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Abstract: The probability of collisions at sea has increased in recent years. Furthermore, passive
collision avoidance has some disadvantages, such as low economic efficiency, while active collision
avoidance techniques have some limitations. As a result of the advancement of computer technology,
active collision avoidance techniques have also been optimized by using artificial intelligence-based
methods. The purpose of this paper is to further the development of the field. After reviewing some
passive collision avoidance schemes, the paper discusses the potential of active obstacle avoidance
techniques. A time-tracing approach is used to review the evolution of active obstacle avoidance
techniques, followed by a review of the main traditional active obstacle avoidance techniques. In
this paper, different artificial intelligence algorithms are reviewed and analyzed. As a result of the
analysis and discussion in this paper, some limitations in this field are identified. In addition, there
are some suggestions and outlooks for addressing those limitations. In a way, the paper can serve as
a guide for the development of the field.

Keywords: active collision avoidance techniques; artificial intelligence algorithms; collisions at sea;
traditional active obstacle avoidance; time-tracing approach

1. Introduction

During the last few years, the rapid development of science and technology has ac-
celerated the process of ocean exploration, which has led to the continuous development
and utilization of marine resources. Important marine structures, marine equipment, and
sea bridges have contributed to economic development as well as scientific and techno-
logical advancement [1–5]. As part of these efforts, marine equipment assists people in
exploring the ocean’s resources, including both physical and chemical resources [6–9]; sea
bridges facilitate coastal transportation and promote regional development, etc. Due to the
increasing number of navigable ships and various complex environmental factors, there
has been an increase in the risk of ship-bridge collisions and ship-marine equipment colli-
sions. Maritime collisions can cause serious damage to marine structures [10–14], further
threatening the safety of people and the economy. As shown in Figure 1, such issues are
receiving increasing attention.

A major contribution to the economic efficiency of marine equipment and the safety of
personnel is the research conducted on collision risk reduction methods. The majority of
current collision risk reduction strategies are passive collision avoidance strategies. Passive
collision avoidance methods, however, have disadvantages, such as low economic efficiency
and limited flexibility. As a result, people gradually began to explore active collision
avoidance methods. However, traditional active collision avoidance methods mainly rely
on sensors, radar, and other devices, resulting in the following limitations: route planning
accuracy cannot be adapted to complex sea conditions and bad weather, high reliance on
seafarers’ manual judgment, high data processing complexity, and limited detection ranges.
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The field of information and computer technology has undergone rapid development in
recent years. Computing and processing information has become much more efficient
thanks to advances in technologies, such as cloud computing, high-performance processors,
big data analytics, and Artificial Intelligence. Active collision avoidance methods have
been optimized through the use of artificial intelligence techniques. Figure 2 illustrates the
relevance of using Artificial Intelligence to optimize the development of active collision
avoidance techniques.
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The purpose of this paper is to contribute to the advancement of the field and to
provide a guide for its future development. After conducting keyword searches in the Web
of Science, Arxiv, and other repositories, layer-by-layer screening was conducted to identify
the literature that met the requirements of this paper. The paper begins by reviewing
some cases of passive collision avoidance and discussing its shortcomings, followed by a
chronological review of active collision avoidance techniques. The purpose of this paper
is to review the application of different algorithms of Artificial Intelligence in order to
optimize traditional active collision avoidance and path planning, as well as to conduct a
discussion and analysis to identify some challenges and shortcomings. To address these
difficulties, we also provide some constructive suggestions and development perspectives.
Some aspects of this paper can serve as a guide for the development of the field.
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2. Passive Collision Avoidance Case

By reviewing some classic cases of passive collision avoidance and analyzing them
through discussion, the article indirectly discovers the potential of passive collision avoidance.

The Flexible Floating Collision Prevention System (FFCPS) prevents collisions between
uncontrolled vessels and non-navigational bridges. Figure 3 illustrates this: (A) Schematic
diagram of Flexible Floating Collision-Prevention System; (B) Floating structure; (C) Moor-
ing system. The system is composed of a cable chain, a floating structure, and a mooring
system. By sliding the anchor, the mooring system serves to position the system and absorb
the impact energy of the system. In order to prevent damage to the mooring chains and the
connecting cable chains, movable anchors are used. However, this device is less flexible,
more difficult to install, and requires a high level of maintenance due to the complexity of
the sea state [15].
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In Figure 4, a protective jacket structure of offshore steel jackets is used to protect
bridges from collisions. As a result of this structure, the bridge is able to maintain good
stability when it is struck [16].

Figure 5 illustrates a passive collision avoidance device for a tethered anchor floating
suspension bridge proposed by Moe et al. Each floater is attached to a floating structure by
a tether. By increasing the amount of diving, drag, and hydrodynamic mass added during
a collision, the barrier dissipates energy [17].

