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Abstract: Clay soil is widely distributed in engineering foundations. Because of its poor stability,
low load-bearing capacity, and poor water stability, it does not provide a high-quality foundation.
Microbial-induced calcium carbonate precipitation (MICP) is a novel soil consolidation technique. The
basic principle of this technique is that microorganisms induce calcium carbonate deposition in the
soil, solidifying it. The reinforcement treatment of clayey soil via MICP with fiber reinforcement can
make full use of the advantages of both techniques to improve the mechanical properties and water
stability of the soil. In this study, in order to facilitate engineering applications, bacillus pasteurii
liquid was mixed with coconut-fiber-reinforced soil using the mixing method, and a microbial
solidification test was carried out on the reinforced clayey soil with fiber contents of 0, 0.2%, 0.4%, and
0.6% (mass ratio). By conducting triaxial consolidation without a drainage test, the calcium carbonate
content determination test and the disintegration test were combined with SEM microscopic image
analysis to compare and analyze the mechanical properties and water stability of clayey soil under
different fiber treatments. The results show the following: (1) The coupling of the two techniques can
effectively improve the shear strength of the soil. The shear strength first increased and then decreased
with the increase in the fiber content. The optimum fiber content is 0.4%, and the shear strength is
120% higher than that of plain soil. (2) The addition of fiber significantly increased the cohesive force
of the clayey soil. In addition, the friction angle was also increased by the synergistic effect of the
fiber and calcium carbonate. The cohesive force was increased in the range of 3.2~24.4 kPa, and the
internal friction angle was increased in the range of 2.2◦~6.4◦. (3) As the fiber content increased, the
disintegration resistance of the solidified soil was obviously improved, and the disintegration rate
decreased with the increase in fiber content. When the fiber content was 0.6%, the final disintegration
rate was the lowest. (4) Fiber reinforcement increased the colonization space of the microorganisms
and improved the deposition efficiency and yield of the calcium carbonate, and the cementing effect
of the calcium carbonate promoted fiber reinforcement.

Keywords: microbial curing; fiber reinforcement; coconut fiber; triaxial test; water stability

1. Introduction

As a class of soil that is widely distributed in China, clayey soil is a medium–soft soil
type. Its disadvantages, such as poor stability, low load-bearing capacity, and poor water
stability, have caused difficulties in engineering construction in coastal areas. Traditional
soil reinforcement methods, such as the large mechanical compaction method and the
chemical grouting method, generally consume a large amount of energy and have long
construction periods and high costs. Furthermore, mechanical compaction disturbs the soil
and destroys its original structure, while chemical grouting often pollutes the soil and is
thus not environmentally friendly. Therefore, the research and development of technology
that has low energy consumption and green-curing abilities could hold significant promise.
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In recent years, the technology of microbial-induced calcium carbonate precipitation
(MICP) has attracted a great deal of attention because of its simple, clean, and efficient
construction; it is a biochemical mineralization process, which occurs inside the soil. Bacte-
ria can adsorb the Ca2+ in the solution on environmental species cell surfaces. Moreover,
urea decomposes into CO3

2− and NH4
1+, and Ca2+ combines with CO3

2− to produce a
large number of calcium carbonate crystals on a cell’s surface. The large amount of calcium
carbonate that is generated on the surface of the bacteria distributed throughout the soil
bonds the soil micro-particles and fills the internal pores and fissures of the material, thus
improving the physical and mechanical properties of the soil. The chemical formula of the
reaction is as follows [1]:

Ca2+ + Cell→ Cell−Ca2+, (1)

NH2 −CO−NH2 + H2O Urease−−−→ 2NH+
4 + CO2+

3 , (2)

CO2+
3 + Cell−Ca2+ → Cell−CaCO3. (3)

