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Abstract: In order to overcome the time-consuming computational drawback of using computational
fluid dynamics (CFD) for the numerical simulation of aircraft wake vortex evolution under different
crosswind velocities, this paper proposes a wake vortex prediction model based on a convolutional
neural network (CNN) algorithm. The study focuses on the B737-800 aircraft, and employs CFD
numerical simulations to obtain the evolutionary characteristics of wake vortex parameters under
crosswind velocities ranging from 0 to 7 m/s. The wake vortex velocity and Q-criterion vorticity
values are collected and partitioned into mutually exclusive training and testing datasets. A CNN
model is constructed, and the training dataset is used to tune hyperparameters to minimize loss
and achieve accurate predictions. After saving the trained model, the desired crosswind velocity
value is input to obtain the predicted wake vortex velocity and Q-criterion vorticity values. The
results indicate that the convolutional neural network model exhibits an average absolute percentage
error of 1.5%, which is 2.3% lower than that of the fully connected neural network model. This
suggests that convolutional neural networks can enhance the accuracy of wake vortex predictions, as
demonstrated in this study. Compared to traditional CFD methods, the proposed model reduces the
computation time by approximately 40 times, effectively improving computational efficiency and
offering valuable insight for studies involving numerous numerical simulations, such as analyzing
the safety separation between aircraft wake vortices during paired approach procedures.

Keywords: convolutional neural networks; computational fluid dynamics; wake vortex evolution;
crosswind; Q-criterion

1. Introduction

A wake vortex is defined as a pair of counter-rotating strong turbulent flows generated
at the wingtips during aircraft flight, and it is one of the primary factors affecting aviation
safety and efficiency. Currently, research on aircraft wake vortex characteristics, detection,
and evolution trends has become a forefront scientific issue in the field of civil aviation air
traffic control [1]. During the takeoff and landing phases, aircraft operating on the same
runway are required to maintain a minimum longitudinal safety separation, known as
wake safety separation, due to the constraints imposed by wake vortices [2]. The main
factor determining wake safety separation is the strength of the wake vortex, and meteoro-
logical parameters (such as crosswind velocity, atmospheric turbulence dissipation rate,
atmospheric stability, etc.) are among the important factors affecting the strength of aircraft
wake vortices [3]. Among them, crosswind perturbation on wake vortices is particularly
complex, especially during the approach phase, where crosswinds are frequently encoun-
tered. With the continuous development of the economy and society, the new runway
operation mode is gradually being promoted. The implementation of the paired approach
(PA) procedure, which involves simultaneous coordinated approaches of two aircraft on
closely spaced parallel runways (CSPRs), has proven effective in alleviating air congestion
and enhancing airport operational efficiency [4]. However, during the implementation of
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this procedure, the wake safety separation between the two aircraft is extremely susceptible
to the influence of crosswinds. When the trailing aircraft in the pair mistakenly enters the
wake turbulence of the preceding aircraft, it may experience turbulence, rolling, or even
engine shutdown, which jeopardizes flight safety [5]. Therefore, it becomes particularly
important to determine the impact of wake turbulence generated by the leading aircraft
on the following aircraft. Obtaining wake data from the leading aircraft under varying
crosswind velocities to determine wake separation poses a challenging problem.