To protect bridges against ship impacts, there is an energy dissipation device with a
low-cost steel frame structure. There is a vertically supported crash cap attached to the pier
by a series of steel girders arranged in a frame. It is designed to dissipate energy while
limiting the force transmitted to the protected pier by forming a plastic hinge [18].

Bridge pier impact loads can be reduced by using a floating two-stage buffer collision-
prevention system (FTBCPS). Anti-collision stages consist of two main components. The
first step in reducing the velocity of the ship and changing the ship’s initial direction of
movement is to stretch and fracture the polyester ropes. Secondly, it consumes the ship’s
kinetic energy due to the damage and deformation caused by the FTBCPS and the ship [19].
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The adaptive arresting vessel device (AAVD) is used for the protection of bridges
in non-navigable waters from ship collisions. They discussed and determined the key
parameters that affect the arresting effect of AAVD through a scale model experiment
and preliminarily evaluated the feasibility of AAVD. The AAVD full-scale test section has
been constructed, and the stopping ship collision test has been conducted. According
to the experimental results, the system is capable of stopping a yawing ship effectively,
demonstrating the feasibility and reliability of both the technology principle and the
engineering design, as shown in Figure 6 [20].
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All the above-mentioned passive collision avoidance cases share a number of common
characteristics. The design of marine equipment or the design of protection devices achieves
energy absorption in order to achieve cushioning impact resistance through the design of
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the structural design. There are, however, a number of shortcomings associated with these
collision avoidance methods:

• Passive collision avoidance technology can only play a protective role in the event of a
collision but cannot prevent a collision from occurring in the first place;

• Increasing the structural strength and impact resistance of offshore facilities requires
the use of more materials and more complex designs, which increases the cost of pas-
sive collision avoidance technologies and puts some pressure on companies’ financials;

• In order to ensure their effectiveness and reliability, passive collision avoidance tech-
nologies need to be regularly inspected and maintained. As a result, these maintenance
tasks are expensive in terms of human resources, materials, and financial resources;

• As offshore facilities vary in size and shape and specific design and testing are required
for each offshore facility, which increases the cost and difficulty of designing and
building offshore facilities.

3. Active Collision Avoidance Methods

Offshore active collision avoidance methods are capable of preventing collisions to
a certain extent. Active collision avoidance methods have great potential for optimizing
the disadvantages of passive collision avoidance methods due to their ability to reduce the
probability of collision events to a large extent.

3.1. Development Process

Active collision prevention at sea has been developed in four stages. Figure 7 illustrates
this. The first phase of the development occurred between the early 1900s and the 1940s.
Active collision avoidance at sea was primarily achieved through manual observation
and the most basic radar system during this period. The second phase of development
occurred between the 1950s and the 1980s. During this time period, automated navigation
systems were introduced, which utilized sensors and computer technology to monitor a
vessel’s location, speed, and heading. The third stage, between the 1990s and early 2000s,
witnessed the gradual development of maritime active collision avoidance technology,
which combined ship and shore-based communications with advances in information
technology. During the fourth stage, from the early 21st century to the present, laser radar,
sonar, and camera technology have made maritime active obstacle avoidance technology
more accurate and reliable. At the same time, methods such as machine learning for
running path planning and algorithms for image processing and pattern recognition are
also being explored. As a result of these technologies, collision avoidance can be enhanced
by analyzing and identifying different obstacles in real-time.
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3.1.1. Phase I

The development of technology was at a low point at the beginning of this period.
Sailors’ experience and visual observation were the primary means of avoiding collisions at
sea [21]. Radar was first introduced to ships in 1922. Researchers from the US Navy placed
transmitters and receivers across the Atlantic and observed that ships passing through the
beam’s path caused the received signal to fluctuate [22]. In addition, in 1928, L. S. Alder
obtained a provisional patent for Naval radar in the UK [23]. While useful for navigation
and obstacle avoidance, these radar systems are more limited and cannot provide detailed
information about obstacles. Commercial ships began using radar in 1939 [24].

3.1.2. Phase II

Under the auspices of the Air Force, the MIT Instrumentation Laboratory began de-
veloping Inertial navigation instruments in the 1950s [25]. The development of Inertial
navigation instruments for ships has also been gradual since then [26]. Using accelerome-
ters and gyroscopes, inertial navigation systems calculate a vessel’s position, speed, and
heading by measuring its acceleration and angular velocity. Due to the problem of error
accumulation, such systems can provide a relatively high degree of accuracy but must be
used in conjunction with other navigational systems [27–29]. In 1973, the United States
began developing the Global Positioning System (GPS), which provides more accurate
positional information for automated navigation systems [30]. In the 1980s, autonomous
navigation systems were introduced to the world of navigation. Computer technology and
sensors are used in autonomous navigation systems in order to achieve autonomous vessel
control and collision avoidance. A vessel’s course, speed, and maneuver can be automat-
ically adjusted based on preset rules and goals in order to avoid collisions and optimize
navigational efficiency [31,32]. The technology, however, requires further improvement in
terms of precision and accuracy.

