Multivariate Statistical Methods and GIS-Based Evaluation of Potable Water in Urban Children’s Parks Due to Potentially Toxic Elements Contamination: A Children’s Health Risk Assessment Study in a Developing Country
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Water Sampling, and Analysis
2.2. PTEs Pollution Indices
2.2.1. Potentially Toxic Elements Pollution Index (PTE-PI)
2.2.2. Potentially Toxic Elements Evaluation Index (PTE-EI)
2.3. Human Health Risk Model
2.3.1. Non-Carcinogenic Risk Assessment
2.3.2. Carcinogenic Risk Assessment
2.4. Quality Assurance and Quality Control
2.5. Statistical Analysis
3. Results
3.1. Physiochemical Characteristics of UCPs Water
3.2. Spatial Distribution of PTEs in UCPs Water
3.3. Source Apportionment of PTEs
3.4. Pollution Assessment of PTEs
3.5. Health Risk Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN. World Urbanization Prospects; The Population Division of the Department of Economic and Social Affairs: New York, NY, USA, 2018. [Google Scholar]
- Coulon, F.; Jones, K.; Li, H.; Hu, Q.; Gao, J.; Li, F.; Chen, M.; Zhu, Y.-G.; Liu, R.; Liu, M. China’s soil and groundwater management challenges: Lessons from the UK’s experience and opportunities for China. Environ. Int. 2016, 91, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, Q.; Ma, J.; Wu, H.; Qu, Y.; Gong, Y.; Yang, S.; An, Y.; Zhou, Y. Heavy metal (loid) s in the topsoil of urban parks in Beijing, China: Concentrations, potential sources, and risk assessment. Environ. Pollut. 2020, 260, 114083. [Google Scholar] [CrossRef]
- Gu, Y.-G.; Gao, Y.-P. Bioaccessibilities and health implications of heavy metals in exposed-lawn soils from 28 urban parks in the megacity Guangzhou inferred from an in vitro physiologically-based extraction test. Ecotoxicol. Environ. Saf. 2018, 148, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhou, S.; Bao, H.; Chen, D.; Wang, C.; Li, B.; Tong, G.; Yuan, Y.; Xu, B.J. Improving risk management by using the spatial interaction relationship of heavy metals and PAHs in urban soil. J. Hazard. Mater. 2019, 364, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhong, L.; Meng, J.; Wang, F.; Zhang, J.; Zhi, Y.; Zeng, L.; Tang, X.; Xu, J. A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health. Environ. Pollut. 2018, 239, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Yadav, I.C.; Devi, N.L.; Singh, V.K.; Li, J.; Zhang, G. Spatial distribution, source analysis, and health risk assessment of heavy metals contamination in house dust and surface soil from four major cities of Nepal. Chemosphere 2019, 218, 1100–1113. [Google Scholar] [CrossRef] [PubMed]
- Adewumi, A. Heavy metals in soils and road dust in Akure City, Southwest Nigeria: Pollution, sources, and ecological and health risks. Expos. Health 2022, 14, 375–392. [Google Scholar] [CrossRef]
- Santorufo, L.; Van Gestel, C.A.; Maisto, G. Ecotoxicological assessment of metal-polluted urban soils using bioassays with three soil invertebrates. Chemosphere 2012, 88, 418–425. [Google Scholar] [CrossRef]
- Penteado, P.B.; Nogarotto, D.C.; Baltazar, J.P.; Pozza, S.A.; Canteras, F.B. Inorganic pollution in urban topsoils of Latin American cities: A systematic review and future research direction. Catena 2022, 210, 105946. [Google Scholar] [CrossRef]
- Singh, K.K.; Tewari, G.; Kumar, S.; Busa, R.; Chaturvedi, A.; Rathore, S.S.; Singh, R.K.; Gangwar, A. Understanding urban groundwater pollution in the Upper Gangetic Alluvial Plains of northern India with multiple industries and their impact on drinking water quality and associated health risks. Groundw. Sustain. Dev. 2023, 21, 100902. [Google Scholar] [CrossRef]
- Antoniadis, V.; Golia, E.E.; Liu, Y.-T.; Wang, S.-L.; Shaheen, S.M.; Rinklebe, J. Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece. Environ. Int. 2019, 124, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wu, Y.; Li, Y.; Sun, J.; Xie, Y.; Fan, Z. Do trace metal (loid) s in road soils pose health risks to tourists? A case of a highly-visited national park in China. J. Environ. Sci. 2022, 111, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.; Lu, Y.; Saeed, M.A.; Bilal, H.; Sher, H.; Khan, H.; Ali, J.; Wang, P.; Uwizeyimana, H.; Baninla, Y. Prevalent fecal contamination in drinking water resources and potential health risks in Swat, Pakistan. J. Environ. Sci. 2018, 72, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Nawab, J.; Khan, S.; Ali, S.; Sher, H.; Rahman, Z.; Khan, K.; Tang, J.; Ahmad, A. Health risk assessment of heavy metals and bacterial contamination in drinking water sources: A case study of Malakand Agency, Pakistan. Environ. Monit. Assess. 2016, 188, 286. [Google Scholar] [CrossRef]
