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Abstract: This work introduces a methodology for the automatic unmineable inclusions detection
and Bucket Wheel Excavator (BWE) collision prevention, using electromagnetic (EM) inspection and
a fuzzy inference system. EM data are collected continuously ahead from the bucket wheel of a
BWE and subjected to processing. Two distinct methodologies for data processing were developed
and integrated into the MATLAB programming environment. The first approach, named “Simple
Mode”, utilizes statistical process control to generate real-time alerts in the event of a potential
collision involving the excavator’s bucket and hard rock inclusions. The advanced processing flow
(“Advanced Mode”) requires accurate instrument positioning and data from successive EM scans. It
incorporates techniques of local resistivity maxima detection (Position Prominence Index) as well as
Neural Network-based Pattern Recognition (NNPR). A decision support process based on a Fuzzy
Inference System (FIS) has been developed to assist BWE operators in avoiding collision when digging
hard rock inclusions. The proposed methodology was extensively tested using synthetic EM data.
Limited real data, acquired with a CMD2 (GF Instruments) EM instrument equipped with GPS, were
used to control its efficiency. Increased accuracy in the automatic detection of unmineable inclusions
was observed using the Advanced Mode. On the other hand, the Simple Mode processing technique
offers the advantage of being independent of instrument positioning as well as it provides real-time
inspection of the excavated mine slope. This work introduces a methodology for hard rock inclusion
detection and can contribute to the optimization of mine operations by improving resource efficiency,
safety, cost savings, and environmental sustainability.

Keywords: bucket wheel excavator; unmineable inclusions detection; electromagnetic inspection;
fuzzy inference system; collision prevention

1. Introduction

The process of advanced strategic mine planning is related to innovative concepts,
such as orebody modeling, spatial modeling analysis and managing variability of geo-
metallurgical variables, risk management and modeling, simulation, stochastic optimiza-
tion, and estimation algorithms [1–3]. In continuous surface mining methods, a suitable
analysis of geological uncertainties can provide valuable data regarding critical issues
affecting the operations and performance of the mining systems [4]. Furthermore, the
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efficient utilization and management of mining equipment are crucial in obtaining viable
mining operations [5]. Therefore, the study of the equipment selection considering the
specific conditions in surface mining projects is an important issue of mine modeling and
simulation analysis [6,7].

In an integrated approach to strategic mine planning and design, the concepts of life
cycle assessment of the mining system, circular economy, and sustainability should be
considered and incorporated into the optimization models [8–11]. Under the framework
of sustainable mining, which is closely related to rational exploitation, the optimization
of productivity and cost savings, the elimination of deviations from quality specifications,
and zero accidents, we developed a methodology for the automatic unmineable inclusions
detection and Bucket Wheel Excavator (BWE) collision prevention, using electromagnetic
(EM) inspection and a fuzzy inference system.

One of the frequent problems faced when mining coal in open pit mines using Bucket
Wheel Excavators (BWEs) is the occurrence of cohesive geological formations, or boulders
lying within layered coal or/and waste loose materials [12,13]. When the Bucket Wheel
Excavator (BWE) encounters hard formations during the digging process, it results in
significant failures of BWE components. These failures lead to downtime, disruption in
production, and costly repairs [14]. It has been found that the presence of hard formations
was the reason for changing the mining method to more than 60% of the overburden, as
opposed to the 5–10% as estimated in the initial mine plan of a lignite mine [15]. These have
an impact on the efficiency of mining operations in terms of resource efficiency, electricity
consumption, personnel safety, cost savings, and environmental sustainability.

The objective of this project is to create a geophysical-based system that can be in-
stalled on the BWE. This system will actively monitor the excavation face and identify and
provide early warnings to the BWE operator regarding any probable unmineable inclusions.
The incorporation of sensors in the field, especially in the mining environment, is quite
challenging. Processes concerning automated 3D exploration [16] and automated haul-
ing [17] in open pit and underground mines have been recently implemented. However, the
incorporation of sensors in the excavation process for real-time material characterization is
difficult due to the need for stand-off techniques requiring a contactless scan of the mate-
rial, real-time data acquisition, and fast and reliable signal processing and interpretation.
Moreover, the harsh conditions and the dusty and high-humidity environment reduce the
number of sensors that can be used for such applications.

The current research on this issue focuses on measuring the surface properties of the
minerals along the bench face or for mineral exploration. Hyper-multispectral sensors
have been used for ore phases distinction [18,19], while handheld instruments of X-Ray
Fluorescence (XRF) [20] and laser-induced breakdown spectroscopy (LIBS) technologies [21]
have been used, facing many difficulties [22], for the estimation of the chemical composition
of geological formations.