3.1.3. Phase III

In the 1990s, remote monitoring systems were introduced into maritime navigation [33].
Remote monitoring systems transmit real-time information about a ship’s position, speed,
and heading to shore-based control centers using satellite communications and terrestrial
transmission equipment. By analyzing this data and providing timely navigation advice
and navigational warnings, shore-based control centers can assist ships in avoiding poten-
tially dangerous areas. It was in the 2000s that intelligent navigation systems began to be
applied to ships. In an intelligent navigation system, radar, satellite navigation, communi-
cations, and computer technology are utilized to provide highly automated monitoring of
the surroundings of a ship in real-time, as well as collision avoidance decisions based on
that information [34,35].

3.1.4. Phase IV

In 2008, LiDAR technology began to be used in the field of active obstacle avoidance
at sea. In LiDAR, a laser beam is emitted, and its reflected signal is measured to determine
the distance between a target object and a sensor [36]. Advances in sonar technology led to
further refinements in maritime obstacle avoidance systems in the early 2010s [37]. Since
then, computer vision [38] and artificial intelligence [39] have been used in the development
of marine obstacle avoidance systems.

3.2. Traditional Methods

There are several active collision avoidance methods at sea, including Automatic
Identification Systems (AIS), Automatic Radar Plotting Aids (ARPA), Electronic Chart
Display and Information Systems (ECDIS), Vessel Traffic Management Systems (VTMIS),
and observation methods that rely heavily on manual labor, including navigational watch
and sailor observation. Because the last category of methods can be viewed as a purely
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manual method based on the crew’s experience, some systems have developed, such as
collision avoidance rules [40]. This section does not provide a detailed description of them.

3.2.1. Autonomous Identification System

The Autonomous Identification System (AIS) is a system that uses sensors, such as
radar, Automatic Identification System (AIS), and satellite imagery to monitor and identify
ships in the maritime industry [41]. In Autonomous Identification Systems, AIS is one
of the most widely used technologies. The AIS is based on the Global Automatic Ship
Identification System (GMDSS).

An AIS transmits and receives information about a ship’s position, speed, course,
and name using VHF radio waves. A good mastery of position and speed enables AIS to
perform a number of functions, including autonomous collision avoidance and operation
supervision [42,43]

A study has been conducted on the potential impact of Automatic Identification
Systems (AIS) on ship bridges on the safety of maritime navigation. According to the study,
8% of the AIS transmissions in the sample contained at least one piece of inaccurate data,
and the reliability of the data provided by AIS often failed to meet requirements [44].

A proposed Automatic Identification System (AIS) was proposed by Saravanan et al.
in order to prevent fishermen from crossing international maritime borders and to assist
them in avoiding collisions [45].

3.2.2. Automatic Radar Plotting Aid

Through the use of radar technology, the ARPA system detects ships and other ob-
stacles around them and calculates their position, speed, and direction. ARPA uses this
data to automatically plot the movements of other vessels and predict their future locations.
Captains and crews can utilize this predictive data to identify potential hazards and take
appropriate action to avoid them [46].

According to one study, Automated Radar Plotting Aid (ARPA) systems are often
mistaken for inland waterway structures and land objects in inland rivers and harbors [47].

3.2.3. Electronic Chart Display and Information System

The ECDIS system is a collision warning system that is based on electronic charts and
navigation systems. The system integrates information about a ship’s position and naviga-
tion with data from nautical charts in order to provide warnings and recommendations
regarding ship maneuvers [48].

It is possible to adjust the scale of an electronic nautical chart by using the zoom
function. However, excessive zooming in or out may cause a false sense of security,
as it may lead to misinterpretations of the accuracy of routes and hazards. As a result
of zooming in and out, certain specific features and information may be automatically
hidden or displayed, which may interfere with a mariner’s overall understanding of the
navigational environment. Therefore, mariners should exercise caution when using the
zoom function and always maintain a thorough understanding and visual observation of
the entire course at all times [49].

3.2.4. Vessel Traffic Management System

The purpose of vessel traffic management systems is to monitor maritime traffic and
provide real-time traffic intelligence and risk assessments to assist captains and crews in
making informed decisions [50]. Thus, the method produces a final avoidance result that is
highly dependent on the operations of the crew.