Currently, research methods for wake vortex evolution mainly include laboratory wind
tunnel and water tunnel experiments, field radar sensor observations, and computational
fluid dynamics simulations [6]. Breitsamter [7] conducted wind tunnel experiments to
investigate the variations in wake flow field, focusing on the turbulence intensity, temporal
scales, and instability from the near field to the expanded near field during aircraft wake
evolution. Bao Feng et al. [8] conducted water tunnel experiments and studied the effects
of wake vortex system interactions during aircraft takeoff and landing using particle image
velocimetry (PIV) techniques. Babie et al. [9] investigated the influence of a four-vortex
model on wake vortex evolution through wind tunnel experiments, revealing that the
four-vortex model can induce wake instability and accelerate wake dissipation. Hallock
and Holzäpfel [10] presented two methods for collecting aircraft wake vortex-related data:
one using pulse laser radar experiments, and the other involving computational fluid
dynamics (CFD) simulations of wake vortex evolution. Liu et al. [11] studied the influence
of crosswinds on wake vortex evolution using the pulsed coherent Doppler lidar (PCDL)
with the range height indicator (RHI) scanning mode. By analyzing the radial velocity and
spectral width characteristics, they located the wake vortex core and obtained crosswind
information from non-vortex areas within the RHI sector, ultimately obtaining wake vortex
trajectories under different crosswind intensities. Dengler et al. [12] investigated aircraft
wake vortex trajectories through laser radar wind velocity measurements to estimate the
crosswind threshold and provide support for determining safe areas for departing aircraft.
Pan et al. [13] conducted wake vortex numerical simulations for the A330 using the SST k-ω
turbulence model and compared the results with laser radar observations. They obtained
the evolving characteristics of wake vortices under different Brunt-Väisälä frequencies.
Robins et al. [14] conducted numerical simulations to investigate the effects of crosswind
and ground influence on aircraft wake vortex. The results indicated that the wake vortex
generated by larger aircraft near the ground had a severe impact on the flight safety of
subsequent smaller aircraft. Proctor et al. [15] used large eddy simulation (LES) to study
the influence of crosswinds on aircraft wake vortex evolution, revealing that crosswind
shear gradients caused vortices on the left and right sides to descend at different rates,
and vortices with the same shear direction as the crosswind tended to persist longer
compared to vortices with opposite shear directions. Li et al. [16] investigated the impact
of linear and nonlinear environmental crosswinds on a wake vortex through numerical
simulations. The results showed that the influence of a uniform linear crosswind and
linear vertical shear crosswind on wake vortex strength decreased inversely with the
cube of the wake vortex spacing. Zhou et al. [17] established a real-time wake simulation
model to study the distribution characteristics of wake states under different crosswind
conditions. They demonstrated that crosswind velocities in the range of 1–3 m/s posed
the greatest danger, and provided theoretical basis for avoiding wake influence during
aircraft flight. Wei et al. [18] employed the Reynolds-averaged Navier–Stokes (RANS)
method with the RKE turbulence model, and utilized UDF compilation techniques to apply
four different crosswind velocities (0 m/s, 1 m/s, 4 m/s, and 7 m/s) to the A320 wake
field, analyzing variations in parameters such as wake sinking, vorticity decay, lateral
movement, and wake vortex core velocity under different crosswind conditions. Zhang
et al. [19] employed adaptive mesh LES technology to study the evolution and attenuation
characteristics of ARJ21 aircraft wake vortices under various crosswind conditions. The
numerical simulation results demonstrated that the evolution of vortices upstream and
downstream of the aircraft was asymmetric, with the downstream vortices decaying at
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a faster rate, and the wake vortex dissipation velocity increasing with higher crosswind
velocities. He et al. [20] established an aircraft wake vortex model for paired approach
procedures, and conducted CFD numerical simulations to analyze the wake characteristics.
Based on the simulation results, they proposed an optimization method for longitudinal
safety separation of paired aircraft wake vortices. Ma et al. [21] conducted an analysis of
the evolution characteristics of paired aircraft wake under crosswind conditions of 1 m/s,
3 m/s, and 5 m/s using the CFD method, and obtained the wake safety separation of the
paired aircraft.

As evident from the preceding discussion, numerous scholars have delved deeply
into the field of wake vortex research. The aforementioned methods allow for the acquisi-
tion of data with high reliability and accuracy, as well as detailed information regarding
wake vortex evolution. However, it is worth noting that the implementation of these
methods invariably demands a significant amount of time. In comparison to wind tunnel
experiments, water tunnel experiments, and radar sensor observations, the CFD method
requires only computer resources and software, which significantly reduces equipment
costs and computational expenses. Nonetheless, simulating wake vortex evolution using
CFD necessitates partitioning the aircraft model into millions or even tens of millions of
grid cells to ensure simulation accuracy, resulting in computation times ranging from hours
to days. Additionally, when studying wake vortex evolution under different crosswind
velocities, recalculations are necessary with each change in the crosswind parameter, further
prolonging the overall research duration.