On the other hand, geophysical methods are widely used for stand-off characterization
of the subsurface. In the research regarding the infrastructure industry, ground penetrating
RADAR (GPR) was utilized during horizontal drilling [23] and for the characterization of the
face ahead of the tunnel boring machine [24]. In the open pit mining industry, Overmeyer,
Kesting, and Jansen [25] reported the possibility of Sensory Identification of the Material Type
(SIMT) and detection of coal-waste interfaces with a system operating in parallel with the
bucket wheel. They suggested two possibilities for the integration of the sensor technology:
next to or on the bucket wheel. They concluded that ground penetrating radar and geoelectric
geophysical methods, which can sufficiently penetrate the subsurface, are the most suitable
alternatives to supply information for the subsurface material types and geological strati-
fications. Based on that study, Mathiak et al. [26] mounted on the bucket wheel GPR and
electrode sensors. Their approach aimed at the delineation of the stratum layer boundaries for
the assistance of a selective mining process rather than the detection of local features, such as
unmineable inclusions. However, this methodology can be viable only if effective processing
and interpretation algorithms have been developed. More recent studies [27] have shown that
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the Slingram Electro-Magnetic (EM) method is feasible for unmineable inclusions detection
(Figure 1). EM penetration depth and resolution are sufficient for hard rock inclusion real-time
monitoring. In addition, sufficient resistivity contrast is observed between the target (hard
rock) and the surrounding materials (soil) [28].
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Figure 1. The Slingram Electro-Magnetic (EM) method is applied against an open mine pit slope
(South Field, Ptolemaida, Greece) by moving the EM instrument (using a bucket truck) along a profile
(blue dotted line). Black dots correspond to the position of measurements. The resulting conductivity
map clearly indicates the hard rock lens and formation [27].

However, hard rock inclusion detection during BWE excavation is not enough. In order
to retain a high level of the excavation productivity of soft materials containing hard inclusions,
a decision-making system for optimum BWE collision prevention must be completed as well.
Fuzzy inference systems (FIS) have been applied with success in mining [29,30]. Hence, a
fuzzy inference system (FIS) is suggested to support the BWE operator in preventing collisions
between the excavating buckets and the hard rock inclusions. FIS possesses the capability
to handle imprecise or incomplete information and integrate it into the decision-making
processes, relying on the expertise of an experienced professional [31].

The proposed automatic detection system can contribute to the optimization of mining
operations by improving the resource efficiency of the produced material, the consumed
materials required for the excavation (steel, electricity consumption, grease, explosives,
etc.), and personnel safety. In the case of a collision with an unmineable inclusion, the
excavator is not only deactivated for a short or long period, but also there is a high risk of
an accident [12]. Additionally, by preventing collisions, the proposed automatic detection
system can reduce the risk of damage to equipment, which is costly to repair or replace,
while it can be a tool for the operator to schedule the excavation sequence effectively and
for the engineer to make efficient mine planning and design, leading to the optimization of
material extraction.
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2. Description of the Proposed System Components

For an automatic unmineable inclusion detection and collision prevention system, a
geophysical sensor, a processing tool, and a visual or sound output can be considered as
the minimum requirements. Within the framework of the proposed methodology, a more
sophisticated scheme is attempted. Specifically, Figure 2 shows the block diagram of the
proposed system. It consists of one kinematic GPS module for accurate sensor positioning
and one EM sensor (CMD2—GF Instruments) mounted on the bucket wheel boom with
their corresponding control units placed in the cabin of the BWE. The EM control unit
receives GPS data and exports time-stamped and coordinated resistivity values.
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Figure 2. Block diagram of the proposed automatic unmineable inclusions detection and collision
prevention system. Colored arrows indicate data or commands transfer, while the black ones are the two
possible processing flow paths (Simple or Advanced Mode). Blue and green colors indicate, respectively,
original data or commands, while orange and red colors indicate processed data/intermediate results
and final results, respectively. GPS preprocessed data are transferred directly to visualization unit in
case of the Simple Mode activation.

A frame was constructed to mount the sensor on the slewing boom with its nearest to
the sensor parts made by wood beams to avoid influencing EM measurements. This frame
keeps the EM sensor 5 m away from the bucket wheel and adjustable 0.5–2 m away from
the mine face. Figure 3 (top left) shows the final implementation of the mounting frame
with the CMD-2 and the GPS antenna attached. In addition, a CCD camera was placed
on the BWE tower in order to allow the BWE operator the visual inspection of the sensor
system. Furthermore, the proposed system is equipped with a fully rugged laptop placed
next to the BWE operator for real-time data processing and results visualization.
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Figure 3. Visualization unit: Control buttons (top right), real-time visualization of the excavated
bench face (top left), visual color levels (from green to red for low to high values, respectively) of the
probability, the risk of collision and diggability (bottom left), and real-time measurements (bottom
right). The blue and red arrows indicate the possible EM sensor adjustments forward-backward and
upward-downward, respectively.