3.3. Associated AI-Algorithms

According to the review above, active collision avoidance offers greater potential in
terms of economic benefits and other factors than passive collision avoidance. Traditional
active collision avoidance techniques, however, have some disadvantages. With the ap-
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plication of artificial intelligence methods to maritime active collision technology, some
of these drawbacks have been overcome [51]. The majority of collision problems at sea
occur during complex sea states, including adverse weather conditions, busy shipping
lanes, ocean currents, and coastlines. Active obstacle avoidance methods cannot cope well
with complex sea conditions, but artificial intelligence provides a better solution to avoid
collisions in complex sea conditions. In addition, sophisticated algorithms and the use of
big data technology can ensure compliance with COLREGs in the event of an accident or
an emergency situation. Various AI algorithms are discussed in this section.

3.3.1. Ant Colony Optimization Algorithm

It is a meta-heuristic algorithm based on the path taken by ant colonies in search of
food. The ACO algorithm solves the optimization problem by simulating the release of
pheromones by ants in their environment [52,53]. Figure 8 illustrates a simple model of
the ACO algorithm. Similarly, ships are capable of simulating their intentions by releasing
pheromones and planning collision avoidance paths based on the pheromones left by their
surroundings. Using an iterative optimization process, the ACO algorithm considers the
interactions between ships and the environment in order to find the best collision avoidance
paths, thereby improving safety and efficiency. The best collision avoidance scheme can
be determined by taking into account several factors, such as course distance, speed, ship
type, etc.
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An analysis of the path planning problem for autonomous surface ships found that
the “Ant Colony Optimization” algorithm yielded superior results. By using the algorithm,
the model is able to determine the best trajectory for maneuvering [54].

Based on ant colony optimization (ACO), Lazarowska presents a new approach to
path planning in dynamic environments. An unmanned surface vehicle (USV)’s navigation,
guidance, and control system incorporates an intelligent obstacle detection and avoidance
system, which can be used as part of the decision support system on board [55].

An incoming ant colony optimization algorithm (ACO) can be used to avoid collisions
between unmanned surface vehicles (USVs). Using this algorithm, we are able to solve
the problems of insufficient search capability, slow convergence, and falling into local
optima [56].

A path-planning algorithm proposed by Fu et al. makes it possible for submarines to
navigate safely in complex underwater environments. The algorithm consists of a global
path-planning component and a local dynamic obstacle avoidance component. Global
path planning is accomplished using an improved Artificial Potential Field Ant Colony
Optimization (APF-ACO) algorithm, which yields shorter paths, fewer inflection points,
and greater stability than other similar algorithms [57].
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Underwater vehicles in high-energy environments can be avoided by using the ant
colony optimization (ACO) algorithm [58].

Using an improved ant colony clustering algorithm, Liu et al. automatically select an
appropriate search range by a clustering algorithm that matches the complexity of different
environments. As a result, USV can fully utilize its limited computational resources and
improve the performance of path planning [59].

3.3.2. Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) is a group intelligence-based optimization algo-
rithm. As shown in Figure 9, based on the behavior of a flock of birds or a school of fish,
the PSO algorithm solves complex problems by simulating the behavior of individual birds
as they search for food in the search space. In the PSO algorithm, the position and velocity
of the particles are updated based on the experiences of each particle and the collective
experience of the whole flock by viewing the search space as the position of the particle
population. By comparing its own optimal position with the optimal position of the whole
population (global optimal solution), each particle adjusts its position and velocity to better
explore the search space [60–62].

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 21 
 

 
Figure 9. Basic structure of the particle swarm optimization (PSO) algorithm. 

An improved Tent mapping is introduced to address the problem of premature con-
vergence of PSO in a study on the effectiveness of the Chaotic Particle Swarm Optimiza-
tion (CPSO) algorithm in ship collision avoidance based on the analysis of existing colli-
sion avoidance strategies [63]. 

The PSO algorithm was used by Wang et al. to find safe and smooth sailing routes as 
well as efficient sailing speeds. According to the results, the proposed method can effec-
tively achieve a safe and smooth sailing route and a fast speed for a ship experiencing an 
accident [64]. 

Based on standard encounter types, Kang et al. simulated several maritime traffic 
scenarios. These scenarios are used to test the proposed PSO algorithm [65]. 

In complex ocean environments, an autonomous underwater vehicle (AUV) path 
planning strategy has been developed. Using particle swarm optimization (PSO) algo-
rithms and local path modification (LPM)-based replanning schemes, the strategy contin-
uously optimizes the optimal trajectory and avoids collisions with static and dynamic ob-
stacles [66]. 

