Efficacy of Metarhizium anisopliae against the Greater Pumpkin Fly Dacus bivitattus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Source and Rearing Conditions
2.2. Fungi
2.3. Effect of M. anisopliae Sprays on Adult D. bavitattus Mortality
2.4. Effect of Sand Inoculated with M. anisopliae on Larval and Pupal D. bavitattus Mortality and Adult Eclosion and Survival
2.5. Statistics
3. Results
3.1. Conidial Acquisition and Adult Mortality Following Direct Exposure to M. anisopliae
3.2. Larval and Pupal Mortality in M. anisopliae-Treated Sand
3.3. Adult Eclosion from M. anisopliae-Treated Sand
3.4. Mortality of Adults Eclosed from M. anisopliae-Treated Sand
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCreight, J.D. Cultivation and uses of cucurbits. In Genetics and Genomics of the Cucurbitaceae; Grumet, R., Katzir, N., Garcia-Mas, J., Eds.; Springer: New York, NY, USA, 2016. [Google Scholar]
- Rolnik, A.; Olas, B. Vegetables from the Cucurbitaceae family and their products: Positive effect on human health. Nutrition 2020, 78, 110788. [Google Scholar] [CrossRef] [PubMed]
- Horticultural Crops Directorate (HCD). Horticulture Validated Report 2016–2017; Ministry of Agriculture, Livestock and Fisheries: Nairobi, Kenya, 2017. [Google Scholar]
- Badii, K.B.; Billah, M.K.; Afreh-Nuamah, K.; Obeng-Ofori, D. Species composition and host range of fruit-infesting flies (Diptera: Tephritidae) in northern Ghana. Int. J. Trop. Insect Sci. 2015, 35, 137–151. [Google Scholar] [CrossRef]
- De Meyer, M.; Delatte, H.; Mwatawala, M.; Quilici, S.; Vayssières, J.F.; Virgilio, M. A review of the current knowledge on Zeugodacus cucurbitae (Coquillett) (Diptera, Tephritidae) in Africa, with a list of species included in Zeugodacus. ZooKeys 2015, 540, 539–557. [Google Scholar] [CrossRef]
- Mwatawala, M.; Kudra, A.; Mkiga, A.; Godfrey, E.; Jeremiah, S.; Virgilio, M.; De Meyer, M. Preference of Zeugodacus cucurbitae (Coquillett) for three commercial fruit vegetable hosts in natural and semi natural conditions. Fruits 2015, 70, 333–339. [Google Scholar] [CrossRef]
- Dhillon, M.K.; Singh, R.; Naresh, J.S.; Sharma, H.C. The melon fruit fly, Bactrocera cucurbitae: A review of its biology and management. J. Insect Sci. 2005, 5, 40. [Google Scholar]
- Kambura, C.; Tanga, C.M.; Kilalo, D.; Muthomi, J.; Salifu, D.; Rwomushana, I.; Mohamed, S.A.; Ekesi, S. Composition, host range and host suitability of vegetable-infesting Tephritids on cucurbits cultivated in Kenya. Afr. Entomol. 2018, 26, 379–397. [Google Scholar] [CrossRef]
- Zida, I.; Nacro, S.; Dabiré, R.; Somda, I. Seasonal abundance and diversity of fruit flies (Diptera: Tephritidae) in three types of plant formations in Western Burkina Faso, West Africa. Ann. Entomol. Soc. Am. 2020, 113, 343–354. [Google Scholar] [CrossRef]
- Tuo, Y.; Kone, K.; Yapo, M.L.; Herve, K.K. Abundance and incidence of zucchini (Cucurbita pepo L.) flies in the Korhogo Department of northern Côte d’Ivoire and pest control methods used by farmers. J. Exp. Agric. 2018, 21, 1–7. [Google Scholar] [CrossRef]