As indicated in Figure 2, the EM sensor and GPS antenna transmit data to the corre-
sponding control units. Coordinated resistivity data are transmitted at a predefined rate
from the EM control unit to the laptop. A typical sampling rate of 1 sample per second
corresponds to a spatial resolution of approximately 4 to 10 samples/m for a slewing speed
of 15 to 6 m/min, respectively. Then, preprocessing algorithms smooth and correct the
original data for extreme values. Afterward, the preprocessed data are handled either using
the Simple or the Advanced Processing Mode.

Simple processing Mode uses only the last 21 resistivity values to evaluate the short-
term to long-term resistivity ratio (STA/LTA) and transmits an alarm signal (high risk
of collision) to the visualization unit if some predefined thresholds are exceeded. This
mode is more suitable for a very short-term (on a scale of 30 s) prediction of high resistivity
geophysical anomalies with a small advance in the current cut, next to BW, and is the tool
for anomalies detection during the initial three cuts in each layer. As long as EM data
from successive cuts have been collected, the processing is automatically switched to the
Advanced Mode, which, together with the Expert System (FIS), predicts the risk of collision
and the diggability for the next cuts.

The Advanced Mode is more suitable to detect resistivity anomalies related to smaller
targets but with higher advance ahead of the BW. In this mode, the coordinated resistivity
data from successive sensor scans are used for enhanced accuracy in unmineable inclusion
detection. Apparent resistivity data from individual slewing movements are attributed
to profiles and are aligned using the coordinates from GPS. Resistivity local maxima are
observed in positions where hard rock inclusions exist. Their values increase as the sensor
successively approaches the inclusions. Along successive profiles, the most prominent
apparent resistivity peaks are detected using the Position Prominence Index (PPI) [32]. PPI
is calculated from the resistivity local maxima values and their relative positions along the
slewing trajectory of the successive profiles. PPI value at a specific (within a tolerance range)
position continuously increases when the resistivity peak values increase in successive EM
sensor scans. An updated PPI value from the previous profile, together with the apparent
resistivity values from the last “n” previous profiles and the distance between successive
profiles, are used as inputs in the Neural Network-based Pattern Recognition (NNPR)
algorithm. This algorithm assesses the likelihood of encountering a hard rock inclusion
at a particular position, “S”, along the slewing trajectory. It considers factors such as the
distance between the bucket wheel and “S” and the slewing speed of the BWE boom.
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The NNPR outputs, as well as the resistivity values, are used as inputs in a decision-
support process based on the fuzzy inference system (FIS). The goal for the successful
design of a fuzzy inference system is to capture the knowledge of a human expert relative
to some specific domain and code this in a computer in such a way that the knowledge of
the expert is available to a less experienced user [31,33]. The training of the FIS system is
required as well and is based on synthetic data. The outputs from the FIS system to the
visualization unit are the risk of collision and the diggability, ranked on a 5-level scale.

A graphical user interface (visualization unit) provides selected information to the operator
of the BWE in a simple and comprehensive way (Figure 3). This unit allows the BWE operator
to control the proposed system and provides basic information, such as: (a) the real-time
visualization of the excavated bench face from the CCD camera, (b) visual color levels of
the probability, the risk of collision (with sound warnings in the cases of high values) and
the diggability, as well as (c) real-time measurements (i.e., bucket wheel position and speed,
conductivity or resistivity measurements, etc.) depending on the active processing mode (simple
or advanced).

The proposed methodology was extensively tested using synthetic EM data. A compre-
hensive description of EM data modeling is provided below. Real data acquired with a CMD2
(GF Instruments) EM instrument equipped with GPS were used to control its efficiency.

3. Electromagnetic Theory and Data Modeling

The ground conductivity instruments consist of Transmitter (T) and Receiver (R) coils.
Low frequency (less than a few thousand hertz) alternating current passing through the
transmitter coil creates an alternating primary magnetic field (Hp) [34]. Hp penetrates into
the ground (up to a depth called skin depth) and induces conducting bodies alternating
currents (eddy currents). This field, in turn, generates a secondary electromagnetic field
(Hs) that travels back to the receiver. Hs has the same frequency but different phase and
amplitude values compared to the primary field. These differences between the transmitted
and received electromagnetic fields provide information about the geometry and electrical
conductivity (σa in S/m) of the conductor [35]. For horizontally stratified homogeneous
layers (1D media) and short coil spacings, σa can be calculated by the weighted (to the
depth divided by the coil separation) average of the conductivities of each layer [28]. These
weights (cumulative sensitivity) depend on the orientation of the coils for vertical and
horizontal coil orientation.

In the case of laterally varying media, 2D effects must be considered. Thus, we pro-
pose 2D weights, which are modifications of the 1D ones. In 2D media approximation, a
conductivity model is discretized in cells of constant conductivity values. The apparent con-
ductivity is estimated by adding the contribution of each cell’s conductivity independently,
weighted according to its distance from the instrument. The proposed 2D weights (2D
cumulative sensitivity) were tested using both analytical 2D profiles (semi-infinite vertical
sheet) as well as 1D media [36]. Namely, the 2D cumulative sensitivity matrix provides the
corresponding 1D solution in the case of a 1D medium.