- Wu, L.; Liang, Y.; Fu, S.; Huang, Y.; Chen, Z.; Chang, X. Biomonitoring trace metal contamination in Guangzhou urban parks using Asian tramp snails (Bradybaena similaris). Chemosphere 2023, 334, 138960. [Google Scholar] [CrossRef]
- Boum-Nkot, S.N.; Nlend, B.; Komba, D.; Ndondo, G.N.; Bello, M.; Fongoh, E.; Ntamak-Nida, M.-J.; Etame, J. Hydrochemistry and assessment of heavy metals groundwater contamination in an industrialized city of sub-Saharan Africa (Douala, Cameroon). Implication on human health. HydroResearch 2023, 6, 52–64. [Google Scholar] [CrossRef]
- Pinto, M.M.C.; Silva, M.M.; da Silva, E.A.F.; Dinis, P.A.; Rocha, F. Transfer processes of potentially toxic elements (PTE) from rocks to soils and the origin of PTE in soils: A case study on the island of Santiago (Cape Verde). Environ. Monit. Assess. 2017, 183, 140–151. [Google Scholar]
- Wong, C.S.; Li, X.; Thornton, I. Urban environmental geochemistry of trace metals. Environ. Pollut. 2006, 142, 1–16. [Google Scholar] [CrossRef]
- Derakhshan-Babaei, F.; Mirchooli, F.; Mohammadi, M.; Nosrati, K.; Egli, M. Tracking the origin of trace metals in a watershed by identifying fingerprints of soils, landscape and river sediments. Sci. Total Environ. 2022, 835, 155583. [Google Scholar] [CrossRef]
- Pan, Y.; Peng, H.; Hou, Q.; Peng, K.; Shi, H.; Wang, S.; Zhang, W.; Zeng, M.; Huang, C.; Xu, L. Priority control factors for heavy metal groundwater contamination in peninsula regions based on source-oriented health risk assessment. Sci. Total Environ. 2023, 894, 165062. [Google Scholar] [CrossRef]
- Guo, C.; Chen, Y.; Xia, W.; Qu, X.; Yuan, H.; Xie, S.; Lin, L.-S. Eutrophication and heavy metal pollution patterns in the water suppling lakes of China’s south-to-north water diversion project. Sci. Total Environ. 2020, 711, 134543. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lyons, J.; Kanehl, P.; Bannerman, R. Impacts of urbanization on stream habitat and fish across multiple spatial scales. Environ. Manag. 2001, 28, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Valtanen, M.; Sillanpää, N.; Setälä, H. The effects of urbanization on runoff pollutant concentrations, loadings and their seasonal patterns under cold climate. Water Air Soil Pollut. 2014, 225, 1977. [Google Scholar] [CrossRef]
- Oginawati, K.; Susetyo, S.H.; Rosalyn, F.A.; Kurniawan, S.B.; Abdullah, S.R.S. Risk analysis of inhaled hexavalent chromium (Cr 6+) exposure on blacksmiths from industrial area. Environ. Sci. Pollut. Res. 2021, 28, 14000–14008. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.; Alharthy, R.D.; Zubair, M.; Ahmed, M.; Hameed, A.; Rafique, S. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci. Rep. 2021, 11, 17006. [Google Scholar] [CrossRef]
- Peña-Fernández, A.; González-Muñoz, M.; Lobo-Bedmar, M. Establishing the importance of human health risk assessment for metals and metalloids in urban environments. Environ. Int. 2014, 72, 176–185. [Google Scholar] [CrossRef]
- Dash, S.; Borah, S.S.; Kalamdhad, A.S. Application of positive matrix factorization receptor model and elemental analysis for the assessment of sediment contamination and their source apportionment of Deepor Beel, Assam, India. Ecol. Indic. 2020, 114, 106291. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Sci. Total Environ. 2016, 566, 1552–1567. [Google Scholar] [CrossRef]
- Bisone, S.; Chatain, V.; Blanc, D.; Gautier, M.; Bayard, R.; Sanchez, F.; Gourdon, R. Geochemical characterization and modeling of arsenic behavior in a highly contaminated mining soil. Environ. Earth Sci. 2016, 75, 306. [Google Scholar] [CrossRef]
- Han, Q.; Wang, M.; Cao, J.; Gui, C.; Liu, Y.; He, X.; He, Y.; Liu, Y. Health risk assessment and bioaccessibilities of heavy metals for children in soil and dust from urban parks and schools of Jiaozuo, China. Ecotoxicol. Environ. Saf. 2020, 191, 110157. [Google Scholar] [CrossRef]