- Mwatawala, M.W.; De Meyer, M.; Makundi, R.H.; Maerere, A.P. Host range and distribution of fruit-infesting pestiferous fruit flies (Diptera, Tephritidae) in selected areas of Central Tanzania. Bull. Entomol. Res. 2009, 99, 629–641. [Google Scholar] [CrossRef]
- Mwatawala, M.W.; De Meyer, M.; Makundi, R.H.; Maerere, A.P. Biodiversity of fruit flies (Diptera, Tephritidae) in orchards in different agro-ecological zones of the Morogoro region, Tanzania. Fruits 2006, 61, 321–332. [Google Scholar] [CrossRef]
- Mokam, D.G.; Djiéto-Lordon, C.; Bilong Bilong, C.F.; Lumaret, J.P. Host susceptibility and pest status of fruit flies (Diptera: Tephritidae) attacking cucurbits in two agroecological zones of Cameroon, Central Africa. Afr. Entomol. 2018, 26, 317–332. [Google Scholar] [CrossRef]
- Doorenweerd, C.; Leblanc, L.; Norrbom, A.L.; San Jose, M.; Rubinoff, D. A global checklist of the 932 fruit fly species in the tribe Dacini (Diptera, Tephritidae). ZooKeys 2018, 730, 17–54. [Google Scholar] [CrossRef] [PubMed]
- Layodé, B.F.R.; Onzo, A.; Karlsson, M.F. Watermelon-infesting Tephritidae fruit fly guild and parasitism by Psyttalia phaeostigma (Hymenoptera: Braconidae). Int. J. Trop. Insect Sci. 2020, 40, 157–166. [Google Scholar] [CrossRef]
- White, I.M.; Elson-Harris, M. Fruit Flies of Economic Significance: Their Identification and Bionomics; CAB International: Wallingford, UK, 1992. [Google Scholar]
- Kibira, M.; Affognon, H.; Njehia, B.; Muriithi, B.; Mohamed, S.; Ekesi, S. Economic evaluation of integrated management of fruit fly in mango production in Embu County, Kenya. Afr. J. Agric. Resour. Econ. 2015, 10, 343–353. [Google Scholar]
- Vontas, J.; Hernández-Crespo, P.; Margaritopoulos, J.T.; Ortego, F.; Feng, H.T.; Mathiopoulos, K.D.; Hsu, J.C. Insecticide resistance in Tephritid flies. Pestic. Biochem. Physiol. 2011, 100, 199–205. [Google Scholar] [CrossRef]
- Usman, M.; Gulzar, S.; Wakil, W.; Wu, S.; Piñero, J.C.; Leskey, T.C.; Nixon, L.J.; Oliveira-Hofman, C.; Toews, M.D.; Shapiro-Ilan, D. Biological and microbial control virulence of entomopathogenic fungi to Rhagoletis pomonella (Diptera: Tephritidae) and interactions with entomopathogenic nematodes. J. Econ. Entomol. 2020, 113, 2627–2633. [Google Scholar]
- Toledo-Hernández, R.A.; Toledo, J.; Sánchez, D. Effect of Metarhizium anisopliae (Hypocreales: Clavicipitaceae) on food consumption and mortality in the Mexican fruit fly, Anastrepha ludens (Diptera: Tephritidae). Int. J. Trop. Insect Sci. 2018, 38, 254–260. [Google Scholar] [CrossRef]
- Akutse, K.S.; Subramanian, S.; Maniania, N.K.; Dubois, T.; Ekesi, S. Biopesticide research and product development in Africa for sustainable agriculture and food security–experiences from the International Centre of Insect Physiology and Ecology. Front. Sustain. Food Syst. 2020, 4, 563016. [Google Scholar] [CrossRef]