Figure 4a illustrates the cumulative sensitivity weighting factor for the CMD2 in-
strument utilized in this study, considering a coil spacing of 1.89 m, low depth range
mode (horizontal coil axes), and a maximum depth of EM signal penetration equal to
7 m. Additionally, Figure 4b displays the synthetic apparent resistivity (ρa = 1/σa) profiles
corresponding to both 1D and 2D approaches. These profiles depict a model comprising a
conductive half-space, which includes two non-conductive bodies. Normally distributed
pseudorandom numbers with zero mean and standard deviation of 20% of the half space
conductivity were created using the “randn” MATLAB function and were added to model
conductivity values.
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Figure 4. (a) 2D normalized cumulative sensitivity for the low depth range, with a coil separation of
1.89 m and maximum depth penetration of 7 m. The instrument is positioned at a horizontal distance
of x = 0 m, which is the location with the highest sensitivity values (plotted in logarithmic scale).
(b) Synthetic apparent resistivity values over (c) a 30 m × 7 m model with grid size 0.1 m. Two higher
resistivity (5 mS/m or 200 Ωm) bodies of dimensions (X, Z) 2 × 1 and 0.5 × 1 are buried at depths (top
of bodies) 0.6 and 0.2 m from the surface within a homogeneous lower resistivity (31.25 mS/m or 32 Ωm)
half space. Random noise with zero mean and standard deviation of 20% of the half-space conductivity
was added to model conductivity values.

Different resistivity profiles are calculated for each model by decreasing the depth of
the boulders with a step equal to the BW cut advance. This resamples the BW approach
towards the boulders as the excavator advances forward with a fixed step for each cut.

Synthetic EM Data Adjustment on Bucket Wheel Terrace Cutting

At the beginning of the project, due to the lack of real data, we simulated the bucket
wheel movement during a standard block excavation by a BWE applying terrace cutting.
Figure 5 displays the synthetic X, Y, and Z (elevation) coordinates (in UTM) obtained from
both the BWE and CMD2 trajectories. Random noise with a standard deviation of 0.1 m
in X-Y and 0.3 m in Z direction was added to trajectory positioning. In order to gather
the measured (along the BW trajectories) apparent resistivity data over an orthogonal
synthetic resistivity model (i.e., see Figure 4b), we first calculated an apparent resistivity
map (Figure 6b) by gradually burying the targets with very small depth steps. This is the
same as gradually placing the EM sensor away from the targets. On this map, we selected
the nearest to BW slewing trajectories resistivity values (colored paths in Figure 6b) in
order to form the measured resistivity profiles (Figure 6a). Following that, after considering
the simulated excavation process, we developed an algorithm to segment and arrange the
synthetic or real data into blocks, layers, and cuts. This enables us to generate successive
resistivity profiles, which were used as the input data for the Advanced Mode algorithm.
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4. Data Processing

The positioned EM data are transmitted in continuous mode at predefined sampling
intervals from the EM control unit to the serial port of the rugged laptop in the BWE operator
cabin. The original data are subjected to preprocessing, which consists of (a) coordinate data
transformation (latitude, longitude, altitude to UTM X, Y, Z), (b) outlier values removal, and
(c) data smoothing. Two distinct algorithms have been created: one, relatively simpe, which
named “Simple Mode”, which relies on statistical process control, and another one, more
advanced, referred to as “Advanced Mode”. The Advanced Mode algorithm utilizes Position
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Prominence Index (PPI) and Neural Network-based Pattern Recognition (NNPR) to enhance
its capabilities.

4.1. Simple Mode Algorithm

The algorithm in Simple Mode for Hard Rock Detection (SMHRD) relies on statistical
process control and utilizes data obtained during the ongoing cut performed by the BWE.
SMHRD algorithm utilizes a moving average operator, applied both on the latest 21 (Long
Term Average—LTA) and 3 (Short Term Average—STA) preprocessed resistivity values.
Both STA and LTA values are attributed to the last measured point (eccentric mean value).
An alarm indicator is issued if both the STA value exceeds a predefined limit of long-term
data window standard deviation (STD) and the STA/LTA ratio exceeds its predefined
limit, respectively. The optimal data windows for STA (3) and LTA (21), as well as the
predefined limits for STD (1.1) and the STA/LTA (1.1) ratio, were determined through the
performance evaluation of the SMHRD algorithm using 100 different randomly generated
1-boulder models and 100 2-boulder models [37]. Figure 7 shows an example of SMHRD
algorithm application on the synthetic resistivity values deduced from the model presented
in Figure 4b. Both the limits for the standard deviation and the ratio of the STA/LTA
multiplication factor are set to 1.1. In this case, the algorithm issued an alarm from
8.2 to 9.2 m of profile, where the STA value (blue curve in Figure 7) exceeds both 1.1 times
the current long-term data window STD value (green curve in Figure 7) and 1.1 times the
STA/LTA ratio (cyan curve in Figure 7).
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Figure 7. An example of SMHRD algorithm application on the synthetic resistivity values deduced
from the model presented in Figure 4b. The multiplication factor limits for the standard deviation
(STD) and STA/LTA ratio are both set to 1.1. An alarm is issued from 8.2 to 9.2 m where both std (red
circles) and STA/LTA (rhombus) limits are violated.
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The SMHRD algorithm generates a relatively high rate of false alarms when dealing
with two-boulder models, mostly due to the detection of deeper and occasionally larger
structures with higher resistivity, as demonstrated in Figure 7, as well as suffers from early
warning alerts, by issuing alerts several slices ahead [37].