Whiffin et al. first used MICP technology to solidify loose sand and improve its macro-
scopic mechanical properties [1]. Chu, J. et al. and Qabany et al. tested the curing effect of
MICP technology on sand by carrying out mechanical tests [2,3]. Hanlong Liu et al. carried
out a field test based on MICP technology on an island in the South China Sea, and the
results showed that the surface strength of the calcareous sand foundation strengthened by
MICP was significantly improved, with a good overall effect [4]. Mingjuan Cui et al. carried
out a series of studies on the effects of different chemical treatment methods and particle
sizes on microbial solidification, and they analyzed the influence of various factors on the
mechanical properties of MICP-modified soil [5,6]. Stocks-Fischer et al. found that the
number, size, and morphology of calcium carbonate crystals were different at different tem-
peratures and pH values [7,8]. Wang et al. found that when the bacterial buds were placed
in a neutral (pH = 7) or weakly alkaline (pH = 9.1) environment, the urea decomposition
rate reached more than 90%, while in a strong alkaline environment (pH = 12.5), the rate
was only 5% [9]. Xiaohui Cheng et al. used microbial solidification technology to reinforce
a liquefied sand foundation and studied its dynamic characteristics [10]. In a study of
red–brown basalt residual soil, Yanrui Chen et al. found that the shear strength of the soil
was significantly improved after microbial solidification [11]. The effectiveness of MICP
technology in improving clayey soil was verified by John Xie et al., who used it to improve
the water stability of clayey soil [12]. The disintegration of microbially improved loess was
discussed by Tianchi Xu et al. [13]. Lu Liu et al. used the method of microbial solidification
to treat dams. The anti-erosion ability of the dam was improved after surface treatment [14].
Xiaojun Liu et al. discussed the application of MICP technology to the repair and solidi-
fication of fissures in earthen sites [15]. The effect of MICP on the mechanical properties
of calcareous sand was investigated by Hao Li et al. [16]. Through penetration and scour
tests, they found that the MICP-FR synergistic curing technique significantly improved
the structural strength and erosion resistance of calcareous sand. De Muynck et al. used
bacillus and calcium salt solutions to treat concrete using the soaking method; they found
that, as the calcium source, CaCl2 had a better treatment effect [17]. Willem De Muynck et al.
used Bacillus sphaericus to induce the formation of calcium carbonate precipitation, which
significantly improved the permeability resistance, freeze resistance, and carbonization
resistance of cement mortar [17]. Xiaolu Yuan studied the protective enhancement effect of
microbial mineralization on cement-based materials by using the bacterial solution soaking
method. The strength of cement samples was improved after soaking with the bacterial
solution, and the adaptability of the thioaluminate cement base to microbial mineralization
was better [18]. P. Gosh et al. mixed shewanella into cement mortar, and the fibrous filling
that was formed improved the pore structure of the cement mortar, thus significantly
increasing the compressive strength of the specimen [19]. Yu Ding et al. discussed the
constitutive model and the damage evolution law of a fiber-reinforced vegetated concrete
substrate, providing a theoretical reference for the accurate analysis and evaluation of the
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mechanical properties of the substrate [20]. Van Tittelboom et al. injected a gel-immobilized
bacterial suspension into concrete cracks to improve the repair effect of cracks [21].

Although the strength of the solidified soil has been seen to be improved by MICP
technology, it has weak deformation resistance and poor toughness, and, to a large extent,
it is a typical brittle material; therefore, the strength is lost instantly after damage and
there are certain safety risks involved in using it in construction. Fiber reinforcement
is a technology that has emerged in recent years; the addition of fiber has a restraining
effect on the soil deformation caused by external loads and limits the development of
damaged surfaces and fissures so as to improve the engineering properties of the soil. Many
scholars have conducted research on this matter. Jianlong Liu et al. conducted unconfined
compressive strength tests with different reinforcement amounts, reinforcement lengths,
and reinforcement methods. They determined the optimal fiber content and studied the
effect of the reinforcement method on the soil [22]. Liangyong Li et al. used coir shell
fiber to strengthen red clay foundations, and the research results provided a reference
for the selection of foundation-strengthening materials and foundation strengthening
in the Hainan region of China [23]. Wei Xu et al. reinforced soil–cement with glass
fiber and studied the influence of the fiber on the durability and water stability of the
soil–cement [24]. Bo Pan et al. studied the effects of palm fiber on the shear strength
and deformation resistance of vegetated concrete under dry and wet cycles, providing
a necessary scientific basis for improving the long-term stability of vegetated concrete
substrates [25]. Jianzhuang Xiao et al. found that the addition of sisal fiber can effectively
improve the fracture performance of recycled aggregate concrete [26]. Zhenlin Qin et al.
discussed the influence of sisal fiber and glass powder on the mechanical properties
of concrete [27]. Jianbin Hao et al. studied the effect and mechanism of fly-ash–sisal
fiber composite that improved expansive soil, and provided reference for the design and
construction of expansive soil subgrade engineering and slope protection engineering [28].
Junjie Zheng’s team found that the addition of fiber can improve the toughness and
strength of microbial solidified soil [29,30]. Sai Li et al. studied the effect of corn silk
fiber on the shear strength of microbial solidified sludge [31]. John Xie et al. found that
adding different amounts of fiber to microbially solidified sand can, to varying degrees,
improve the strength of the soil [32]. Junling Liang et al. studied the effects of carbon
fiber reinforcement and sand particle shapes on the mechanical properties of microbially
solidified sand [33]. Choi et al. and Li et al. improved the brittle damage properties of
microbially cured soil using the reinforcement technique and discussed the effect of the
fiber content on the soil [34,35]. Guo Cheng et al. explored the internal mechanism of the
mechanical properties and strength growth of solidified purple soil under different fiber
contents and different grouting times [36]. These examples show that the combination of
the fiber reinforcement technique and the microbial-induced calcium carbonate deposition
technique can be used to improve the strength and toughness of soil.