- Elghadi, E.; Port, G.R. Use of entomopathogenic fungi for the biological control of the greater melon fly Dacus frontalis in Libya. In Area-Wide Management of Fruit Fly Pests; Perez-Staples, D., Diaz-Fleischer, F., Montoya, P., Maria Vera, M., Eds.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Muriuki, C.; Guantai, M.; Namikoye Samita, E.; Mulwa, J.; Nyamai, M.; Kasina, M. Abundance and diversity of frugivorous fruit flies in Kandara, Murang’a County, Kenya. Afr. Phytosanitary J. 2020, 2, 41–50. [Google Scholar] [CrossRef]
- Isabirye, B.E.; Akol, A.M.; Mayamba, A.; Nankinga, C.K.; Rwomushana, I. Species composition and community structure of fruit flies (Diptera: Tephritidae) across major mango-growing regions in Uganda. Int. J. Trop. Insect Sci. 2015, 35, 69–79. [Google Scholar] [CrossRef]
- Dimbi, S.; Maniania, N.K.; Lux, S.A.; Ekesi, S.; Mueke, J.K. Pathogenicity of Metarhizium anisopliae (Metsch.) Sorokin and Beauveria bassiana (Balsamo) Vuillemin, to three adult fruit fly species: Ceratitis capitata (Weidemann), C. rosa var. fasciventris Karsch and C. cosyra (Walker) (Diptera: Tephritidae). Mycopathologia 2003, 156, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Ekesi, S.; Maniania, N.K.; Lux, S.A. Mortality in three African tephritid fruit fly puparia and adults caused by the entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana. Biocontrol Sci. Technol. 2002, 12, 7–17. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Hlina, B.L. Ecotox: A Package for Analysis of Ecotoxicology. R Package Version 1.4.2. 2020. Available online: https://cran.r-project.org/package=ecotox (accessed on 24 November 2021).
- Therneau, T.M. A Package for Survival Analysis in R. 2020. Available online: https://cran.r-project.org/package=survival (accessed on 24 November 2021).
- Lenth, R.V. Least-squares means: The R Package lsmeans. J. Stat. Softw. 2016, 69, 1–33. [Google Scholar] [CrossRef]
- Ortiz-Urquiza, A.; Keyhani, N.O. Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects 2013, 4, 357–374. [Google Scholar] [CrossRef]
- Dimbi, S.; Maniania, N.K.; Ekesi, S. Effect of Metarhizium anisopliae inoculation on the mating behavior of three species of African tephritid fruit flies, Ceratitis capitata, Ceratitis cosyra and Ceratitis fasciventris. Biol. Control 2009, 50, 111–116. [Google Scholar] [CrossRef]
- Bidochka, M.J.; Small, C. Phylogeography of Metarhizium, an insect pathogenic fungus. In Insect-Fungal Associations; Vega, F.E., Blackwell, M., Eds.; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Onsongo, S.K.; Gichimu, B.M.; Akutse, K.S.; Dubois, T.; Mohamed, S.A. Performance of three isolates of Metarhizium anisopliae and their virulence against Zeugodacus cucurbitae under different temperature regimes, with global extrapolation of their efficiency. Insects 2019, 10, 270. [Google Scholar] [CrossRef]
