using AAS can improve the quality of the Pareto Front and obtain
better solutions.

2. Most of the dominated individuals in the Pareto Front of AAS-0 are distributed at
the top of the graph, which means these dominated individuals have high additional
operation costs, as shown by the blue diamond in Figure 13. We consider that using
AAS can more significantly improve the quality of the individuals with high additional
operation costs by operating standby rolling stocks efficiently and economically.

3. We calculate the value of ∆ (a metric to express the nonuniformity of the distribution
of individuals in the Pareto Front, and Pareto Front with larger ∆ is less uniform,
as introduced in Deb [33]). The ∆ of Pareto Fronts AAS-30, AAS-60, and AAS-90
are 0.837, 1.093, and 1.885 respectively, which means that the distribution of AAS-90
Pareto Front is more nonuniform. As shown in the green point in Figure 13, we find
that in the AAS-90 Pareto Front, there are more individuals in the upper left direction,
which means they have short delay time and high additional operation costs. So, we
think that using AAS with high probability tends to obtain more Pareto individuals
with a short delay time and high additional operation costs.
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5.2. Analyzing Disrupted Sections

For the HSR railway line, disruptions occurring in different sections lead to different
negative influences on passenger service quality, since different trains and passenger
demands are disrupted by the disruptions. Thus, it is significant to analyze the negative
influence on passengers of the disruptions occurring in different sections.
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To analyze the disrupted sections, we set a group of disruptions in every section
respectively which have the same start time and duration, then calculate the Pareto Fronts
under each disruption. We call the group of disruptions a disrupted scenario, and the
minimum delay time of passengers in each Pareto Front critical delay time under the
corresponding disruption. The critical delay time can be seen as the delay time after
optimization without limiting operation costs. The longer the critical delay time, the more
negative influence on passenger service quality. We call the section with maximum critical
delay time critical section under the disrupted scenario, where a disruption occurring
tends to result in most negative influence on passenger service.

The group of disrupted scenarios are set as follows. We use {m, n} to express the disrupted
scenario that disruptions start at time m and last for n min. The critical sections and the critical
delay time of them under different disrupted scenarios are shown in Table 11.

Table 11. Critical sections under different disrupted scenarios.

Disrupted
Scenarios

Critical
Section

Critical Delay
Time (min)

Disrupted
Scenarios

Critical
Section

Critical Delay
Time (min)

{9:00, 60 min} 16–15 5,603,453 {15:00, 60 min} 16–15 4,496,545
{9:00, 120 min} 16–15 9,898,723 {15:00, 120 min} 16–15 8,280,964
{9:00, 180 min} 23–22 14,794,582 {15:00, 180 min} 23–22 11,794,523
{11:00, 60 min} 16–15 5,378,453 {17:00, 60 min} 16–15 4,094,523

{11:00, 120 min} 16–15 9,983,423 {17:00, 120 min} 16–15 7,793,423
{11:00, 180 min} 23–22 14,082,342 {17:00, 180 min} 23–22 9,983,423
{13:00, 60 min} 16–15 4,957,394 {19:00, 60 min} 6–5 3,157,394

{13:00, 120 min} 16–15 8,885,784 {19:00, 120 min} 11–10 4,685,784
{13:00, 180 min} 16–15 13,085,739 {19:00, 180 min} 16–15 5,585,739

We can see that in most scenarios, section 16–15 is the critical section, which means
that the disruption occurring in section 16–15 tends to damage the passenger service quality
mostly. We think the reason is that there are most trains operating in section 16–15 in the
original timetable, and if a disruption occurs in the section, more trains and passengers are
disrupted, which lead to a longer delay time.

To analyze the influence on passenger service quality of disruptions in different
sections, we select the disruptions in {9:00, 60 min} scenario as an example and plot the
critical delay time of each section under the scenario, as shown in Figure 14.
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By analyzing Figure 14, we can find that:

1. Generally speaking, the disruption occurring further away from the destination station
influences more passenger demands of disrupted trains, since the trains cannot serve
the passenger demands after the disrupted section on time. However, as shown in
Figure 14, it is not the case that the further away from the destination station the
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disruption occurs, the longer the critical delay time is. We think the reason is that
the standby rolling stocks can be dispatched from the depots to serve the influenced
passenger demands of disrupted trains, which can reduce the delay time of them.
Thus, we think that operating standby rolling stocks plays an important role in
reducing the delay time of passengers in the rescheduling process.