In order to study the mechanical properties and water stability of microbially solidified
soil with the addition of fiber, coconut shell fiber was added into clayey soil using the
mixing method, and the soil was solidified with a bacterial liquid. The addition of natural
coconut shell fiber alleviates the brittleness of soil caused by the MICP technology, and the
synergistic effect of the two technologies also improves the water stability of soil, thereby
improving its erosion resistance. The effect of different fiber contents on the shear strength
of the solidified soil was studied via a triaxial consolidated undrained shear test of the
microbially solidified reinforced soil. The effect of the fiber content on its disintegration rate
was investigated with a disintegration test. The coupling mechanism of MICP technology
and the fiber reinforcement technology was analyzed through the determination of the
calcium carbonate content and through SEM electron microscopy tests. Their effectiveness
and applicability are discussed in this paper to provide a reference for the application of
the two technologies in soil reinforcement of areas with clayey soil.
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2. Experimental Materials and Methods
2.1. Experimental Materials
2.1.1. Clayey Soil and Fiber

The soil used in the test was taken from a site in Jingmen, Hubei, three meters un-
derground. The soil samples were reddish brown and yellowish brown. The soil quality
was not uniform. The basic physical indexes of the soil were measured in the laboratory:
the moisture content of the soil was measured by the drying method, the density of the
soil was measured by the ring knife method and the dry density of the soil was calculated.
The liquid plastic limit of the soil was measured by the liquid plastic limit combined mea-
surement method, and other required data were calculated according to the formula. Its
basic physical properties are shown in Table 1 below. Compared with synthetic fibers that
are used as reinforcing materials, natural fibers are clean, easy to obtain and in line with
the concept of green development. Therefore, natural fibers are preferred when selecting
reinforced materials. The fibers selected for the test were coconut shell fibers, which were
purchased from a fiber processing plant in Hainan. The details are shown in Figure 1
below. The diameter of fibers is 100–500 µm, their length is 5–30 mm, and their density
is 1.25 g/cm3. China is rich in coconut shell resources; therefore, coconut shell fibers cost
less than those of other plants that have limited planting areas and complex processing
technologies. As agricultural and forestry waste, coconut shells are easy to obtain and only
a simple extraction process is required. After processing, coconut shell fibers have high
strength and toughness, high elongation at breakage, and are clean and environmentally
friendly. These features make them a good reinforcing material [37–39].

Table 1. Physical indices of remolded clayey soil.

Water
Content Dry Density Void Ratio Liquid Limit Plastic Limit Plasticity

Index
Liquidity

Index
Modulus of

Compression

19% 1.66 g/cm3 0.722 29.5% 15% 14.5 0.10 6.7 MPa
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2.1.2. Preparation of the Microbial Culture and Cementation Solution

The bacterium selected for the test was Bacillus pasteurii (ATCC11859), purchased
from the Shanghai Conservation Biotechnology Center; this bacterium has no negative
impact on the soil environment and has a high urease secretion capacity and activity. It is
now widely used in geotechnical engineering. The strain form was a lyophilized powder
and was cultured with a liquid medium. Each liter of the liquid medium contained caso
agar + urea, 20 g; pepton from casein, 15 g; pepton from soymeal, 5 g; Nacl, 5 g; Agar, 20 g;
ddH20, 900 mL; and was adjusted with 1 mol, NaOH, with a PH value of 7.3, making the
medium alkaline [40]. The strain and the medium composed of bacterial broth were placed
in a thermostatic shaking incubator and incubated aerobically, at a constant temperature of
30 ◦C for 36 h, at 200 r/min. The OD600 value of the bacterial broth was tested at 1.472
using a spectrophotometer.

The cementation solution provided the calcium and nitrogen sources and the nutrients
required for the microbial curing process, which are usually a mixture of calcium chloride
and urea. The cementation solution used in this experiment was a mixture of CaCl2 and
urea. The concentration of the cementation solution has different effects on the cementing
effect, and studies have shown that an overly high concentration of the cementation solution
inhibits microbial activity and reduces the efficiency of calcium carbonate synthesis, thus
affecting the curing effect [40]. Therefore, the cementation solution used in this experiment
contained 0.5 mol/L urea and 0.5 mol/L CaCl2, mixed in equal volumes.