3.3.3. Genetic Algorithm 
As an optimization algorithm, Genetic Algorithm (GA) simulates the process of bio-

logical evolution. By simulating natural selection, genetic variation, and gene crossover, 
it seeks to determine the best solution. Figure 10 shows the basic process of the Genetic 
Algorithm. A Genetic Algorithm encodes the solution to the problem as an individual 
(chromosome) consisting of a string of genes. Each gene represents a variable in the prob-
lem, and each individual represents a possible solution. To form a population, an initial 
set of individuals is randomly selected. An individual’s fitness is evaluated by a fitness 
function; the higher the fitness, the greater the likelihood of the individual’s selection. To 
generate new individuals, a selection operation is performed based on the selection prob-
ability, followed by crossover and mutation operations. A solution that satisfies the stop-
ping condition is iterated until an optimal solution is found [67,68]. It is possible to apply 
genetic algorithms to the problem of ship active collision avoidance in order to determine 
the most effective collision avoidance strategy. Every individual can represent a possible 
navigation strategy, including parameters such as heading and speed. Through continu-
ous iteration and evolution, the genetic algorithm searches for the globally optimal colli-
sion avoidance strategy. Each individual’s fitness is evaluated by a fitness function, which 
considers factors such as distance, speed, and heading to other ships. Selection, crossover, 
and mutation operations are performed based on the fitness to produce new individuals. 

Figure 9. Basic structure of the particle swarm optimization (PSO) algorithm.

An improved Tent mapping is introduced to address the problem of premature con-
vergence of PSO in a study on the effectiveness of the Chaotic Particle Swarm Optimization
(CPSO) algorithm in ship collision avoidance based on the analysis of existing collision
avoidance strategies [63].

The PSO algorithm was used by Wang et al. to find safe and smooth sailing routes
as well as efficient sailing speeds. According to the results, the proposed method can
effectively achieve a safe and smooth sailing route and a fast speed for a ship experiencing
an accident [64].

Based on standard encounter types, Kang et al. simulated several maritime traffic
scenarios. These scenarios are used to test the proposed PSO algorithm [65].

In complex ocean environments, an autonomous underwater vehicle (AUV) path plan-
ning strategy has been developed. Using particle swarm optimization (PSO) algorithms
and local path modification (LPM)-based replanning schemes, the strategy continuously op-
timizes the optimal trajectory and avoids collisions with static and dynamic obstacles [66].

3.3.3. Genetic Algorithm

As an optimization algorithm, Genetic Algorithm (GA) simulates the process of bio-
logical evolution. By simulating natural selection, genetic variation, and gene crossover,
it seeks to determine the best solution. Figure 10 shows the basic process of the Genetic
Algorithm. A Genetic Algorithm encodes the solution to the problem as an individual (chro-
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mosome) consisting of a string of genes. Each gene represents a variable in the problem,
and each individual represents a possible solution. To form a population, an initial set of
individuals is randomly selected. An individual’s fitness is evaluated by a fitness function;
the higher the fitness, the greater the likelihood of the individual’s selection. To generate
new individuals, a selection operation is performed based on the selection probability,
followed by crossover and mutation operations. A solution that satisfies the stopping
condition is iterated until an optimal solution is found [67,68]. It is possible to apply genetic
algorithms to the problem of ship active collision avoidance in order to determine the most
effective collision avoidance strategy. Every individual can represent a possible navigation
strategy, including parameters such as heading and speed. Through continuous iteration
and evolution, the genetic algorithm searches for the globally optimal collision avoidance
strategy. Each individual’s fitness is evaluated by a fitness function, which considers factors
such as distance, speed, and heading to other ships. Selection, crossover, and mutation
operations are performed based on the fitness to produce new individuals.
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Genetic Algorithms and artificial intelligence are being used to develop a decision
support tool for ship collision avoidance route planning and alerting. By considering the
international regulations for the prevention of collisions at sea (COLREGS) and the safety
domain of ships, it provides theoretically crucial recommendations for the shortest collision
avoidance routes from an economic perspective [69].

To study how to assist the crew in determining and controlling the ship’s course, Ito,
Zhnng, and Yoshida used a genetic algorithm [70].

A quadratic optimization genetic algorithm combining the ship motion characteristics
was proposed by Wang et al. in order to achieve automatic route planning under complex
navigation environments [71].

An effective collision avoidance system depends on the ability to determine the best
trajectory. The mathematical model of ship maneuvering motion is described by Cheng,
Liu, and Zhang as the basis for the ship collision avoidance system. To determine the ship
trajectory in inland waterways, taking into account different navigational constraints, an
optimization method based on genetic algorithms is applied [72].

In a marine environment with strong currents and enhanced spatiotemporal variability,
A. Alvarez, Caiti, and Onken proposed a genetic algorithm for autonomous submersible
path planning. Finding a safe path is the objective [73].