In addressing the aforementioned issue of lengthy computation times, numerous schol-
ars have begun to employ neural networks for flow field predictions. Carpenter et al. [22]
introduced a single-hidden-layer neural network for predicting missile aerodynamic pa-
rameters. Balla et al. [23] proposed a multi-output neural network for predicting the
aerodynamic coefficients of two-dimensional and three-dimensional wings, demonstrating
superior performance compared to their intrinsic proper orthogonal decomposition (POD)
counterparts. Wang et al. [24] presented a depth-based learning model, which effectively
reduces computational costs while obtaining more accurate flow field characteristics. Silva
et al. [25] introduced a CFD-based non-steady-state aerodynamic reduced-order model
(ROM) that minimizes recognition errors. Tracey et al. [26] trained neural networks on
data generated by the Spalart–Allmaras model, replicating flow conditions under different
circumstances. Ling et al. [27] proposed a deep neural network method based on the RANS
approach for simulating the Reynolds stress tensor.

From the literature mentioned above, it is evident that employing neural networks for
the resolution and prediction of fluid flows has emerged as a novel trend in fluid dynamics
forecasting. Trained convolutional neural networks (CNNs), as highlighted in [28], serve
to reduce computational costs by taking on a portion of the numerical solving process.
Simultaneously, they enable efficient utilization of CFD data, thereby preventing resource
wastage. Therefore, in this study, CFD methods were utilized to numerically simulate the
evolution characteristics of tail vortices under various crosswind velocities. The simulated
wake vortex feature data was employed as the input dataset for a CNN model, which
was subsequently trained and its network structure saved. This trained model was then
used for wake vortex predictions by inputting desired crosswind velocity values. The
feasibility of this method was verified by comparing it with the basic FCNN method
in flow field prediction. This method enhances the computational efficiency of wake
vortex predictions, optimally utilizes CFD data, and conserves computational resources. It
provides a theoretical foundation for the implementation of new operational modes, such
as paired approach procedures, which rely heavily on extensive numerical simulations to
determine wake separation safety distances.



Sustainability 2023, 15, 13383 4 of 15

2. Research Methods
2.1. Convolutional Neural Network Algorithm

The CNN has emerged as a prominent method in deep learning and has found
extensive applications in the field of air traffic control in recent years. Typically, a CNN
consists of input layers, hidden layers, and output layers, where the hidden layers comprise
the convolutional layer, pooling layer, and fully connected layer [29], as illustrated in
Figure 1. The one-dimensional convolutional neural network (1DCNN) model exhibits
distinct advantages over a simple FCNN in predicting aircraft wake vortex velocities.
One-dimensional CNNs leverage parameter sharing and translational invariance when
handling sequential data, which aids the model in better comprehending local features and
spatial relationships within the input data. One-dimensional CNNs employ convolutional
kernels for convolution operations, which can be regarded as features learned by the model,
thus enhancing interpretability. However, the 1DCNN is currently unable to predict wake
vortex velocities and vortex cloud images under different wind speeds based on the wake
vortex velocities and vortex cloud images derived from CFD calculations. Therefore, further
research is warranted to explore the application of convolutional neural networks in wake
vortex prediction.
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Figure 1. Structure diagram of a convolutional neural network.

2.2. Forecasting Process

On the basis of the data obtained from CFD simulations, this study employs CNN for
the prediction of wake vortices under different crosswind velocities, ultimately establishing
a generalized predictive model. The training process is illustrated in Figure 2. The CFD data
is divided into mutually exclusive training and testing sets, which serve as input samples
for the neural network. The input features are standardized. A CNN is constructed, and the
training set samples are fed into the network while adjusting hyperparameters to minimize
loss on the training set and achieve accurate predictions from the model. After saving the
trained model, the prediction data is fed into the neural network to obtain the predicted
wake vortex velocity and Q criterion vorticity values. Subsequently, these predictions are
compared with the actual samples to validate the accuracy of the predictive model.

2.3. Acquisition of Data Sample Sets

This study employs a Latin hypercube sampling technique to extract 50 distinct wind
velocities ranging from 0 to 7 m/s, ensuring the randomness and uniformity of the training
data. CFD simulations are conducted using these selected wind velocities to simulate
the wake vortex evolution process and obtain the data sample sets. Each set comprises
1000 data points for both wake vortex velocity and Q-criterion vorticity values, which are
randomly divided into an 80% training set and a 20% testing set.
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2.3.1. Geometric Model and Grid Partitioning

In this study, a simplified B737-800 wing was created using Catia P3 V5R21 software,
with a wingspan of 34.31 m, as shown in Figure 3.
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Figure 3. Geometric model of B737-800 wing.