2.2. Experimental Protocol

In order to determine the most suitable curing method, a pre-test was conducted, and
the grouting method was first used for curing [41,42]. As the filling times increased, it
became difficult to introduce the solution into the soil, and a large amount of soil flowed
out of the upper opening with the solution, making it difficult to cement. After that, the
soaking method was used. It was found that the soil sample softened after mold removal,
which was difficult to use in practical engineering [43]. In order to improve the uniformity
of the spatial distribution of the liquid bacteria and cementation solution in the soil, and to
facilitate engineering applications, the test was conducted using the mixing method, and
the best moisture content of the clayey soil was determined to be 17%. The water required
for the optimal moisture content was replaced by the bacterial liquid and the cementation
solution, and a cylindrical specimen 39.1 mm in diameter and 80 mm in height was made
according to test specifications. The maximum dry density of the clayey soil is 1.66 g/cm3,
and it was calculated that we required 160 g of soil. The required fiber was weighed and
thoroughly mixed with the soil, and then 13.6 g of bacterial liquid was added and left
for 3 h, so that the bacterial liquid would be fully attached to the soil; it was then evenly
mixed with 13.6 g of the cementation solution. It was necessary to weigh each layer of the
clayey soil after mixing it uniformly, in four layers, for manual compaction. Each layer
was compacted 30 times. The contact surface between the layers scraping the hairs made
good specimens when kept at 30 ◦C, humidity of 95 ± 2%, for 14 days. The test considered
the effect of the fiber content on the shear strength and deformation characteristics of the
microbially cured soil. We tested three different fiber contents: 0.2%, 0.4%, and 0.6%, (mass
ratio), using the mixing method for curing tests. To avoid chance errors, three parallel tests
were conducted for each group of tests.

2.3. Test Methodology
2.3.1. Triaxial Test

The consolidation undrained test was carried out using the TSZ-2 automatic triaxial
apparatus (produced by Nanjing Soil Instrument Factory CO., Ltd., Nanjing, China) and
the data were collected by the supporting data acquisition system. The device is shown in
Figure 2. The accuracy was 0.01 kn for the axial force, 0.01 mm for the axial displacement,
and 0.001 mL for the inlet and outlet water and volume deformation. In order to study
the effect of the fiber admixture on the microbially cured soil, each group was set up with
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test conditions of 50 kPa, 100 kPa, and 200 kPa net perimeter pressure for testing. The
specimens were vacuum saturated before the test and were solidified and stabilized before
we sheared the soil samples. They were sheared at a rate of 0.05 mm/min to 20% of the
axial strain to obtain the curve of deviator stress (σ1 − σ3)f and axial strain (ε).
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2.3.2. Calcium Carbonate Content Measurement Test

In the process of reinforcement, only calcium carbonate deposition was generated.
Therefore, the amount of calcium carbonate was determined using the acid washing method.
First, the specimens with the best fiber content after completing the loading damage were
dried and pounded to increase the contact area of the soil so that the calcium carbonate
could be more easily dissolved in the acidic solution. After drying again, 20 g of the soil
sample was put into a beaker, and an excess of 2 mol/L hydrochloric acid was added and
soaked until no bubbles were generated. To make the reaction more complete, the soil
sample was left for 24 h, and then the mixture was introduced into a funnel containing
filter paper and rinsed three to five times with deionized water. The remaining residue,
together with the filter paper, was dried at 105 ◦C to a constant mass. The amount of
calcium carbonate produced (C) was calculated as follows [44]:

C =
MS+C −MS

MS+C
× 100%− C0, (4)

where MS+C is the drying mass of the soil sample before acid washing, 20 g; Ms is the
drying mass of the soil sample after acid washing; and C0 is the initial calcium carbonate
content of the clayey soil, 3.1%.

2.3.3. Disintegration Test

To evaluate the water stability of the clayey soil after microbial curing and the fiber
reinforcement treatment, disintegration tests were carried out on the specimens. A home-
made disintegration apparatus was used, and the device is shown in Figure 3. The test
device consisted of a high-precision electronic balance (accuracy of 0.01 g), a disintegration



Sustainability 2023, 15, 13261 7 of 21

tank, a disintegration box, a stand, a timer, and other parts. The appropriate size of the
disintegrating tank and disintegrating box was customized according to the requirements;
the size of the metal mesh hole at the bottom of the disintegration box was 1 cm × 1 cm,
and the thin wire connected between the disintegration box and the bracket could be freely
removed and hung up. The disintegrating box was connected to the bracket with a thin
wire and suspended in the disintegrating tank, which was placed on a high-precision
electronic balance. Before the test, the disintegration tank was filled with an appropriate
amount of water. The specimen was placed in the disintegration box and was lowered
slowly into the water after the balance readings remained unchanged. Balance readings
were recorded every 30 s, and, according to the rapidity of the disintegration of the speci-
men, an appropriate adjustment was made to the time interval of the measurement. The
disintegration rate of the specimen was calculated using the following formula [13]:

P(Tx) =
M(Tx)−M0

Ms
, (5)

where P (Tx) is the disintegration rate; Ms is the reading of the balance after the complete
disintegration of the specimen; M0 is the reading of the balance when the specimen is
completely immersed in water and has not started to disintegrate; and M(Tx) is the reading
of the balance at the moment of T.
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3. Experimental Results and Analysis
3.1. Triaxial Compression: Test Results and Analysis
3.1.1. Stress–Strain Relationship