- Rodríguez-Oroz, D.; Vidal, R.; Fernandoy, F.; Lambert, F.; Quiero, F. Metal concentrations and source identification in Chilean public children’s playgrounds. Environ. Monit. Assess. 2018, 190, 703. [Google Scholar] [CrossRef] [PubMed]
- Vega, A.S.; Arce, G.; Rivera, J.I.; Acevedo, S.E.; Reyes-Paecke, S.; Bonilla, C.A.; Pastén, P. A comparative study of soil metal concentrations in Chilean urban parks using four pollution indexes. Appl. Geochem. 2022, 141, 105230. [Google Scholar] [CrossRef]
- Ghani, J.; Nawab, J.; Faiq, M.E.; Ullah, S.; Alam, A.; Ahmad, I.; Ali, S.W.; Khan, S.; Ahmad, I.; Muhammad, A. Multi-geostatistical analyses of the spatial distribution and source apportionment of potentially toxic elements in urban children’s park soils in Pakistan: A risk assessment study. Environ. Pollut. 2022, 311, 119961. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, L.; Cui, L.; Zhang, M.; Wang, J. Profiles and risk assessment of heavy metals in Great Rift Lakes, Kenya. CLEAN–Soil Air Water 2017, 45, 1600825. [Google Scholar]
- Li, H.-B.; Yu, S.; Li, G.-L.; Deng, H.; Xu, B.; Ding, J.; Gao, J.-B.; Hong, Y.-W.; Wong, M.-H. Spatial distribution and historical records of mercury sedimentation in urban lakes under urbanization impacts. Sci. Total Environ. 2013, 445, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, N.; Nafees, M.; Ge, L.; Khan, M.H.; Bilal, M.; Chan, W.P.; Lisak, G. Assessment of industrial wastewater for potentially toxic elements, human health (dermal) risks, and pollution sources: A case study of Gadoon Amazai industrial estate, Swabi, Pakistan. J. Hazard. Mater. 2021, 419, 126450. [Google Scholar] [CrossRef] [PubMed]
- Sirajudeen, J.; Arulmanikandan, S.; Manivel, V. Heavy metal pollution index of groundwater of Fathima Nagar area near Uyyakondan channel Tiruchirappalli district, Tamil Nadu, India. World J. Pharm. Pharm. Sci. 2015, 4, 967–975. [Google Scholar]
- Prasanna, M.; Praveena, S.; Chidambaram, S.; Nagarajan, R.; Elayaraja, A. Evaluation of water quality pollution indices for heavy metal contamination monitoring: A case study from Curtin Lake, Miri City, East Malaysia. Environ. Earth Sci. 2012, 67, 1987–2001. [Google Scholar] [CrossRef]
- Prasad, B.; Mondal, K.K. The impact of filling an abandoned open cast mine with fly ash on ground water quality: A case study. Mine Water Environ. 2008, 27, 40–45. [Google Scholar] [CrossRef]
- Tokatlı, C.; Varol, M.J.E.R. Impact of the COVID-19 lockdown period on surface water quality in the Meriç-Ergene River Basin, Northwest Turkey. Environ. Res. 2021, 197, 111051. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Schiller, G.J.Z. Directive 2009/12/EC of the European Parliament and of the Council of 11 March 2009 on Airport Charges/Neue Gemeinschaftsrechtliche Vorgaben zur Festsetzung von Flughafenentgelten: Die Richtlinie 2009/12/EG uber Flughafenentgelte/La Directive 2009/12/CE du Parlement Europeen et du Conseil sur les Redevances Aeroportuaires. ZLW 2009, 58, 356. [Google Scholar]
- Varol, M.; Tokatlı, C. Impact of paddy fields on water quality of Gala Lake (Turkey): An important migratory bird stopover habitat. Environ. Pollut. 2021, 287, 117640. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Regional Screening Levels for Chemical Contaminants at Superfund Sites; United States Environmental Protection Agency: Washington, DC, USA, 2010.
- Wongsasuluk, P.; Chotpantarat, S.; Siriwong, W.; Robson, M. Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ. Geochem. Health 2014, 36, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Behrooz, R.D.; Kaskaoutis, D.; Grivas, G.; Mihalopoulos, N. Human health risk assessment for toxic elements in the extreme ambient dust conditions observed in Sistan, Iran. Chemosphere 2021, 262, 127835. [Google Scholar] [CrossRef] [PubMed]
- Tepanosyan, G.; Sahakyan, L.; Maghakyan, N.; Saghatelyan, A. Identification of spatial patterns, geochemical associations and assessment of origin-specific health risk of potentially toxic elements in soils of Armavir region, Armenia. Chemosphere 2021, 262, 128365. [Google Scholar] [CrossRef]
- US Department of Energy (USDOE). The Risk Assessment Information System (RAIS); US Department of Energy’s Oak Ridge Operations Office (ORO): Argonne, IL, USA, 2011.