A hexahedral computational domain with dimensions of 2500 m × 600 m × 200 m
was established, as depicted in Figure 4. In Figure 4, red arrows represent incoming gas,
while blue arrows represent outgoing gas. The model’s coordinate origin was set at the
trailing edge of the wing, with the x-axis representing the wingspan direction, the y-axis
representing the wing chord direction, and the positive direction of the z-axis indicating
the lift direction.

To enhance computational efficiency and improve stability, this study employed a
high-precision structured hexahedral mesh. The O-block technique was utilized to refine
the grid density around the wing, enhancing the orthogonality of the grid near the wing.
The final distribution of the grid in the flow field region and around the wing is illustrated
in Figure 5.
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2.3.2. Control Equations

In this study, the RANS method was employed to analyze the evolution process
of wake vortices, which offers advantages of lower computational time and hardware
costs [30]. The fundamental idea of the RANS method is to decompose turbulent flow. The
RANS method decomposes the variables satisfying the dynamic instantaneous Navier-
Stokes equations into mean and turbulent components. By substituting the velocity compo-
nents, pressure components, and energy components into the instantaneous continuity and
momentum equations, the N–S equations in Cartesian coordinates are derived.

The expressions for the continuity and momentum equations are presented in
Equations (1) and (2), respectively.

∂ρ

∂t
+

∂

∂xi
(pui) = 0 (1)

∂

∂t
(ρui) +

∂

∂xi
(puiuj) = −

∂p
∂xi

+
∂σij

∂xj
+

∂

∂xj
(−ρui

′uj
′) (2)

In the equation, ρ represents the atmospheric turbulence density; ui is the mean
velocity component in the xi direction; uj is the mean velocity component in the xj direction;
p denotes the atmospheric pressure; ui

′uj
′ is the stress term in the Reynolds-averaged

Navier–Stokes equation; and σij represents the components of the stress tensor.

2.3.3. Turbulence Model

The SST k-ω turbulence model was selected for this study. The fundamental idea
behind this model is to use the k-ω model near the wall, and the k-ε model in the boundary
layer edge and free shear layer. As a result, the SST k-ω model combines the advantages of
both the k-ω and k-ε models. The transport equations for k and ω in the SST k-ω model are
as follows:

∂

∂t
(ρk) +

∂

∂xi
(pkui) = −

∂p
∂xi

[Γk
∂k
∂xj

] + Gk + Sk −Yk (3)

∂

∂t
(ρω) +

∂

∂xi
(pωui) = −

∂p
∂xi

[Γω
∂ω

∂xj
] + Gω + Sω + Dω −Yω (4)
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Γk = µ +
µt

σk
(5)

Γω = µ +
µω

σω
(6)

In the equations: µ represents turbulent viscosity; Γk and Γω are the diffusion rates;
Gk and Gω denote turbulent kinetic energy; Sk and Sω are user-defined terms; Yω and Yk
represent turbulent diffusion production; Dω is the orthogonal divergence term; and σk
and σω are the turbulence energy Prandtl coefficients.

2.3.4. Boundary Conditions

The entire computational domain was configured as a hexahedral model, with the inlet
boundary set as a velocity inlet, the outlet as a pressure outlet, and the walls as no-slip solid
surfaces. Based on the approach and departure scenarios of the B737-800, the temperature
was set to 288.15 K, atmospheric pressure to 101, 325 Pa, and the inflow velocity to 72 m/s.

2.4. Correlation Analysis

The linear relationships among the parameters were assessed using the Pearson
correlation coefficient method, with the specific calculation formula shown in Equation (7).

r =
1

n− 1∑n
i=1 (

Xi − X
sX

)(
Yi −Y

sY
) (7)

In the equation: Xi ∈ X; Yi ∈ Y; X and Y represent two sequences to be predicted; X
and Y represent the means of the sequences X and Y to be predicted; and n is the length of
the sequences to be predicted.