- Quesada-Moraga, E.; Martin-Carballo, I.; Garrido-Jurado, I.; Santiago-Álvarez, C. Horizontal transmission of Metarhizium anisopliae among laboratory populations of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Biol. Control 2008, 47, 115–124. [Google Scholar] [CrossRef]
- Arthurs, S.; Thomas, M.B. Effects of temperature and relative humidity on sporulation of Metarhizium anisopliae var. acridum in mycosed cadavers of Schistocerca gregaria. J. Invertebr. Pathol. 2001, 78, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Lezama-Gutiérrez, R.; La Luz, A.T.D.; Molina-Ochoa, J.; Rebolledo-Dominguez, O.; Pescador, A.R.; López-Edwards, M.; Aluja, M. Virulence of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) on Anastrepha ludens (Diptera: Tephritidae): Laboratory and field trials. J. Econ. Entomol. 2000, 93, 1080–1084. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liang, Q.; Chen, M.; Ye, H.; Liao, Y.; Yin, J.; Lü, L.; Lei, Y.; Cai, D.; Jaleel, W.; et al. Susceptibility of oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae) pupae to entomopathogenic fungi. Appl. Entomol. Zool. 2021, 56, 269–275. [Google Scholar] [CrossRef]
- Mahmoud, M.F. Susceptibility of the peach fruit fly, Bactorecera zonata (Saunders) (Diptera: Tephritidae) to three entomopathogenic fungi. Egypt. J. Biol. Pest Control 2009, 19, 169–175. [Google Scholar]
- Onsongo, S.K.; Mohamed, S.A.; Akutse, K.S.; Gichimu, B.M.; Dubois, T. The entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana for management of the melon fly Zeugodacus cucurbitae: Pathogenicity, horizontal transmission, and compatability with cuelure. Insects 2022, 13, 859. [Google Scholar] [CrossRef] [PubMed]
- Renkema, J.; Cutler, G.C.; Sproule, J.M.; Johnson, D.L. Effect of Metarhizium anisopliae (Clavicipitaceae) on Rhagoletis mendax (Diptera: Tephritidae) pupae and adults. Can. Entomol. 2020, 152, 237–248. [Google Scholar] [CrossRef]
Isolate | Slope (Mean ± SE a) | LT50 (Days) (95% FL b) |
---|---|---|
ICIPE 18 | 4.65 ± 0.03 | 3.11 (2.90–3.31) a |
ICIPE 20 | 4.53 ± 0.03 | 3.46 (3.13–3.76) ab |
ICIPE 30 | 3.76 ± 0.02 | 3.62 (3.25–3.98) ab |
ICIPE 48 | 3.66 ± 0.02 | 4.39 (4.08–4.70) bc |
ICIPE 62 | 2.64 ± 0.02 | 4.30 (3.76–4.86) bc |
ICIPE 69 | 3.76 ± 0.02 | 3.52 (3.27–3.76) ab |
ICIPE 84 | 3.76 ± 0.02 | 4.07 (3.84–4.30) bc |
ICIPE 91 | 3.85 ± 0.02 | 3.86 (3.61–4.12) b |
ICIPE 94 | 3.54 ± 0.02 | 4.47 (4.18–4.75) c |
Isolates | Larval Mortality (%) (Mean ± SE a) | Pupal Mortality (%) (Mean ± SE) | ||||
---|---|---|---|---|---|---|
Exp 1 | Exp 2 | Exp 3 | Exp 1 | Exp 2 | Exp 3 | |
ICIPE 18 | 46.25 ± 2.39 a | 43.75 ± 5.15 a | 67.50 ± 3.23 a | 41.25 ± 4.73 ab | 35.00 ± 6.12 ab | 20.00 ± 4.08 c |
ICIPE 20 | 43.75 ± 3.15 ab | 42.50 ± 3.23 a | 61.25 ±5.54 a | 42.5 ± 4.33 ab | 36.25 ± 4.27 ab | 20.00 ± 6.45 c |
ICIPE 30 | 40.00 ± 3.54 ab | 31.25 ± 4.27 bc | 45.00 ± 2.04 b | 48.75 ± 2.39 a | 41.25 ± 2.39 a | 46.25 ± 3.15 a |