Figure 8a shows a map illustrating the experimental apparent resistivity values ob-
tained in June 2017 from the South Field open pit mine in Ptolemaida, Greece. The data
was collected by moving the CMD2 instrument mounted on a bucket truck along a slope
(Figure 1). Within the clays, there were hard rock inclusions in the form of layers or thin
lenses. The map in Figure 8a was generated through interpolation of the apparent resistivity
values collected from the CMD2 instrument along the route marked with white crosses. The
area with higher resistivity values (>70 Ωm) corresponds to the region where we visually
observed hard rock inclusions.
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Figure 8. (a) Apparent resistivity map deduced from the interpolation of the experimental EM data
acquired by moving the CMD2 instrument along the white crosses against the slope. Hard rock
inclusions are indicated by higher resistivity values. (b) The SMHRD algorithm’s results applied to
the 4th cut reveal warning alerts generated at positions where a sudden increase in resistivity values
is observed.

To further analyze the data, separate datasets were extracted from five resistivity pro-
files spaced 0.5 m apart, representing successive cuts made by the bucket wheel excavator
(cut 1–5). Figure 8b presents an example of the SMHRD application specifically for the 4th
cut based on the aforementioned experimental data. This cut is considered to be the one
immediately preceding the bucket wheel’s encounter with the boulder (which occurs at the
7 m along the fifth cut). In this figure, warning alerts are indicated in regions where the
STA value exceeds both the standard deviation and STA/LTA predefined limits, coinciding
with a sharp increase in resistivity values.

4.2. Advanced Mode Operation Algorithms

Advanced Mode operation requires the EM data to be organized in apparent resistivity
profiles (horizontal distance versus apparent resistivity). As the CMD2 instrument is
positioned adjacent to the bucket wheel at a specific distance, its trajectory exhibits a
cyclical pattern that aligns with the slewing motion of the bucket wheel. Data collected
along a slewing cut are attributed to a resistivity profile. Successive profiles are the input
data for Advanced Mode operation. For that reason, accurate positioning of the EM
instrument is essential to break down the EM data into resistivity profiles.
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4.2.1. Position Prominence Index (PPI)

Apparent resistivity values are anticipated to be gradually increased in the vicinity of hard
rock inclusions as the EM sensor approaches them. Thus, gradually increasing local resistivity
maxima in successive resistivity profiles should be a very good indicator for detecting and
positioning the targets. Based on that assumption, we apply an algorithm for the recognition
of the most prominent resistivity peaks in successive apparent resistivity profiles.

The local maxima of a resistivity profile are defined as the positions where their values
are higher than the ones of the neighboring positions. The global maximum (the local
maximum with the highest resistivity value) is ranked as the first peak. Subsequently, the
following peaks are recursively ranked based on their proximity to the previous ones. For
each local maximum, the algorithm traces the path back to the previous peak within the
data. The prominence of a local maximum is determined by calculating the difference
between the maximum and minimum resistivity values along this path. The peak with
the highest prominence is designated as the next prominent peak. It should be noted that
as the required number of peaks increases, this algorithm will yield maxima with lower
prominence values.

The user defines the Number of Local Maxima (NLM), and the algorithm ranks the
NLM local maxima of a certain apparent resistivity profile in Prominence Ranks (PR). The
Position Prominence Index (PPI) is calculated using the formula.:

PPT =
NLM

PR
(1)