- Jiang, C.; Zhao, Q.; Zheng, L.; Chen, X.; Li, C.; Ren, M. Distribution, source and health risk assessment based on the Monte Carlo method of heavy metals in shallow groundwater in an area affected by mining activities, China. Ecotoxicol. Environ. Saf. 2021, 224, 112679. [Google Scholar] [CrossRef]
- Brtnický, M.; Pecina, V.; Hladký, J.; Radziemska, M.; Koudelková, Z.; Klimánek, M.; Richtera, L.; Adamcová, D.; Elbl, J.; Galiová, M.V. Assessment of phytotoxicity, environmental and health risks of historical urban park soils. Chemosphere 2019, 220, 678–686. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2011; Volume 38, pp. 104–108. [Google Scholar]
- Pak-EPA, Government of Pakistan. National Standards for Drinking Water Quality; Pakistan Environmental Protection Agency: Islamabad, Pakistan, 2008.
- Gu, Y.G.; Li, Q.S.; Fang, J.H.; He, B.Y.; Fu, H.B.; Tong, Z. Identification of heavy metal sources in the reclaimed farmland soils of the pearl river estuary in China using a multivariate geostatistical approach. Ecotoxicol. Environ. Saf. 2014, 105, 7–12. [Google Scholar] [CrossRef]
- Song, Z.; Dong, L.; Shan, B.; Tang, W. Assessment of potential bioavailability of heavy metals in the sediments of land-freshwater interfaces by diffusive gradients in thin films. Chemosphere 2018, 191, 218–225. [Google Scholar] [CrossRef]
- Mohan, S.V.; Nithila, P.; Reddy, S. Estimation of heavy metals in drinking water and development of heavy metal pollution index. J. Environ. Sci. Health A J. 1996, 31, 283–289. [Google Scholar] [CrossRef]
- Edet, A.; Offiong, O. Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJournal 2002, 57, 295–304. [Google Scholar] [CrossRef]
- Rezaei, A.; Hassani, H.; Hassani, S.; Jabbari, N.; Mousavi, S.B.F.; Rezaei, S. Evaluation of groundwater quality and heavy metal pollution indices in Bazman basin, southeastern Iran. Groundw. Sustain. Dev. 2019, 9, 100245. [Google Scholar] [CrossRef]
- Rahman, M.S.; Khan, M.; Jolly, Y.; Kabir, J.; Akter, S.; Salam, A. Assessing risk to human health for heavy metal contamination through street dust in the Southeast Asian Megacity: Dhaka, Bangladesh. Sci. Total Environ. 2019, 660, 1610–1622. [Google Scholar] [CrossRef] [PubMed]
- Scharenbroch, B.C.; Lloyd, J.E.; Johnson-Maynard, J.L. Distinguishing urban soils with physical, chemical, and biological properties. Pedobiologia 2005, 49, 283–296. [Google Scholar] [CrossRef]
- Li, Z.-G.; Zhang, G.-S.; Liu, Y.; Wan, K.-Y.; Zhang, R.-H.; Chen, F. Soil nutrient assessment for urban ecosystems in Hubei, China. PLoS ONE 2013, 8, e75856. [Google Scholar] [CrossRef] [PubMed]
- Loh, Y.S.A.; Akurugu, B.A.; Manu, E.; Aliou, A.-S. Assessment of groundwater quality and the main controls on its hydrochemistry in some Voltaian and basement aquifers, northern Ghana. Groundw. Sustain. Dev. 2020, 10, 100296. [Google Scholar] [CrossRef]
- Xia, W.; Wang, R.; Zhu, B.; Rudstam, L.G.; Liu, Y.; Xu, Y.; Xin, W.; Chen, Y. Heavy metal gradients from rural to urban lakes in central China. Ecol. Process 2020, 9, 47. [Google Scholar] [CrossRef]
- Dou, Y.; Yu, X.; Liu, L.; Ning, Y.; Bi, X.; Liu, J. Effects of hydrological connectivity project on heavy metals in Wuhan urban lakes on the time scale. Sci. Total Environ. 2022, 853, 158654. [Google Scholar] [CrossRef] [PubMed]