From Figure 6, it is evident that the correlation coefficient between wake vortex velocity
and distance is −0.88, while the correlation coefficient between wake vortex Q-criterion
vorticity and distance is −0.27. Additionally, the correlation coefficients between crosswind
velocity and wake vortex velocity, as well as crosswind velocity and Q-criterion vorticity,
are 0.083 and −0.097, respectively. A larger absolute value of the correlation coefficient
indicates a stronger correlation between two feature vectors. Comparing the correlation
coefficients of distance and crosswind velocity with aircraft wake vortex velocity and Q-
criterion vorticity reveals that distance has a significant impact on both variables. However,
the impact of crosswind velocity on these variables cannot be overlooked, particularly in
the practical operations of aircraft. With the advancement of dynamic and precise wake
separation techniques, the influence of crosswind on wake turbulence separation has gained
growing attention from professionals in the civil aviation industry.
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2.5. Activation Function Selection

The activation functions express the non-linear relationships of data distribution, and
the mathematical formulas for the Sigmoid function, Tanh function, ReLU function, and
Leaky ReLU function, are shown in Equations (8)–(11) respectively.

sigmoid(x) =
1

1 + e−x (8)

tanh(x) =
ex − e−x

ex + e−x (9)

ReLU(x) = max(0, x) (10)

LeakyReLU(x) = max(0.01x, x) (11)

When the input values are small, the output of the Sigmoid function approaches 0,
indicating that the function responds weakly or neglects small input values. As the input
values gradually increase, the output of the Sigmoid function increases, representing a
stronger response to the input information. The Tanh function can be derived from the
evolution of the Sigmoid function, and both functions have similar variance values for
numerical terms in forward and backward propagation. The Tanh function has a variance
value closer to zero, and the stochastic gradient descent velocity can approach the natural
gradient more, leading to faster convergence. The ReLU function is a non-saturating
nonlinearity with a non-zero centered characteristic, which possesses sparse representation
capability. However, it tends to suffer from the vanishing gradient problem when the input
value x is negative. On the other hand, the Leaky ReLU function is an improved algorithm
over ReLU, introducing a negative slope for negative values of x instead of directly setting
them to zero, thus avoiding the vanishing gradient issue. Therefore, in this study, the
Leaky ReLU function is chosen as the activation function for the convolutional layers, as it
can better support the training of deep networks, control model complexity, enhance the
performance of predicting wake vortex velocity and vorticity, and improve the model’s
generalization ability to new samples.

2.6. Loss Function Selection

The loss function is primarily employed to assess the predictive performance of the
neural network model, and serves as the optimization target during the model training
process. It quantifies the discrepancy between the predicted values and the actual target
values of the input samples, where a smaller value of the loss function indicates more
accurate predictions. As the flow field prediction problem falls under the category of
regression tasks, this study adopts a commonly used loss function for regression problems,
namely the mean squared error (MSE) loss function. The specific expression is shown in
Equation (12).

MSE(yi, y′i) =
∑n

i=1 (yi − y′i)
2

n
(12)

In the equation, yi represents the true value of the i-th data point in the dataset, and y′i
represents the predicted value of the i-th data point in the dataset. The variable n represents
the total number of predicted data points, and MSE represents the mean squared error,
which is the average error of the batch of data.

3. Prediction Result Analysis
3.1. Model Training

We constructed a data processing, model training, and data prediction framework
using the Python programming language and the TensorFlow deep learning framework.
The input data includes the distance from the wing trailing edge and crosswind velocity,
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while the output consists of predicted wake vortex velocity and Q-criterion vorticity values.
The 1DCNN model comprises a single convolutional layer with 64 filters, a kernel size of
2, and Leaky ReLU activation function. It has one flatten layer and three fully connected
layers. The optimizer used is Adam. The FCCN model has two hidden layers with 64 and
32 neurons, respectively, and an output layer with 2 neurons.