Figure 9a shows the application of the PPI algorithm on the synthetic data deduced
from the synthetic model shown in Figure 4b. Ten NLM points (if they existed in the data)
were used (PPI-10). The higher resistivity targets (boulders) were initially placed 4 m
deeper than the depth shown in Figure 4b and successively moved toward the free surface
with steps equal to 0.5 m (simulating a fixed BW advance). The corresponding apparent
resistivity values of profiles one to eight were introduced as input in the PPI algorithm.
The apparent resistivity values shown in Figure 9a correspond to the last two profiles (pass
seven and eight), while PPI corresponds to the last profile. However, its values are the
outcome of the successive update of PPI values from profiles one to eight. Further details
concerning the way PPI values are upgraded during successive cuts can be found in [37].
The PPI profile in Figure 9a indicates two dominant peaks at approximately 7 and 20 m
with values of 18 and 106, respectively. Notice that the SMHRD algorithm, applied on
the last profile data (number eight) of the same model, failed to detect the shallower (but
smaller) target located approximately at the position of 20 m (see Figure 7). On the other
hand, the PPI algorithm not only managed to detect both of the targets but highlights (with
higher PPI values) the shallower (and smaller) target as the primary target for issuing a
collision alarm. Figure 9b displays the outcome of the application of the PPI algorithm on
the real data shown in Figure 8. The corresponding apparent resistivity values of profiles
one to five were introduced as input in the PPI algorithm. The apparent resistivity values
shown in Figure 9b correspond to the profiles from cut two and three (pass four and five,
respectively, in Figure 9b), while PPI corresponds to third profile. There is one dominant
at approximately 7 m distance and several others with smaller PPI peaks. The smaller
difference in PPI values between the target and the other PPI peaks is attributed to the
fact that random and/or coherent noise level is higher in real apparent resistivity data
compared to the synthetic ones.

PPI proved an excellent position boulder detector technique and is used as input in the
Neural Network-based Pattern Recognition (NNPR) algorithm to increase the success rate
of hard rock inclusion detection. Nevertheless, this approach has two primary limitations:
(a) it is susceptible to errors in measurement positioning, and (b) establishing a standardized
threshold for the Position Prominence Index (PPI) is challenging due to its dependence on
the number of data points in the profiles.
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Figure 9. Application of PPI algorithm on (a) the synthetic data of model shown in Figure 4b and
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profile for NLM is equal to 10. The numbers next to circles or squares correspond to the rank of the
identified local maxima.

4.2.2. Automatic Evaluation of EM Profiles Based on Artificial Neural Networks for
Pattern Recognition

The developed neural network model, known as Neural Network for Resistivity Pat-
tern Recognition (NNRPR), is a feedforward neural network with a hidden layer containing
10 neurons. The prediction is based on analyzing local variations in resistivity profiles
generated by the EM sensor (CMD2) mounted on the bucket wheel during the excavation
process and the distance between the analyzed local resistivity profiles at the position xo,
yo, zo. NNRPR utilizes a moving window that includes k resistivity and PPI values, which
correspond to the same positions along n successive cuts, to estimate the likelihood of
encountering a hard rock formation in the subsequent cut (n + 1) at a specific position xo,
yo, zo, as depicted in Figure 10. During terrace cutting (Figure 10a), as the bucket wheel
approaches the hard rock formations, the resistivity values exhibit an increase due to the
presence of the hard rock formation. These patterns in the resistivity profiles serve as indi-
cators of the existence of a hard rock formation, as depicted in Figure 10b. After training,
the NNRPR neural network model is capable of recognizing these patterns (increasing
resistivity and PPI values in successive profiles) and associating them with the position of
the hard rock formation.

Throughout the training and testing stages of NNRPR, using a large set of synthetic data
(178,200 cases) from models with one or two hard rock inclusions of varying sizes, shapes,
and positions, multiple combinations of n and k values were assessed, and the optimal values
determined to be n = 3 and k = 5. The synthetic data was randomly split into three distinct
datasets: the training set, which comprised 70% of the total data; the validation set, consisting
of 15%; and the testing set, consisting, as well, of 15%. The validation dataset was used to
prevent overfitting through the utilization of the early stopping technique, while the testing
dataset was used to assess the network’s ability to generalize.

NNRPR was developed, trained, and tested using the MATLABTM. The resulting
confusion matrix from NNRPR training is displayed in Figure 11a. The matrix presents both
the absolute numbers and the percentages of accurate predictions (highlighted in green)
and false predictions (highlighted in red). In this matrix, class 1 represents the presence of a
hard rock inclusion, while class 0 represents its absence. There are four different conditions:
(0-0), (1-1), (0-1), (1-0). The first number in the parentheses corresponds to the fact, while
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the second corresponds to the NNRPR result. The top-left four colored panels and the
bottom right blue one correspond to the true (green) and false (red) predictions for the total
input data. Similarly, the predictions for the validation data are given in the right grey
column, while the predictions for the testing data are in the bottom grey row.
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Figure 10. (a) The process of terrace cutting performed by the BWE. (b) The sequential resistivity
profiles obtained during three successive terrace cuttings. The diagram further demonstrates the
implementation of a moving window to analyze localized variations in the resistivity profiles as the
bucket wheel approaches the hard rock formation.