3.3.4. Reinforcement Learning Algorithms

By interacting with the environment, Reinforcement Learning (RL) learns optimal
behavioral strategies in a dynamic environment. By observing feedback and reward signals
from the environment, it optimizes the decision-making process through trial and error.
Figure 11 illustrates a typical framework for a reinforcement learning (RL) scenario. There
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are three main components of Reinforcement Learning: The Agent, the Environment, and
the Reward. As a result of observing the state of the environment, the Agent chooses to
perform an action. In response to the Agent’s action, the Environment provides a new
State and a corresponding Reward. Based on the observed feedback, the intelligent body
updates its strategy in order to maximize the cumulative reward by learning to choose the
best course of action from the current situation [74–76].
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In order to improve the path planning capability of AUVs in unknown environments,
Chu et al. proposed a deep reinforcement learning (DRL) method based on dual deep Q
networks (DDQN) [77].

Rongcai, Hongwei, and Kexin developed an autonomous collision avoidance system
based on deep reinforcement learning in open water to address the challenge of planning
local paths for multiple vessels in complex, dynamic environments [78].

An obstacle avoidance autonomous surface ship (ASV) strategy was developed by
Zhou et al. based on reinforcement learning [79].

Xu et al. proposed an intelligent hybrid collision avoidance algorithm based on deep
reinforcement learning to achieve autonomous collision avoidance for unmanned surface
vehicles (USVs) [80].

Deep reinforcement learning and rolling wave planning are used to improve the
performance of an unmanned surface vehicle (USV). A path planner is used to generate a
potential path for the entire trip without specifying motion details, and a decision module
is used to avoid dynamically generated obstacles and navigate through the agent in the
near future [81].

A deep reinforcement learning (DRL) algorithm-based autonomous navigation deci-
sion algorithm for maritime autonomous surface ships (MASS) was proposed by Zhang
et al. It consists of two layers: a scene segmentation layer and an autonomous naviga-
tion decision layer. According to the International Code for Collision Avoidance at Sea
(COLREG), the scenario segmentation layer quantifies the sub-scenarios [82].

In a continuous state space environment, Wang et al. proposed a new algorithm for
avoiding impact potholes called Approximate Representation Strong Chemical Learning
(AR-RL) (2023) [83].

For unmanned surface vehicles (USVs), Fan et al. propose a collision avoidance
algorithm that complies with international regulations (COLREGs) in order to prevent
collisions at sea. USVs are trained to navigate safely and efficiently using reinforcement
learning and a finite Markov decision process [84].

An autonomous ship path tracking and collision avoidance system can be improved
by using a deep reinforcement learning algorithm. By ensuring that a vessel follows a
predefined path, the proposed algorithm avoids collisions when encountering a moving
vessel [85].
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3.3.5. Artificial Neural Network

An artificial neural network (ANN) mimics the structure and function of a neural
network in the human brain. Figure 12 shows the simple structure of an artificial neural
network. By simulating the connections between neurons and the transmission of electrical
signals, it realizes information processing and learning. By learning and training, artificial
neural networks are capable of extracting features from input data and performing tasks
such as pattern recognition, classification, and prediction [86–93].
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It is possible to apply artificial neural network algorithms to the problem of ship active
collision avoidance. Firstly, it is necessary to collect and prepare relevant navigational
data, such as ship position, speed, heading, and radar data. As a result of these data,
an artificial neural network model is trained to learn the ship’s behavior patterns and
laws. By inputting real-time ship navigation data into the trained neural network model,
predicted ship behaviors or decision-making suggestions can be obtained after the training
has been completed. The ship can actively take collision avoidance measures based on
these predictions, such as adjusting course and speed or communicating with other vessels
in the area.

To predict the future position of manually controlled vessels, Simsir et al. proposed an
artificial neural network (ANN) that utilizes data from manually controlled vessels [93,94].

To prevent collisions between vessels on the high seas, Kim and Park developed an
artificial neural network (ANN). In the study, it was found that the ANN is capable of
providing timely and appropriate collision avoidance actions based on information from
navigational equipment, such as radars and automatic identification systems (AIS). For
training, ANNs may require large quantities of data, which can be time-consuming and
expensive [95].

3.4. Other Technologies

Yilmaz et al. investigated the problem of path planning for autonomous underwater
vehicles (AUVs) in the context of adaptive sampling. They developed a mathematical
formulation called MILP, which is capable of handling multiple AUVs and multi-day
sampling. MILP can model all constraints required by various problem scenarios. As a
result, the problem formulation can be extended and modified in the future [96].

Based on historical successful collision avoidance cases, Gao et al. propose to employ
an encoder-decoder neural network based on a sequence-to-sequence (Seq2Seq) model [97].

A multi-trajectory planning algorithm has been proposed for automated underwater
vehicles (AUVs) in complex underwater environments by Gong et al. [98].
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A dynamic predictive guidance technique has been proposed by Kozynchenko et al.
for the purpose of preventing collisions at sea. This technique is based on an optimal
control problem formulation and a nonlinear model of a three-dimensional ship. The
simulation results demonstrate the feasibility and effectiveness of the proposed technique
and software. Further research and development of ship collision avoidance systems can
be conducted using the simulation framework developed [99].