The representative curves of the relationship between the axial strain and the principal
stress of the fiber-reinforced microbially solidified soil are shown below. Figures 4–7
show the stress–strain relationship curves of the coconut-shell-fiber-reinforced, microbial-
cured soil under the conditions of certain fiber contents and different confining pressures.
Figures 8–10 show the stress–strain relationship of the microorganisms under the same
confining pressure and different fiber contents.
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Figures 4–7 show that the deviatoric stress of the microbially cured, coconut-shell-fiber-
reinforced clayey soil increased gradually with the increase in the confining pressure when
the fiber content was certain. When the axial strain was small, under different confining
pressures, the stress–strain of the microbially cured plain soil and the fiber-reinforced
cured soil basically overlapped, and the initial compressive strength of each specimen was
approximately equal; therefore, the reinforcing effect of the fiber was not fully realized. With
the increase in the axial strain, the distance between the deviatoric stress and the axial strain
curves of the samples under different confining pressures gradually widened and increased,
and, after a certain strain (not more than 3%), the increase gradually decreased. Finally,
the curve became essentially stable. The curve generally shows a weak hardening type,
and the strength of the soil increases with the increase in the axial strain. With the increase
in fiber content, the failure strength of the soil increases first and then decreases under a
certain confining pressure. An excessive amount of fiber leads to a poor reinforcement
effect, and the microbial curing effect is also affected by excessive fiber content. Under
certain strains, the main stress difference of the fiber-reinforced cured soil was greater than
that of the MICP-cured specimens. This was because the MICP technology induced calcium
carbonate crystals, which filled the spaces between the pores of the larger soil particles
and played a cementing role, gluing the coconut shell fiber and soil particles into a whole.
The microbially induced calcium carbonate deposits were attached to the fiber surface,
which made it rougher and improved the bite force between the fiber surface and the soil.
The fibers also created more pores in the soil, with calcium carbonate deposits. The fiber
acted like an anchor in the soil, strengthening the curing effect of the MICP technique and
limiting the displacement and deformation of the soil particles.

Figure 8 shows the variation curve of the breaking strength under the perimeter
pressure. The failure strength of the soil was positively correlated with the confining
pressure. Under the same confining pressure, the breaking strength of the four different fiber
contents in the cured soil, in descending order, were as follows: fiber content 0.4% cured soil
> fiber content 0.2% cured soil > fiber content 0.6% cured soil > MICP bacterium-liquid-
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cured plain soil. Compared to the plain soil that was cured with the bacterial liquid
only, the breaking strength of the various reinforced soils increased by 64.7%, 120%, and
20.7%, respectively, according to the fiber content when the perimeter pressure was 50 KPa;
the breaking strength of various reinforced soils increased by 45.1%, 76.3%, and 15.3%,
respectively, according to the fiber content when the perimeter pressure was 100 KPa;
the breaking strength of the various reinforced soils increased by 50.5%, 79%, and 18.7%,
respectively, according to the fiber admixture when the perimeter pressure was 200 KPa.

Figures 9–11 show that the form of the triaxial test curve under different fiber doping
values still exhibited a trend of strain hardening. The main stress difference increased as
the fiber doping values increased and then decreased. The maximum damage strength
was achieved at the fiber doping value of 0.4%, which indicated that there is an optimal
value of fiber doping; therefore, more is not better, and the reinforced soil strength reaches
its maximum when the optimal value is used. For the specimens with the optimum fiber
doping value, the strength was increased by 120%, 76.2%, and 79% at σ3 = 50, 100, and
200 kPa, respectively, compared to the plain soil cured by the bacterial liquid. Figure 12
shows that the failure strength of the soil increased first and then decreased with the
increase in the fiber content. When the fiber content in the soil is low, it is difficult for the
fiber to form a network structure inside the specimen; thus, the interaction with the soil is
not sufficient and the reinforcing effect is limited. As the fiber content increases, the fiber
distribution is more uniform, the spacing is reduced and it is easier to form a network.
This can form a good uniform random support system inside the soil; thus, the cohesion
between the soil particles and the fiber increases, which improves the reinforcing effect of
the fiber. However, when the fiber content is too high, the fibers easily form into clumps in
the mixing process, which reduces the friction and cohesion between the soil particles and
weakens the reinforcing effect, resulting in a specimen with lower strength.
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3.1.2. Strength Characteristic Analysis

According to the triaxial test results of the microbial-solidified, coconut-fiber-reinforced
clayey soil, the Mohr circle of the specimen was plotted and the common tangent was
made for the Mohr circle for the same admixture at different envelope pressures. By using
the Mohr–Coulomb theory, the effective stress–shear strength expression τ = σtan ϕ′ + c′

and the effective stress–strength index of the specimen under each doping amount can
be calculated (internal friction angle, ϕ′ and cohesion, c′). The specific results are shown
in Table 2.