- Ayejoto, D.A.; Egbueri, J.C. Human health risk assessment of nitrate and heavy metals in urban groundwater in Southeast Nigeria. Acta Ecol. Sin. 2023, in press. [Google Scholar] [CrossRef]
- El-Magd, S.A.A.; Taha, T.; Pienaar, H.H.; Breil, P.; Amer, R.; Namour, P. Assessing heavy metal pollution hazard in sediments of Lake Mariout, Egypt. J. Afr. Earth Sci. 2021, 176, 104116. [Google Scholar] [CrossRef]
- Xiang, Z.; Wu, S.; Zhu, L.; Yang, K.; Lin, D. Pollution characteristics and source apportionment of heavy metal (loid) s in soil and groundwater of a retired industrial park. J. Environ. Sci. 2023, in press. [CrossRef]
- Nawab, J.; Rahman, A.; Khan, S.; Ghani, J.; Ullah, Z.; Khan, H.; Waqas, M. Drinking water quality assessment of government, non-government and self-based schemes in the disaster affected areas of khyber pakhtunkhwa, Pakistan. Expos. Health 2022, 1–17. [Google Scholar] [CrossRef]
- Bhatti, Z.I.; Ishtiaq, M.; Khan, S.A.; Nawab, J.; Ghani, J.; Ullah, Z.; Khan, S.; Baig, S.A.; Muhammad, I.; Din, Z.U. Contamination level, source identification and health risk assessment of potentially toxic elements in drinking water sources of mining and non-mining areas of Khyber Pakhtunkhwa, Pakistan. J. Water Health 2022, 20, 1343–1363. [Google Scholar] [CrossRef] [PubMed]
- Nawab, J.; Khan, S.; Xiaoping, W. Ecological and health risk assessment of potentially toxic elements in the major rivers of Pakistan: General population vs. Fishermen. Chemosphere 2018, 202, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qian, X.; Hu, W.; Wang, Y.; Gao, H. Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China. Sci. Total Environ. 2013, 456, 212–221. [Google Scholar] [CrossRef]
- Amjadian, K.; Sacchi, E.; Rastegari Mehr, M. Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) in soils of different land uses in Erbil metropolis, Kurdistan Region, Iraq. Environ. Monit. Assess. 2016, 188, 605. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Munir, S.; Sajjad, M.; Li, G. Urban park soil contamination by potentially harmful elements and human health risk in Peshawar City, Khyber Pakhtunkhwa, Pakistan. J. Geochem. Explor. 2016, 165, 102–110. [Google Scholar] [CrossRef]
- Chuan, M.; Shu, G.; Liu, J. Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH. Water Air Soil Pollut. 1996, 90, 543–556. [Google Scholar] [CrossRef]
- Li, J.; Rate, A.; Gilkes, R. Fractionation of trace elements in some non-agricultural Australian soils. J. Soil Res. 2003, 41, 1389–1402. [Google Scholar] [CrossRef]
- Grigg, N.; Ahmad, S.; Podger, G.; Kirby, M.; Colloff, M. Water Quality in the Ravi and Sutlej Rivers, Pakistan: A System View; South Asia Sustainable Development Investment Portfolio CSIRO: Canberra, Australia, 2018. [Google Scholar]
- Chen, T.-B.; Zheng, Y.-M.; Lei, M.; Huang, Z.-C.; Wu, H.-T.; Chen, H.; Fan, K.-K.; Yu, K.; Wu, X.; Tian, Q.-Z. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere 2005, 60, 542–551. [Google Scholar] [CrossRef]