MahmoudZadeh et al. investigated the underwater rendezvous problem, which
involves a single automated underwater vehicle (AUV) meeting a leading underwater
rescue vessel in a chaotic and variable operating environment. A nonlinear optimal control
problem (NOCP) was formulated and solved using an evolutionary algorithm. To adapt to
the changing environment, a new online path-planning mechanism was developed and
implemented on a follower AUV [100].

Liu et al. proposed a hybrid clustering model to analyze maritime traffic patterns
and detect anomalies in ports. Combining K-Means and DBSCAN algorithms, the model
clusters ship trajectories based on their departure and destination characteristics as well as
their dynamic and spatial characteristics [101].

A model for real-time multi-vessel collision risk analysis and collision avoidance
decision-making was proposed by Hu et al. Using fuzzy logic, the model calculates collision
risk and determines whether to change course or speed in order to avoid a collision. To
reduce the number of maritime accidents caused by human error and failure, the model
provides early warning and decision support to the officer of the watch (OOW) [102].

To enhance the autonomy of an unmanned surface vehicle (USV), Guardeño et al. pro-
pose a new algorithm called Robust Reactive Static Obstacle Avoidance System (RRSOAS).
A prior knowledge of the USV’s mathematical model and controller is not required in
order to use the algorithm. Rather, it uses an estimated closed-loop model (ECLM) to
estimate the likely future trajectory of the USV and accounts for prediction errors caused
by uncertainty by modeling the shape of the USV as a time-varying ellipse. Using an
occupancy probability grid as the environment model updated by the LiDAR sensor model,
the algorithm utilizes a variable prediction horizon and exponential resolution to discretize
the decision space [103].

Guardeño et al. proposed a new static automatic adjustment environment for obstacle
avoidance (ATESOA) method for unmanned surface vehicles (USVs). By using a simplified
model of the LiDAR sensor, this environment allows the adaptation of different SOA
methods. The proposed ATESOA can be adapted to different SOA methods and used to
evaluate the performance of these methods in different scenarios with varying obstacle
distributions [104].

Using a sequential conditional generation adversarial network (seq-cGan), Gao et al.
proposed a new method for avoiding ship collisions. To make appropriate anthropomorphic
collision avoidance decisions, the proposed method does not require a risk assessment
procedure [105].

4. Discussion and Result
4.1. Difficulties and Limitations

In this paper, we review the use of artificial intelligence-related techniques to achieve
active collision avoidance. To build a model using AI-related techniques, a large amount
of data is required. According to the above review, artificial intelligence has four major
limitations and difficulties when it comes to implementing active collision avoidance
technology, including difficulties obtaining data, the complexity of algorithms that meet
the needs, hardware limitations, and robustness and security issues.

4.1.1. Difficulty in Accessing Data

For active collision avoidance to be realized, there is a great deal of data support,
but obtaining these data is not easy, and it is also necessary to label and process these
data, which is also a time-consuming and laborious process. In addition, this problem is a
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particular challenge associated with the application of deep learning methods in the field
of active collision prevention. Here are some of the current limitations in this area:

(1) A large amount of data is required to realize active collision avoidance, including
vehicle trajectory, traffic light status, road conditions, etc. It is, however, not an easy
task to obtain these data since it requires a considerable amount of time and resources,
both human and material;

(2) A problem with data annotation is that the collected raw data must be annotated and
processed, such as annotating the vehicle trajectory, annotating the status of traffic
signals, etc., which is also time-consuming and labor-intensive;

(3) There are a number of issues related to data quality. For example, there may be
uncollected data or noise in the data as a result of weather, light, and other factors.
This will also impact the accuracy and stability of an algorithm;

(4) Privacy issues: Data collected involve sensitive information such as personal privacy,
which must be protected and processed, increasing the difficulty of acquiring and
processing the data.

4.1.2. Algorithmic Complexity

Active collision avoidance techniques require the use of complex algorithms for
decision-making and prediction, which require high levels of accuracy and stability while
simultaneously taking into account a wide range of different situations and factors, making
the algorithms more complex and difficult to perform.

(1) Active collision avoidance technologies require complex computer vision and image
processing algorithms to perceive and understand the environment around the vehicle,
including the trajectory of the vehicle, the status of traffic lights, and road conditions;

(2) Active collision avoidance technology must make decisions based on the results of
environment sensing, such as whether to brake, whether to avoid obstacles, etc.,
which requires the use of complex algorithms;

(3) As part of active collision avoidance technology, the technology must be able to
predict and plan for future traffic conditions, such as predicting the trajectory of other
vehicles, planning their own routes, etc., which requires the application of complex
algorithms for prediction and planning;

(4) In order to determine whether it is necessary to brake or avoid obstacles within a few
hundred milliseconds, active collision avoidance technology must respond in real-
time, for instance, within a few hundred milliseconds. Real-time response algorithms
are, therefore, necessary for efficient collision avoidance technology.