Table 2. Strength index of the coconut-fiber-reinforced, microbially cured soil.

Fiber Content Cohesion, c′ Angle of Internal Friction, ϕ′

Plain soil 24.2 17.8
Fiber content 0.2% 36.9 22.6
Fiber content 0.4% 48.6 24.2
Fiber content 0.6% 27.4 20.0

From the shear strength index of the fiber-reinforced microbial-solidified soil shown
in Table 2, it can be seen that the shear strength index of the fiber-reinforced, microbial-
solidified soil was significantly improved compared with that of the plain soil, which was
only solidified by microorganisms. Specifically, the cohesive force of the reinforced soil
increased by 3.2~24.4 kPa compared with that of the plain soil, and the cohesive force
increased first and then decreased with the increase in the amount of fiber admixture.
The effective cohesive force of the reinforced cured soil reached its maximum when the
fiber admixture was 0.4%, and the cohesive force increased by 24.4 kpa compared with
that of the plain soil. The main reason for this is that, with the addition of the fibers, the
fibers were able to interweave with the soil particles. Due to the microbially generated
calcium carbonate deposits, the fibers and the soil particles formed a colloid and, with
the application of load fibers, the soil particles were able to interweave more closely;
thus, the porosity of the specimen was reduced and the compactness was increased. This
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formed a stable three-dimensional soil network structure, in which the frictional resistance
and occlusion between the soil particles and fibers were more obvious, thus limiting the
deformation of the specimen and enhancing its cohesion. When the fiber content is too
high, the fibers tend to overlap and accumulate in the soil, which means that the soil
cannot be compacted. This encroaches on the space available for microbial colonization and
affects the deposition of calcium carbonate, meaning that the strength of the specimen is
actually reduced. The internal friction angle of the reinforced graph increased by 2.2◦~6.4◦

compared with that of the plain soil. This indicates that the incorporation of fibers can
improve the internal friction angle of the cured soil. This is due to the deposition of
microbially generated calcium carbonate and the surface roughness of coconut fibers which
increase the frictional resistance between the soil particles, resulting in an increase in the
internal friction angle. When there is too much fiber admixture and when the amount
of calcium carbonate generation decreases, the frictional resistance decreases. The fibers
form a mass and the bite force effect of soil particles is decreased. The weak surface of the
soil structure weakens the interfacial action of the reinforced soil and the action of the soil
skeleton particles, resulting in a decrease in the internal friction angle.

3.1.3. Analysis of the Deformation Modulus and Reinforcement Effect

The modulus of deformation is an important physical quantity in describing the
deformation characteristics of soil. It reflects the extent of the specimen’s ability to resist
deformation: the larger the value, the smaller the possibility of damage under the same
deformation conditions. The modulus of deformation for the CU test is usually taken as
half of the difference between the principal stress at the point of damage and the ratio of its
corresponding axial strain [45]. The relationship between the deformation modulus and
the confining pressure for different fiber doping values is shown in Figure 13 below.
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When the fiber content was the same, the deformation modulus increased with the
increase in the confining pressure. The main reasons for this are as follows: the greater the
confining pressure, the greater the compression in the consolidation process; the greater the
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relative density, the stronger the soil particles, the stronger the interlocking effect between
the soil particles and the calcium carbonate and fibers; the stronger the shear deformation
resistance, the smaller the strain required and the greater the deformation modulus. The
deformation modulus of the reinforced cured soil increases with the amount of fiber dosing
and then decreases. We take the confining pressure of 100 kpa as an example; when the
fiber content increased from 0 to 0.4%, the deformation modulus increased from 0.81 MPa
to 1.418 MPa, amounting to an increase of 75%; however, when the fiber content increased
to 0.6%, the deformation modulus decreased to 0.928 MPa. This shows that the addition of
fibers can improve the plasticity of the soil, thus improving its deformation resistance.

In order to analyze the effect of the coconut shell fibers on the reinforcing effect
of microbially cured clayey soil, the coefficient of the fiber-reinforcing effect was intro-
duced [46,47] as follows:

R =
(σ 1 − σ3) f
(σ 1 − σ3)s

, (6)

where R is the reinforcement effect factor; (σ1 − σ3)f is the deviatoric stress when the
fiber-reinforced cured soil is damaged; and (σ1 − σ3)s is the main deviatoric stress when
the microbial cured soil is damaged, as shown in Table 3.

Table 3. Reinforcement effect coefficients of microbial-solidified soil under different fiber contents.