- Varol, M.; Tokatlı, C. Seasonal variations of toxic metal (loid) s in groundwater collected from an intensive agricultural area in northwestern Turkey and associated health risk assessment. Environ. Res. 2022, 204, 111922. [Google Scholar] [CrossRef]
- Shi, H.; Zeng, M.; Peng, H.; Huang, C.; Sun, H.; Hou, Q.; Pi, P. Health Risk Assessment of Heavy Metals in Groundwater of Hainan Island Using the Monte Carlo Simulation Coupled with the APCS/MLR Model. Int. J. Environ. Res. Public Health 2022, 19, 7827. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Khan, B.; Asad, N.; Mian, I.; Jamil, M. Traffic-related lead pollution in roadside soils and plants in Khyber Pakhtunkhwa, Pakistan: Implications for human health. Int. J. Environ. Sci. Technol. 2019, 16, 8015–8022. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Cui, X.; Li, H.; Qian, X.; Wang, C.; Sun, Y. Bioaccessibility, sources and health risk assessment of trace metals in urban park dust in Nanjing, Southeast China. Ecotoxicol. Environ. Saf. 2016, 128, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Kravchenko, J.; Lyerly, H.K. The impact of coal-powered electrical plants and coal ash impoundments on the health of residential communities. N. C. Med. J. 2018, 79, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.G.; Spliethoff, H.M.; Ribaudo, L.N.; Lopp, D.M.; Shayler, H.A.; Marquez-Bravo, L.G.; Lambert, V.T.; Ferenz, G.S.; Russell-Anelli, J.M.; Stone, E.B. Lead (Pb) and other metals in New York City community garden soils: Factors influencing contaminant distributions. Environ. Pollut. 2014, 187, 162–169. [Google Scholar] [CrossRef]
- Figueiredo, A.M.G.; Tocchini, M.; dos Santos, T.F. Metals in playground soils of Sao Paulo city, Brazil. Procedia Environ. Sci. 2011, 4, 303–309. [Google Scholar] [CrossRef]
Parameters | F1 | F2 | F3 | F4 |
---|---|---|---|---|
pH | −0.69 | 0.09 | 0.14 | 0.62 |
EC | 0.08 | 0.00 | 0.90 | −0.33 |
TDS | −0.68 | 0.02 | 0.66 | 0.15 |
Cd mg/L | 0.78 | −0.31 | 0.15 | 0.26 |
Cr mg/L | −0.09 | 0.75 | −0.22 | −0.05 |
Pb mg/L | 0.75 | −0.05 | 0.34 | 0.21 |
Ni mg/L | 0.50 | 0.63 | 0.10 | 0.45 |
Cu mg/L | 0.13 | 0.78 | 0.18 | −0.28 |
Eigenvalue | 2.40 | 1.67 | 1.49 | 1.00 |
Variability (%) | 29.9 | 20.9 | 18.6 | 11.3 |
Cumulative % | 29.9 | 50.9 | 69.5 | 80.8 |
UCPs | PTE-PI | PTE-EI | Quality as per PTE-PI Scale |
---|---|---|---|
BPC | 79.8 | 2.25 | Good |
SPC | 113 | 2.80 | Poor |
ZPP | 116 | 3.48 | Poor |
TPP | 73.7 | 2.15 | Good |
JPN | 23.9 | 1.16 | Excellent |
DWPN | 22.9 | 1.19 | Excellent |
PWLPH | 73.4 | 3.35 | Good |
APH | 57.4 | 2.55 | Very good |
SKIPS | 33.1 | 1.95 | Excellent |
WWPS | 55.5 | 2.74 | Very good |
APS | 24.1 | 1.11 | Excellent |
GCGPS | 44.2 | 2.55 | Very good |
SCPM | 74.3 | 3.24 | Good |
YSPM | 43.2 | 2.55 | Very good |
GNPC | 11.4 | 0.810 | Excellent |
PTPC | 17.1 | 1.16 | Excellent |
HNPDK | 28.7 | 1.59 | Excellent |
IPDK | 20.9 | 1.43 | Excellent |
LGPPA | 31.5 | 1.50 | Excellent |
SPPA | 20.0 | 1.30 | Excellent |
Average | 48.2 | 2.04 |
Children | Adults | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UCPs | CRing | CRder | CRing | CRder | CRing | CRder | CRing | CRder | CRing | CRder | CRing | CRder | CRing | CRder | CRing | CRder |
Cr | Cd | Pb | Ni | Cr | Cd | Pb | Ni | |||||||||