ICIPE 48 | 26.25 ± 3.15 c | 22.50 ± 3.23 cd | 26.25 ± 2.39 d | 35.00 ± 4.08 b | 15.00 ± 3.54 d | 37.50 ± 2.50 ab |
ICIPE 62 | 33.75 ± 4.73 bc | 31.25 ± 3.75 bc | 61.25 ± 2.39 a | 36.25 ± 5.54 b | 13.75 ± 4.27 d | 13.75 ± 3.75 c |
ICIPE 69 | 43.75 ± 2.39 ab | 31.25 ± 3.15 bc | 41.25 ± 2.39 b | 40.00 ± 5.77 ab | 28.75 ± 3.15 bc | 45.00 ± 2.04 a |
ICIPE 84 | 33.75 ± 3.75 bc | 35.00 ± 2.04 ab | 27.50 ± 1.44 cd | 37.50 ± 2.50 b | 15.00 ± 2.04 d | 36.25 ± 3.75 ab |
ICIPE 91 | 26.25 ± 3.75 c | 21.25 ± 2.39 d | 30.00 ± 2.04 cd | 22.50 ± 4.33 c | 16.25 ± 2.39 d | 38.75 ± 6.25 ab |
ICIPE 94 | 23.75 ± 4.27 c | 31.25 ± 4.27 bc | 37.50 ± 5.20 bc | 42.50 ± 3.23 ab | 20.00 ± 2.04 cd | 33.75 ± 3.15 b |
Isolates | Exp 1 | Exp 2 | Exp 3 |
---|---|---|---|
ICIPE 18 | 12.50 ± 3.23 de | 21.25 ± 6.57 d | 12.50 ± 1.44 cd |
ICIPE 20 | 13.75 ± 2.39 de | 21.25 ± 2.39 d | 18.75 ± 1.25 bcd |
ICIPE 30 | 11.25 ± 2.39 e | 27.50 ± 2.50 cd | 8.75 ± 2.39 d |
ICIPE 48 | 41.25 ± 4.27 bc | 62.5 ± 4.79 b | 36.25 ± 2.39 b |
ICIPE 62 | 30.00 ± 2.04 bcde | 55.00 ± 6.45 b | 25.00 ± 2.04 bcd |
ICIPE 69 | 16.25 ± 3.75 cde | 40.00 ± 5.40 bcd | 13.75 ± 2.39 cd |
ICIPE 84 | 28.75 ± 3.15 cde | 50.00 ± 3.54 bc | 36.25 ± 3.75 b |
ICIPE 91 | 51.25 ± 4.73 b | 62.50 ± 4.33 b | 31.25 ± 4.27 bc |
ICIPE 94 | 33.75 ± 3.15 bcd | 48.75 ± 5.15 bc | 28.75 ± 4.27 bcd |
Control | 91.25 ± 3.75 a | 91.25 ± 3.15 a | 86.25 ± 1.25 a |
Isolates | Slope (Mean ± SE a) | LT50 (Days) (95% FL b) |
---|---|---|
ICIPE 18 | 2.04 ± 0.003 | 5.81 (5.05–6.60) ab |
ICIPE 20 | 2.13 ± 0.003 | 6.95 (6.17–7.80) b |
ICIPE 30 | 1.78 ± 0.003 | 4.48 (3.66–5.28) a |
ICIPE 48 | 1.75 ± 0.004 | 15.70 (14.50–17.20) ef |
ICIPE 62 | 1.47 ± 0.003 | 11.70 (10.30–13.90) de |
ICIPE 69 | 2.10 ± 0.003 | 8.70 (7.84–9.74) c |
ICIPE 84 | 1.85 ± 0.004 | 11.60 (10.60–12.90) d |
ICIPE 91 | 1.84 ± 0.004 | 14.10 (12.60–16.40) def |
ICIPE 94 | 1.63 ± 0.004 | 15.40 (13.10–19.30) ef |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubois, T.; Onsongo, S.K.; Omuse, E.R.; Odhiambo, J.A.; Akutse, K.S.; Mohamed, S.A. Efficacy of Metarhizium anisopliae against the Greater Pumpkin Fly Dacus bivitattus. Sustainability 2023, 15, 13185. https://doi.org/10.3390/su151713185
Dubois T, Onsongo SK, Omuse ER, Odhiambo JA, Akutse KS, Mohamed SA. Efficacy of Metarhizium anisopliae against the Greater Pumpkin Fly Dacus bivitattus. Sustainability. 2023; 15(17):13185. https://doi.org/10.3390/su151713185
Chicago/Turabian StyleDubois, Thomas, Susan K. Onsongo, Evanson R. Omuse, Joseph A. Odhiambo, Komivi S. Akutse, and Samira A. Mohamed. 2023. "Efficacy of Metarhizium anisopliae against the Greater Pumpkin Fly Dacus bivitattus" Sustainability 15, no. 17: 13185. https://doi.org/10.3390/su151713185
APA StyleDubois, T., Onsongo, S. K., Omuse, E. R., Odhiambo, J. A., Akutse, K. S., & Mohamed, S. A. (2023). Efficacy of Metarhizium anisopliae against the Greater Pumpkin Fly Dacus bivitattus. Sustainability, 15(17), 13185. https://doi.org/10.3390/su151713185