Specimen Type
Reinforcement Effect Factor, R

50 kPa 100 kPa 200 kPa

Plain soil 1.00 1.00 1.00
Fiber content 0.2% 1.65 1.45 1.49
Fiber content 0.4% 2.11 1.76 1.53
Fiber content 0.6% 1.21 1.15 1.12

It can be seen that the reinforcement effect coefficients of the fiber soil were greater
than 1.0 under different confining pressures, which indicates that the fibers can effectively
improve the shear strength of soil and restrain soil deformation after they are incorporated
into cured soil. The reinforcement effect coefficient of the fiber-reinforced cured soil with a
0.4% fiber admixture was the largest under different confining pressures. This indicates
that the reinforcement effect was the best when the fiber admixture was 0.4%, which is
consistent with the results of the stress–strain curve.

3.2. Determination of Calcium Carbonate Content

In this study, the amount of calcium carbonate produced was closely related to the
curing effect; therefore, the measurement of the calcium carbonate content in the cured
sample reflects the progress of the MICP technology. The amount of calcium carbonate
generated in the specimens treated with the MICP technique at different fiber admixtures
(for example, in the case of a 200 confining pressure) is shown in Figure 14 below. With
the increase in the fiber admixture, the amount of calcium carbonate generated tended
to increase first and then decrease. This is mainly because the addition of fiber to the
mix provides a good attachment point for bacteria during the mixing process, and there
are more areas for microorganisms to colonize after entering the soil body. However, the
addition of fiber in excess crowds the living space of microorganisms, leading to a lower
amount of calcium carbonate being generated. When the calcium carbonate production
of the specimen with a 0.6% fiber content was higher than that of the cured, reinforced
soil with a 0.2% fiber content, its peak shear strength was lower than that of the sample
with a 0.2% fiber content. This was probably because the fiber content was too high. When
the fiber content is too high, it easily forms clumps during the mixing process, which
reduces the friction between the soil particles. This can easily lead to an uneven fiber
distribution, which affects the migration and colonization of microorganisms and leads the
calcium carbonate generated inside the specimen to become unevenly distributed; thus,
the variability in the local curing is too large. This renders the curing effect unsatisfactory.



Sustainability 2023, 15, 13261 16 of 21

This shows that the calcium carbonate content is not the only factor that determines the
mechanical properties of a sample.
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3.3. Disintegration Characteristics

Once the reinforced clayey soil that was treated with MICP was completely immersed
in the water, the test entered the wetting stage. Due to the existence of pores on the surface
of the specimen, the water penetrated through the micro-cracks on its surface. The pore
gas was then discharged, producing a large number of bubbles. With the progression of
the immersion time, the specimen entered the softening stage, in which it gradually began
to produce inward cracks; the soil particles and fibers gradually separated, and the fibers
inside the specimen were slowly revealed. The disintegration rate during this stage was
slow. With the further passage of time, the specimen began to disintegrate rapidly, entering
the disintegration stage. At this point, the soil particles and fibers separated rapidly, the
whole of the outer part of the soil and fibers began to fall off, and the water quickly became
turbid. The disintegration phenomenon was violent. After the disintegration of the soil, the
remaining soil and fibers of the specimen formed a cone-shaped pile in the disintegration
box and the disintegration volume of the specimen no longer increased—only a small num-
ber of soil particles were scattered. After this, the specimen entered the stabilization stage.
It should be noted that the wetting stage and the softening stage of the MICP-treated loess
specimen, without reinforcement, were basically the same as those of the reinforced speci-
men; however, its disintegration stage was more rapid and it was completely disintegrated
in a shorter amount of time.

Figure 15 shows the disintegration curves of different fiber-doped viscous soil spec-
imens. With the increase in the water immersion time, the fiber-free specimens began
to disintegrate rapidly and the disintegration rate reached 90.7% between 1.5 min and
8 min, during a total of 10 min of water immersion. This was unlike the phenomenon
observed for the plain soil specimens, whereby all the fiber-doped specimens failed to reach
a 100% disintegration rate. The final disintegration rate of the reinforced soil with 0.2%,
0.4% and 0.6% fibers decreased by 13.3%, 25.6%, and 33.7%, respectively, compared with
that of the plain soil, as the fiber incorporation increased from 0 to 0.6%. The decrease in
the final disintegration rate was the most obvious when the fiber admixture increased from
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0.4% to 0.6%. Combined with the disintegration process, the main reason for this was that,
after the disintegration of the soil particles at the bottom of the specimen, the fibers were
longer than the size of the gaps in the metal mesh at the bottom of the disintegration box;
therefore, some fibers filled the gaps in the metal mesh, so that the soil particles could not
be easily dislodged from the disintegration box. This, in turn, led to more soil residue in
the disintegration box.
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3.4. Microstructure Analysis