BPC | 5.36 × 10−2 | 6.22 × 10−4 | 2.99 × 10−3 | 1.73 × 10−5 | 8.12 × 10−3 | 4.71 × 10−5 | 1.84 × 10−3 | 2.13 × 10−6 | 1.36 × 10−2 | 1.42 × 10−4 | 7.58 × 10−4 | 3.96 × 10−6 | 2.06 × 10−3 | 1.08 × 10−5 | 4.67 × 10−4 | 4.88 × 10−6 |
SPC | 5.76 × 10−2 | 6.68 × 10−4 | 4.77 × 10−3 | 2.77 × 10−5 | 8.96 × 10−3 | 5.20 × 10−5 | 1.38 × 10−3 | 1.60 × 10−6 | 1.46 × 10−2 | 1.53 × 10−4 | 1.21 × 10−3 | 6.32 × 10−6 | 2.28 × 10−3 | 1.19 × 10−5 | 3.50 × 10−4 | 3.66 × 10−6 |
ZPP | 4.34 × 10−2 | 5.03 × 10−4 | 2.78 × 10−3 | 1.61 × 10−5 | 2.10 × 10−2 | 1.22 × 10−4 | 1.81 × 10−3 | 2.10 × 10−6 | 1.12 × 10−2 | 1.15 × 10−4 | 7.06 × 10−4 | 3.68 × 10−6 | 5.34 × 10−3 | 2.79 × 10−5 | 4.61 × 10−4 | 4.81 × 10−6 |
TPP | 6.25 × 10−2 | 7.24 × 10−4 | 2.47 × 10−3 | 1.43 × 10−5 | 9.12 × 10−3 | 5.29 × 10−5 | 9.15 × 10−4 | 1.06 × 10−6 | 1.59 × 10−2 | 1.66 × 10−4 | 6.27 × 10−4 | 3.28 × 10−6 | 2.32 × 10−3 | 1.21 × 10−5 | 2.32 × 10−4 | 2.43 × 10−6 |
JPN | 7.60 × 10−2 | 8.82 × 10−4 | 7.69 × 10−4 | 4.46 × 10−6 | 2.34 × 10−3 | 1.36 × 10−5 | 2.03 × 10−3 | 2.35 × 10−6 | 1.93 × 10−2 | 2.02 × 10−4 | 1.95× 10−4 | 1.02 × 10−6 | 5.95× 10−4 | 3.11 × 10−6 | 5.15× 10−4 | 5.37 × 10−6 |
DWPN | 9.72 × 10−2 | 1.13 × 10−3 | 2.88× 10−4 | 1.67 × 10−6 | 4.75 × 10−3 | 2.76 × 10−5 | 8.61 × 10−4 | 9.99 × 10−7 | 2.47 × 10−2 | 2.58× 10−4 | 7.32 × 10−5 | 3.82 × 10−7 | 1.21 × 10−3 | 6.30 × 10−6 | 2.19× 10−4 | 2.28 × 10−6 |
PWLPH | 2.37 × 10−1 | 2.75 × 10−3 | 1.15 × 10−3 | 6.69 × 10−6 | 1.46 × 10−2 | 8.48 × 10−5 | 2.44 × 10−3 | 2.82 × 10−6 | 6.02 × 10−2 | 6.29 × 10−4 | 2.93 × 10−4 | 1.53 × 10−6 | 3.71 × 10−3 | 1.94 × 10−5 | 6.18 × 10−4 | 6.46 × 10−6 |
APH | 2.27 × 10−1 | 2.63 × 10−3 | 1.45 × 10−3 | 8.40 × 10−6 | 8.08 × 10−3 | 4.69 × 10−5 | 1.72 × 10−3 | 1.99 × 10−6 | 5.76 × 10−2 | 6.01 × 10−4 | 3.68 × 10−4 | 1.92 × 10−6 | 2.05 × 10−3 | 1.07 × 10−5 | 4.36 × 10−4 | 4.55 × 10−6 |
SKIPS | 2.12 × 10−1 | 2.46 × 10−3 | 5.56 × 10−4 | 3.22 × 10−6 | 5.44 × 10−3 | 3.16 × 10−5 | 1.56 × 10−3 | 1.81 × 10−6 | 5.40 × 10−2 | 5.63 × 10−4 | 1.41 × 10−4 | 7.37 × 10−7 | 1.38 × 10−3 | 7.21 × 10−6 | 3.96 × 10−4 | 4.14 × 10−6 |
WWPS | 3.15 × 10−1 | 3.65 × 10−3 | 1.89 × 10−3 | 1.09 × 10−5 | 4.16 × 10−3 | 2.41 × 10−5 | 2.33 × 10−3 | 2.70 × 10−6 | 8.00 × 10−2 | 8.35 × 10−4 | 4.79 × 10−4 | 2.50 × 10−6 | 1.06 × 10−3 | 5.51 × 10−6 | 5.92 × 10−4 | 6.18 × 10−6 |
APS | 1.12 × 10−1 | 1.30 × 10−3 | 4.60 × 10−4 | 2.67 × 10−6 | 4.20 × 10−3 | 2.43 × 10−5 | 2.49 × 10−4 | 2.89 × 10−7 | 2.85 × 10−2 | 2.98 × 10−4 | 1.17 × 10−4 | 6.10 × 10−7 | 1.07 × 10−3 | 5.57 × 10−6 | 6.34 × 10−5 | 6.61 × 10−7 |
GCGPS | 3.28 × 10−1 | 3.80 × 10−3 | 1.20 × 10−3 | 6.97 × 10−6 | 4.36 × 10−3 | 2.53 × 10−5 | 1.85 × 10−3 | 2.14 × 10−6 | 8.33 × 10−2 | 8.69 × 10−4 | 3.05 × 10−4 | 1.59 × 10−6 | 1.11 × 10−3 | 5.78 × 10−6 | 4.69 × 10−4 | 4.90 × 10−6 |
SCPM | 2.84 × 10−1 | 3.29 × 10−3 | 1.83 × 10−3 | 1.06 × 10−5 | 1.09 × 10−2 | 6.32 × 10−5 | 1.84 × 10−3 | 2.14 × 10−6 | 7.20 × 10−2 | 7.52 × 10−4 | 4.64 × 10−4 | 2.42 × 10−6 | 2.77 × 10−3 | 1.44 × 10−5 | 4.68 × 10−4 | 4.89 × 10−6 |
YSPM | 2.83 × 10−1 | 3.28 × 10−3 | 6.79 × 10−4 | 3.94 × 10−6 | 7.35 × 10−3 | 4.27 × 10−5 | 1.82 × 10−3 | 2.11 × 10−6 | 7.18 × 10−2 | 7.49 × 10−4 | 1.73 × 10−4 | 9.01 × 10−7 | 1.87 × 10−3 | 9.75 × 10−6 | 4.62 × 10−4 | 4.82 × 10−6 |