3.2. Result Analysis

The evolution of aircraft wake flow can be broadly divided into four regions: the
near field, expanded near field, mid/intermediate field, and dissipation field, as shown in
Figure 7. The near field is the region where the wake is generated, and the wake height
is concentrated in this region. In the expanded near field, the wake undergoes processes
of rolling up, merging, and shedding. As the wake progresses into the mid/intermediate
field, linear instability occurs. In the dissipation field, strong interactions between left and
right vortices occur until dissipation is complete.
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The Q criterion is a physical criterion used to describe the vortical structures and
evolution in fluid flow, aiming to quantify the presence and strength of vortices in the
flow field. This criterion determines the presence of vortices by calculating the velocity
gradient tensor of the fluid velocity field, and evaluates the strength of vortices using the
eigenvalues of this gradient tensor. The two-dimensional non-dimensional Q criterion in
the Oxz plane can be expressed as follows:

Q = −1
2
[(

∂u
∂x

)
2
+ (

∂v
∂z

)
2
]− ∂u

∂z
∂v
∂x

(13)

where u and v represent the velocity components in the x and z directions, respectively.
Due to the relatively weaker intensity of the wake in the mid/intermediate field

and dissipation field, this study analyzes the Q criterion vorticity values at two positions:
Y/b = 0.5, which is at a distance of 0.5 wing spans behind the wing (near-field), and
Y/b = 5, which is at a distance of 5 wing spans behind the wing (expanded near-field).
As a right crosswind is considered in this study, the right vortex is referred to as the
upwind vortex, and the left vortex is referred to as the downwind vortex. In the following
context, Y/b = i represents the distance from the wing trailing edge to the i-th wingspan.
From Figure 8, it can be observed that as the right crosswind velocity increases, the vortex
strength in the wake at Y/b = 0.5 remains relatively unchanged. This is due to the initial
formation stage of the wake, which exhibits some degree of symmetry, resulting in a
balanced aerodynamic force between the left and right vortices, countering the effect of
the crosswind.

From Figure 9, it can be observed that under the same crosswind velocity conditions,
the difference between the vortex structures and the velocity gradient tensor eigenval-
ues at Y/b = 5 is significantly smaller than at Y/b = 0.5. This indicates that the vortex
intensity decreases as it develops from a distance of 0.5 wing spans behind the wing to
a distance of 5 wing spans behind the wing. With the continuous increase in crosswind
velocity, the vortex intensity at Y/b = 5 shows a clear decreasing trend. When the cross-
wind velocity is 3 m/s, the left and right vortices exhibit asymmetric behavior, which



Sustainability 2023, 15, 13383 10 of 15

becomes more pronounced at crosswind velocities of 5 m/s and 7 m/s. This phenomenon
indicates that as the crosswind velocity increases, the velocity shear effect on the wake at
Y/b = 5 gradually intensifies, leading to a reduction in vortex intensity. The upwind vortex
is directly affected by the crosswind, which enhances the turbulence kinetic energy and
increases the Q-criterion vorticity values. Additionally, the crosswind reduces the influence
of viscous resistance on the airflow, which slows down the decay rate of the wake vortex.
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From Figures 10 and 11, it can be observed that for crosswind velocities ranging
from 0 to 7 m/s, when 0 m ≤ Y ≤ 600 m, the slope of the wake vortex velocity curve
is nearly zero, indicating that the wake vortex is spreading at a stable rate during this
phase. For 600 m ≤ Y ≤ 1000 m, the slope of the wake vortex velocity curve is higher,
suggesting an acceleration in the dispersion of the wake vortex. Beyond Y > 1000 m, the
slope of the wake vortex velocity curve decreases, signifying that the wake vortex has
entered a stable dissipation phase. Comparing Figures 10 and 11, it can be noted that for
Y ≥ 600 m, increasing crosswind velocity significantly enhances the lateral vortex velocity.
This phenomenon occurs because lower crosswind velocities are insufficient to disrupt
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the integrity of the wake vortex morphology, while higher crosswind velocities induce
the separation of the primary vortex body from the wake vortex core, accelerating the
dissipation of the wake vortex. Furthermore, the upstream vortex velocities, starting from
the point of acceleration and dissipation, are consistently lower than the downstream
vortex velocities. This is attributed to the shear effects of the downstream vortex, which
induce significant variations in horizontal airflow velocity. This stronger shear effect leads
to increased twisting and stretching of the vortex, thereby hastening its dissipation. Based
on Figures 9 and 10, it is observed that the disparity between the blue curve and the black
curve is smaller across various crosswind speed conditions compared to that of the red
curve and the black curve. This implies that the predictive performance of the 1DCNN
model outperforms that of the FCNN model.
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Figures 12 and 13 illustrate the consistent variation trend of the Q criterion for both
the left and right vortices under crosswind conditions ranging from 0 to 7 m/s. Within the
range of 0≤ Y ≤ 500 m, the Q criterion vorticity values for the vortices demonstrate a sharp
decrease with a significant slope. Beyond Y ≥ 500 m, the Q criterion vorticity values exhibit
a nearly constant slope close to zero. The uneven distribution of Q criterion vorticity values
for the vortices is attributed to the additional pressure and velocity gradients induced by
the crosswind, causing perturbations in the vortices. The comparative results between the
predicted values and actual values across Figures 10–13 collectively demonstrate the neural
network model’s strong robustness in wake vortex prediction.
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Table 1 reveals that the average absolute percentage errors (MAPE) for predicting wake
vortex velocity and Q-criterion vorticity under different crosswind conditions through
1DCNN and FCNN are 1.15% and 3.8%, respectively. The 1DCNN model exhibits a 2.3%
reduction in MAPE compared to the FCNN model. An R-squared (R2) value of 0.987 for
the 1DCNN model indicates excellent fitting capabilities.