2. Figure 14 is divided into five segments by the sections framed by the red dashed
lines (sections 23–22, 16–15, 11–10, 6–5, and 3–2), and the critical delay time of these
sections are obviously longer than the previous section. We think the reason is that
there are depots located near station 23, 16, 11, 6, and 3, as mentioned in Section 5.1,
and if disruptions occur in the framed sections, fewer standby rolling stocks can be
dispatched to serve disrupted passengers compared to the previous sections. For
example, if one disruption occurs in section 17–16, the disrupted passengers who get
on trains at stations 16–12 can be served by the standby rolling stocks from depot
16, while if the disruption occurs in section 16–15, the standby rolling stocks from
depot 16 cannot be dispatched anymore, and no standby rolling stocks can serve
these disrupted passengers, which increase the delay time of passengers. Thus, we
think that the sections next to the depot in disrupted direction should be paid more
attention to, to reduce the potential damage to passenger service quality.

3. In each segment in Figure 14, the critical delay time decrease, as the sections get closer
to the destination station, as shown by the green dashed lines which is the trend line
for each segment. We think it is because no matter the disruption occurs in which
section of the segment, the number of available standby rolling stocks is always the
same, and as getting closer to the destination station, less passenger demands of
disrupted trains are influenced.

To sum up the above analysis, we consider that operating standby rolling stocks is
significant in reducing the delay time of passengers, and the sections next to the depots in
disrupted direction should be paid more attention to, in which the disruptions occurring
tend to damage the passenger service quality more.

6. Conclusions

In this paper, we studied the train rescheduling problem under single-direction dis-
ruption. IDS, which includes five adjustment measures in practice, is used to synergistically
reschedule the train timetable and rolling stock circulation plan. In the rescheduling process,
two objectives are considered, which are minimizing the delay time of passengers, which
can reduce the damage to passenger service quality, and minimizing additional operation
costs, which can reduce energy consumption and help railway companies reschedule the
train operation economically. On this basis, a two-objective model is formulated.

Then, the algorithm based on NSGA-II is designed to solve the model, and a set of
Pareto Fronts can be outputted. Compared to weighting different kinds of objectives, the
Pareto Front can indicate the relationship between the objectives better, and it can provide
more solutions for railway companies to choose according to different situations. To
accelerate the solving process, a quick method to generate the assignment plan is proposed
to serve passengers, which simplifies the solution, and based on practical experiences, AAS
is proposed to improve initial solutions.

A real-world instance of Beijing-Shanghai HSR line is used to test our model and
algorithm. According to the computational results, after taking 1263 s to solve the model,
the average minimized delay time of passengers and additional operation costs (operation
mileage of standby rolling stocks) of the Pareto Front are 6,012,386 min and 1623 km, with
a decrease of 28.5% and 18.3%, respectively. Since a set of good solutions can be obtained in
a relatively short time, the model and algorithm are feasible to support operators to handle
the single-direction disruptions. Besides, AAS can both accelerate the computing speed
and improve the quality of solutions. Comparing to the results without AAS, in terms
of computing speed, the solving time with AAS is 31.73% lower on average; in terms of
the quality of solutions, the average delay time of passengers and additional operation
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costs decrease 4.2% and 22.43% respectively, indicating that the standby rolling stocks
are operated more economically. Then, a group of disrupted scenarios is set to analyze
the influence on passenger service quality of different disrupted sections. We find that
operating standby rolling stocks is of great significance to reduce the damage to passenger
service quality, and the sections next to the depots in disrupted direction tend to be critical
sections, which should be paid more attention to.

The research in this paper has the following limitations, and several directions for
further research are available. In terms of IDS and the model, this paper does not consider
the deployment of the standby rolling stocks, the dynamic disruption duration, and the
double-direction disruptions on railway lines and in railway stations, and further research
on these aspects will be developed. In terms of the algorithms, other multi-objective
optimization algorithms, such as MOPSO, are also widely used in railway domain. In
the future, the comparative analysis for different multi-objective optimization algorithms
will be studied. What’s more, parallel multi-objective optimization techniques are also
widely adopted, which can accelerate the computing speed. In the future, we will study
the application of parallel multi-objective optimization techniques.
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