GNPC | 9.87 × 10−2 | 1.14 × 10−3 | 2.95 × 10−4 | 1.71 × 10−6 | 1.03 × 10−3 | 5.99 × 10−6 | 8.07 × 10−4 | 9.36 × 10−7 | 2.51 × 10−2 | 2.62 × 10−4 | 7.49 × 10−5 | 3.91 × 10−7 | 2.62 × 10−4 | 1.37 × 10−6 | 2.05 × 10−4 | 2.14 × 10−6 |
PTPC | 1.60 × 10−1 | 1.86 × 10−3 | 9.61 × 10−5 | 5.57 × 10−7 | 3.53 × 10−3 | 2.05 × 10−5 | 4.42 × 10−4 | 5.13 × 10−7 | 4.06 × 10−2 | 4.24 × 10−4 | 2.44 × 10−5 | 1.27 × 10−7 | 8.96 × 10−4 | 4.68 × 10−6 | 1.12 × 10−4 | 1.17 × 10−6 |
HNPDK | 1.92 × 10−1 | 2.23 × 10−3 | 3.98 × 10−4 | 2.31 × 10−6 | 5.27 × 10−3 | 3.06 × 10−5 | 5.26 × 10−4 | 6.11 × 10−7 | 4.88 × 10−2 | 5.09 × 10−4 | 1.01 × 10−4 | 5.28 × 10−7 | 1.34 × 10−3 | 6.99 × 10−6 | 1.34 × 10−4 | 1.40 × 10−6 |
IPDK | 2.20 × 10−1 | 2.55 × 10−3 | 4.60 × 10−4 | 2.67 × 10−6 | 2.15 × 10−3 | 1.25 × 10−5 | 7.13 × 10−4 | 8.28 × 10−7 | 5.59 × 10−2 | 5.83 × 10−4 | 1.17 × 10−4 | 6.10 × 10−7 | 5.46 × 10−4 | 2.85 × 10−6 | 1.81 × 10−4 | 1.89 × 10−6 |
LGPPA | 8.62 × 10−2 | 1.00 × 10−3 | 3.77 × 10−4 | 2.19 × 10−6 | 6.93 × 10−3 | 4.02 × 10−5 | 1.66 × 10−3 | 1.92 × 10−6 | 2.19 × 10−2 | 2.29 × 10−4 | 9.59 × 10−5 | 5.00 × 10−7 | 1.76 × 10−3 | 9.19 × 10−6 | 4.21 × 10−4 | 4.40 × 10−6 |
SPPA | 1.28 × 10−1 | 1.48 × 10−3 | 3.98 × 10−4 | 2.31 × 10−6 | 2.73 × 10−3 | 1.58 × 10−5 | 2.05 × 10−3 | 2.38 × 10−6 | 3.24 × 10−2 | 3.39 × 10−4 | 1.01 × 10−4 | 5.28 × 10−7 | 6.92 × 10−4 | 3.61 × 10−6 | 5.21 × 10−4 | 5.43 × 10−6 |
TCR | 1.66 × 10−1 | 1.27 × 10−3 | 6.79 × 10−3 | 1.44 × 10−3 | 4.20 × 10−2 | 3.23 × 10−4 | 1.72 × 10−3 | 3.67 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghani, J.; Nawab, J.; Ullah, Z.; Rafiq, N.; Hasan, S.Z.; Khan, S.; Shah, M.; Almutairi, M.H. Multivariate Statistical Methods and GIS-Based Evaluation of Potable Water in Urban Children’s Parks Due to Potentially Toxic Elements Contamination: A Children’s Health Risk Assessment Study in a Developing Country. Sustainability 2023, 15, 13177. https://doi.org/10.3390/su151713177
Ghani J, Nawab J, Ullah Z, Rafiq N, Hasan SZ, Khan S, Shah M, Almutairi MH. Multivariate Statistical Methods and GIS-Based Evaluation of Potable Water in Urban Children’s Parks Due to Potentially Toxic Elements Contamination: A Children’s Health Risk Assessment Study in a Developing Country. Sustainability. 2023; 15(17):13177. https://doi.org/10.3390/su151713177
Chicago/Turabian StyleGhani, Junaid, Javed Nawab, Zahid Ullah, Naseem Rafiq, Shah Zaib Hasan, Sardar Khan, Muddaser Shah, and Mikhlid H. Almutairi. 2023. "Multivariate Statistical Methods and GIS-Based Evaluation of Potable Water in Urban Children’s Parks Due to Potentially Toxic Elements Contamination: A Children’s Health Risk Assessment Study in a Developing Country" Sustainability 15, no. 17: 13177. https://doi.org/10.3390/su151713177
APA StyleGhani, J., Nawab, J., Ullah, Z., Rafiq, N., Hasan, S. Z., Khan, S., Shah, M., & Almutairi, M. H. (2023). Multivariate Statistical Methods and GIS-Based Evaluation of Potable Water in Urban Children’s Parks Due to Potentially Toxic Elements Contamination: A Children’s Health Risk Assessment Study in a Developing Country. Sustainability, 15(17), 13177. https://doi.org/10.3390/su151713177