Table 1. Presents the evaluation metrics for prediction accuracy.

Name. Mean Squared
Error (MSE)

Mean Absolute Percentage Error
(MAPE%) R-Squared (R2)

1DCNN 1.57 1.5% 0.987
FCNN 3.35 3.8% 0.984

The purpose of this study is to establish a rapid model for predicting the characteristics
of wake vortex evolution based on a CNN. Therefore, the computational time of the model is
an important metric for evaluating its performance. The computational times for predicting
wake vortex velocity and intensity using both the CFD method and the CNN algorithm
were recorded on a platform with Win10 Professional, an Intel (R) Xeon (R) CPU E5-2620
v4 @ 2.10 GHz processor, and 16GB RAM. During the CFD simulation, the average time
for one iteration step in the convergence process of 10,000 steps was 6.63 s, while for the
CNN-based wake vortex prediction model, the average time for one iteration step in the
convergence process of 10,000 steps was 0.153 s. It is evident that the CNN-based wake
vortex prediction model, compared to the traditional CFD method, significantly reduces
the computational time after neural network training is completed.

4. Conclusions

In this study, the CNN method was employed to predict the wake vortex velocity
and Q criterion values under different crosswind velocities using data obtained from CFD
numerical simulations. The conclusions are summarized as follows:

(1) Utilizing a 1DCNN for the prediction of wake vortex velocity and Q-criterion vorticity
under crosswind velocities ranging from 0 to 7 m/s resulted in an average absolute
percentage error of 1.5%. This represents a 2.3% reduction in error compared to the
FCNN model, highlighting the superior predictive accuracy of this model. Further-
more, this model has improved computational efficiency by approximately 40 times
compared to traditional CFD methods.

(2) Crosswinds have a certain influence on the evolution of wake vortex velocity. Lower
crosswinds do not significantly disrupt the wake vortex structure, while higher cross-
winds can disrupt the wake vortex structure and accelerate its dissipation. Moreover,
under the influence of crosswinds, the velocity of the upwind vortex is generally lower
than that of the downwind vortex, starting from the acceleration and dissipation stage.

(3) Crosswinds also have an impact on the intensity of the wake vortex. Due to the
direct interaction of crosswinds with the upwind vortex, the crosswinds increase the
turbulence kinetic energy of the airflow and reduce the effect of viscous resistance,
resulting in an increase in the intensity of the upwind vortex and a slowdown in the
decay rate of the wake vortex.

(4) This study provides significant insights for the research on paired approach wake
separation, and the proposed model effectively reduces the computation time for
the wake evolution characteristics of the leading aircraft. This study provides the
potential for a more detailed exploration of the wake separation safety distance for
paired aircraft under different crosswind velocities.

This study has only considered the influence of crosswind velocity and wake vortex
evolution distance on wake vortex velocity and Q-criterion vorticity. Moreover, it has
established a 1DCNN for preliminary data prediction. In the future, a more comprehensive
approach can be pursued by developing more intricate convolutional neural networks to
predict wake vortex characteristics under different crosswind velocities, encompassing
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aspects such as wake vortex pressure, wake vortex offset distance, wake vortex core
separation, and other relevant factors.
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