The percentage of successful hard rock inclusion existence predictions in testing data
is 88.5% (11.5% were missed), while the percentage of false alarms is only 1.2%. Taking
into consideration the relatively high percentage (24,283 cases out of 178,200) of hard rock
inclusion existence in the synthetic data, these percentages are considered acceptable. In
Figure 11b, the Receiver-Operator Curve (ROC) is presented, demonstrating the relationship
between the false alarm rate and the rate of successful predictions. It is evident from
the ROC that achieving a higher rate of successful predictions (e.g., 0.98) may lead to a
significant increase in the false alarm rate (0.1). In other words, since the occurrences of
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boulders in the open pit mines are quite rare, a very low false alarm and a high true alarm
rate (i.e., 1.2% and 88.5%) is preferable, rather than a very high true alarm and a relatively
low false alarm rate (i.e., 98.0% and 10.0%).
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Figure 11. (a) The confusion matrices presenting the numbers and percentages of accurate and false
predictions for all the data. Class 0 represents the non-existence of a hard rock formation, while
Class 1 signifies the presence of a hard rock formation. (b) The Receiver-Operator Curve (ROC)
demonstrating the relationship between the rate of successful predictions and the corresponding false
alarm rate.

Using the trained NNRPR, predictions were made regarding the presence of hard rock
formations in real data, as illustrated in Figure 8. The apparent resistivity values from the
five successive cuts (cuts 1–5 in Figure 8) were utilized as input to NNRPR for estimating
the probability of encountering a hard rock formation. The calculated probabilities along the
resistivity profiles for each cut are displayed in Figure 12. NNRPR predicted a probability of
0.92 for the occurrence of a hard rock formation at 7 m of the 5th cut. Conversely, in previous
cuts (1–4), the predicted probabilities were considerably low, almost approaching zero.
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5. Fuzzy Inference System

In contrast to the conventional Boolean set that only permits values of 0 or 1, a
fuzzy inference system (FIS) employs continuous boundary values that enable partial
membership. The extent of membership in a set is represented by a number ranging from
0 to 1, where 0 signifies complete exclusion from the set, 1 denotes full inclusion in the set,
while values in between indicate partial participation within the set.

For the development of the FIS, the Fuzzy Logic Toolbox of the Mathworks was
implemented [38]. The steps for the development of the FIS were: (1) Definition of the
input/output and fuzzification variables, (2) creation of the inference rules (application of
the fuzzy operator (AND, OR) in the antecedent and implication from the antecedent to the
consequent), (3) Aggregation of the consequents across the rules and (4) Defuzzification.

Based on the assessment of mining operations and expert opinions, the developed
Fuzzy Inference System (FIS) incorporates four inputs:

(1) The probability of encountering a hard rock formation at a specific position S, repre-
sented by fuzzy variables such as low, medium, and high.

(2) The distance between the bucket wheel and position S, categorized into fuzzy variables
such as small, medium, and large.

(3) The slewing speed of the bucket wheel, characterized by fuzzy variables, including
low and high.

(4) The apparent resistivity values of the excavated material, classified as fuzzy variables
such as low, medium, and high.

FIS comprises two outputs:

(1) The risk level of the bucket wheel colliding with a hard rock formation, expressed
through fuzzy variables such as low, average, and high.

(2) The diggability assessment of the excavated formation, categorized into fuzzy vari-
ables such as easy, average, and difficult.

Overall, the FIS utilizes these inputs and outputs to analyze and make informed decisions
based on the given mining conditions and expert insights. The structure of the FIS, consisting
of four inputs, two outputs, and 12 rules, is shown in Figure 13. The rules of the FIS were
derived from the collected knowledge and experience of mining engineers and BWE operators.
These rules were optimized during the training of the FIS. Figure 14 provides a schematic
depiction of the complete set of rules for the developed FIS. Except for rule 1 (with operator
OR) and rules 10–12, which are solely influenced by the resistivity values, the fuzzy operator
AND was applied to the other fuzzy antecedents. In the presented example (Figure 14), the
probability is high (0.762), the distance is small (0.383 m), and the speed is low (6.41 m/min),
resulting in an average to high risk of collision (0.749), while the resistivity is medium to high
(67.7 Ωm) resulting in average diggability (0.623).

The Risk of Collision is maximized when the Probability of hard rock occurrence is
high, and the Distance between the BWE and the hard rock is low (as seen in rule #8 in
Figure 14). Conversely, the estimation of diggability is solely based on the measured apparent
resistivity values (as observed in rules #10, 11, and 12 in Figure 14). The implementation
of FIS to the proposed real-time unmineable inclusions detection system also involved the
development of a graphical user interface (visualization unit in Figure 3) that presents all
necessary information for the operator of the BWE.
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6. Discussion

The proposed methodology aims at the automatic bucket wheel excavator collision
prevention on unmineable inclusions, and thus, it cannot be directly compared to the most
relative ones, which are aimed at the delineation of the stratum layer boundaries [25,26].
However, the advantages of this work can be summarized as the efficiency of data processing
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and interpretation. The reduced collected EM (compared to the corresponding GPR) data
and their relative simplicity (one resistivity value versus GPR amplitudes over the recording
time) result in the reduction of the processing time and simplify the process of automated
interpretation, respectively. However, further work is required for improving the rigidity of
the detection system in order to eliminate the heavy torque forces applied on long EM sensor
supporting frames during the excavation. In addition, a lack of real data positioning accuracy
was detected due to GPS antenna proximity to bench face. An alternative position of the GPS
antenna could be on the top of the operation tower, provided that correction of the EM sensors’
positions (based on their relative position to the GPS antenna) are applied too.