To analyze the mechanism of the effect of incorporating fibers on the reinforcement of
MICP, the microstructure of the fiber-reinforced, microbially cured clayey soil was observed
using scanning electron microscopy. The soil mass inside the specimen after its destruction
at the end of the triaxial test was taken and magnified at different magnifications, as shown
in Figure 16 below. In the image that was magnified 50 times, it can be seen that the fibers
are interspersed in the soil from different angles and interwoven into a network. It can also
be seen that under the action of external force, some fibers are bent or there is a deformation
on the surface, which, from a mechanical point of view, is beneficial to increasing the degree
of fiber and soil occlusion and the contact area. It can also have a restraining effect on
load-induced displacement. This reinforcing effect is further enhanced by the restraining
effect of the displacement caused by the load [48,49]. When the sample is destroyed, the
fiber plays a similar role as a bridge in the soil. The fiber spans the crack like a bridge
and can bear a certain tensile stress, which can effectively inhibit the further development
of the crack and delay the overall failure of the sample [50,51]. At a magnification of
100 times, the calcium carbonate crystal filled the space between the soil particles so that
the particles were glued to each other and the overall connection between the particles was
strengthened. At magnifications of 1000 and 5000 times, the calcium carbonate crystals
were scaled and attached to the fiber’s surface. This occurred because the fiber that was
added to the soil was in the pores of the soil, and, as the amount of admixture increased,
the corresponding surface area also increased. The increase in the breeding sites and the
enrichment of the microorganisms further improved the curing effect, and the surface of
the fibers was gradually covered by the calcium carbonate that was generated. It was
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found that the addition of appropriate amounts of fibers helped the curing reaction and the
deposition of the calcium carbonate, and that the adhesion between the calcium carbonate
and particles increased the friction between the fibers and the soil. This was conducive to
improving the reinforcing effect of the soil and the strength of the sample.
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4. Conclusions

In this paper, clayey soil was mixed and solidified, and the influence of the different
fiber contents on its mechanical properties was analyzed via a triaxial shear test. The influ-
ence of the fiber content on the content of calcium carbonate was discussed. The effect of
fiber reinforcement and MICP technology on the soil’s water stability was studied through
a disintegration test. The reinforcement mechanism of the fiber was discussed based on
microscopic electron microscopy images. The following conclusions were obtained:

(1) The combination of microbial curing technology and fiber reinforcement technology
can significantly improve the shear strength of clayey soil. The coupling of the two
technologies has a better curing effect than the employment of a single technology.
The addition of fibers alleviates the problem of brittleness in microbial solidified soil,
enhancing the ductility of the soil and strengthening its deformation resistance. This
is significant in improving the safety and stability of engineering structures.

(2) The fiber admixture has an important effect on the mechanical properties of microbial
curing. The shear strength of the soil sample increases first and then decreases, and the
optimum admixture is 0.4%. The corresponding reinforcement effect coefficient is also
the largest. In current research, the internal friction angle and cohesion after the rein-
forcement treatment were higher than those of the plain soil; the internal friction angle
increased by 6.4, and the cohesion increased by 24.4 KPa at the optimum admixture.

(3) The calcium carbonate formation and fiber content of the samples with the same fiber
content increased first and then decreased. The results did not necessarily adhere to
the notion that the higher the calcium carbonate content, the higher the strength of the
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soil sample, indicating that the calcium carbonate content is not the only factor that
determines the mechanical properties of the sample. This finding may also be related
to the cementation mode of the soil samples and the distribution characteristics of the
calcium carbonate.

(4) The MICP technology can significantly improve the complete disintegration time
and improve water stability. The disintegration process can be divided into four
stages: the wetting stage, the softening stage, the caving stage, and the disintegration
stability stage. The addition of fibers can significantly improve the anti-disintegration
performance of soil samples. The higher the fiber content, the slower the disintegration
rate, and the stronger the anti-disintegration ability. The lowest disintegration rate
of the coconut fibers was detected when the content was 0.6%. The water stability
of the soil treated with both techniques was stronger than that of the sample cured
without reinforcement.

(5) Scanning electron microscopy showed that the addition of fibers can provide more
colonization space for microorganisms, thereby increasing the efficiency and yield of
calcium carbonate sedimentation. Calcium carbonate crystals were attached to the
surface of fibers and soil particles in flakes, which effectively improved the surface
roughness of the soil particles, enhancing the anchoring force of the fibers in the soil
and further enhancing the reinforcement effect. This suggests that MICP technology
and fiber reinforcement technology complement each other.

(6) Based on the coupling of microbial mineralization technology and fiber reinforcement
technology, the indoor test shows that the method has a good effect on soil solidifica-
tion and improves the soil water stability. Compared with the method of only adding
fiber without microorganisms, the microbiological curing technology can complement
the reinforcement technology, so that the curing effect can be improved. In comparison
with the study that only conducted microbial curing without adding fiber, the addition
of fiber alleviated the disadvantages brought by microbial curing; this technique thus
provided a new basis for soil reinforcement and the prevention of soil erosion in China.
In the future, it will be necessary to carry out systematic and in-depth research on
the effects, treatment process, influencing factors, and other aspects of this technique
so as to lay a foundation for the practical engineering application of the proposed
technical methods.
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