In order to evaluate the impact of the proposed methodology on the improvement of
the open pit mine operations sustainability, we have to take into consideration different
observed parameters. Lazarević et al. [39] examined the Tamnava—West Field Open
Cast Mine in Lazarevac (Serbia) system failures in the period from 2003 to 2011 and
demonstrated that the BWE material digging subsystem has the most breakdowns after
the material transporting subsystem. The same study showed that failure rate, λ(t), is
a constant function of time, and the reliability of an SchRs 900.25/6 excavator can be
approximated by the exponential distribution. For the year 2011, the mean failure rate
function for the material digging subsystem was evaluated as λ(t) = 0.0024 t, with time (t)
units in hours. According to Huss [12], 13% of machine breakdowns in Polish open pit
mines are a result of extreme geological conditions. As much of this happens because of
the maladjustment of mining technology to the above-mentioned circumstances, leading,
totally, to above 25% of all breakdowns. During December 2018, in the South Field open-pit
mine, Ptolemaida, Greece, the BW excavator of the upper terrace (where the hard rock
formations exist) recorded 237.1 hours of breakdown alone, while the corresponding one
from the lower terrace recorded only 52.6 h.

Electricity consumption of the BW is strongly related to the bucket load. Between 60
and 90% of the electricity is consumed by BW excavators to cut and remove the material [40].
As a result, it is very important to reduce this component of power consumption, which is
attributed to hard rock inclusions. However, this can be traditionally achieved by blasting
the hard rock formation prior to the excavation. Kumaraswamy and Mozumbar [41]
note that by adding a blasting step to the excavation of hard overburden formations, the
productivity of the BWE had a 15.4% increment with a simultaneous 22% reduction of BW
load in the Neyveli mine (India).

Sustainable mining is closely connected with the main objectives of mining operations,
which are related, among others, to rational exploitation, the optimization of productiv-
ity and cost savings, the elimination of deviations from quality specifications, and zero
accidents. The proposed methodology is an automated process, which could significantly
contribute to the maintenance of the production planning, especially of the upper terraces
progress, where the hard rock formations are encountered. This eventually results not
only in avoiding coal production delays due to the corresponding overburden exploitation
delays but also reduces the operations of blasting and removing the hard rock formations,
which require high-cost diesel equipment.

7. Conclusions

Summarizing this work, we have developed a promising methodology for automatic
bucket wheel excavator collision prevention on unmineable inclusions, using positioned
electromagnetic (EM) inspection and a fuzzy inference system. The proposed operation
flowchart consists of the following tasks: (1) continuous EM and GPS data collection,
(2) data preprocessing, (3) unmineable inclusion detection, and (4) decision support system
and visualization. In this study, a novel system was created as a tool for the operator and
the engineer to mitigate the negative effects of hard formation excavation as an emergency
tool to immediately alarm the operator, as well as a tool for short to mid-term optimization
of mine planning.
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Two distinct evaluation approaches were investigated for the automatic detection of
hard rock inclusions. The first approach referred to as Simple Mode, relies on statistical
process control, while the second approach, known as Advanced Mode, is more sophisti-
cated and utilizes both Position Prominence Index (PPI) and Neural Network-based Pattern
Recognition (NNPR). Extensive testing was conducted on both methods using synthetic
data to assess their effectiveness. Additionally, real data was gathered from field tests
employing a bucket truck and an EM sensor mounted on the boom of the bucket wheel
during excavation field tests. Comparing the two approaches, the Advanced Mode exhib-
ited enhanced accuracy in automatically detecting unmineable inclusions when compared
to the Simple Mode. However, it should be noted that the Advanced Mode is sensitive
to positioning accuracy and necessitates appropriately sorted EM data from a minimum
of three successive cuts of the bucket wheel excavator. Thus, it is suitable for hard rock
detection in the next cuts and blocks, which is valuable for short to mid-term mine planning.
On the other hand, Simple Mode is independent of instrument positioning and more robust.
It can be used easily by the operator of the BWE in real time for the early detection of the
hard formations encountered in the slice under excavation.

The use of fuzzy logic allowed capturing and incorporating the existing experiential
knowledge about excavated material properties and the mining with BWE in a very efficient
way in the developed fuzzy expert system used to estimate the risk of collision of the bucket
wheel with hard rock formations. The use of fuzzy logic results in the gradual detection of
collision, and this was very convenient for BWE operators. Furthermore, the developed
fuzzy expert system can be simply adjusted through membership functions to include
new factual knowledge, while the fuzzy set of rules can be easily extended to incorporate
additional experiential knowledge. This will allow the application of the developed system
in different mining environments.

As presented in the discussion part, the proposed methodology can contribute to the
optimization of mine operations by improving resource efficiency, safety, cost savings, and
environmental sustainability.
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