4.1.3. Hardware Limitations

In order to implement active collision avoidance technology, hardware devices, such
as high-precision sensors and computer processors, must be used, which adds cost and
complexity and impacts aspects such as vehicle weight and energy consumption.

(1) In order to achieve active collision avoidance technology, high-precision sensors
are required, such as LIDAR, cameras, millimeter wave radar, etc. For accurate
environmental perception, these sensors should be capable of high accuracy, high
resolution, high frame rate, etc;

(2) A high-performance computer processor is required to realize active collision avoid-
ance technology, such as GPUs, FPGAs, etc. In order to enable quick data processing
and decision-making, these processors must have high speeds, low latency, and high
concurrency;

(3) In order to implement active collision avoidance technology, a large number of hard-
ware devices will be used, resulting in an increase in the weight and energy consump-
tion of the marine vehicle, which will have an adverse effect on its performance and
endurance;
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(4) Hardware devices, such as high-precision sensors and computer processors, are
expensive and add complexity and difficulty to the system, which increases the cost
and difficulty of developing an active collision avoidance system.

4.1.4. Robustness and Security

Algorithms based on artificial intelligence are susceptible to adversarial attacks and
interference. A number of factors can affect the accuracy and reliability of algorithms,
including deceptive sensor inputs and malicious interference. Therefore, it is important to
ensure the robustness and security of algorithms.

(1) It is possible for attackers to spoof an active collision avoidance system by modifying
sensor data in order to generate incorrect decisions. To improve the robustness of the
system, it is necessary to detect and filter sensor inputs that appear anomalous, as
well as to use multiple sensors for redundant detection;

(2) Attackers may attempt to interfere with the normal operation of the AI active collision
avoidance system by jamming its communications or control systems. In order to
prevent malicious interference and intrusion, it is necessary to strengthen the system’s
cybersecurity measures, such as the use of encrypted communication, authentication,
and access control techniques.

4.2. Suggestions and Future Prospects

Following the above discussion and analysis, the following suggestions and outlooks
are offered.

4.2.1. Recommendations on Data Issues

(1) Incorporating advanced sensor technologies, such as LIDAR, cameras, millimeter
wave radar, etc., can improve the accuracy and quality of data collection, thereby
reducing the difficulty of processing and labeling the data;

(2) By developing smarter data labeling and processing algorithms using machine learn-
ing and other technologies, the efficiency and accuracy of data labeling and processing
can be improved, thereby reducing the difficulty associated with obtaining data;

(3) Simulators can be utilized for data acquisition in order to reduce the cost and time of
the acquisition process as well as improve the quality of the data acquired;

(4) In order to facilitate the circulation and utilization of data, we should promote data
sharing and openness. By doing so, the difficulty of acquiring data will be reduced,
and the development and application of artificial intelligence will be facilitated.

4.2.2. Recommendations on Algorithmic Issues

(1) Improve the accuracy and stability of algorithms by using deep learning technologies:
Deep learning technologies are capable of learning features and laws from data auto-
matically, therefore improving the accuracy and stability of algorithms and reducing
their complexity;

(2) An introduction to multimodal information: Multimodal information can provide
richer data sources, including data collected with multiple sensors, such as LIDAR,
cameras, millimeter wave radar, etc., enhancing the accuracy and reliability of envi-
ronment perception.

(3) Improve algorithm architecture: Optimizing algorithm architecture can enhance
the efficiency and speed of algorithms, for example, by utilizing parallel computing,
distributed computing, and other technologies so as to improve their ability to respond
in real time.

4.2.3. Recommendations on Hardware Issues

(1) New sensor technologies: The development of new sensor technologies, such as
microwave radar and infrared sensors, will improve the accuracy and performance of
the sensors as well as reduce the cost and energy consumption;



Sustainability 2023, 15, 13384 16 of 20

(2) Optimization of hardware design: By optimizing hardware design, for example, by
using lightweight materials, optimizing circuit design, etc., it is possible to reduce the
weight and energy consumption of hardware equipment as well as other aspects of
the impact, thus improving the vehicle’s performance and range;

(3) Developing computer processors with higher performance and lower power con-
sumption to meet the demand for real-time processing of large amounts of data and
execution of complex algorithms. In addition, it may be possible to improve computa-
tional efficiency and speed by using techniques based on distributed computing and
parallel processing.

4.2.4. Recommendations on Robustness and Security Issues

(1) Evaluation and testing of models: It is essential to conduct a comprehensive evaluation
and testing of models. There is a need to develop specialized evaluation and testing
methods to detect and fix potential vulnerabilities and bugs, as well as to validate
the robustness and security of algorithms under different adversarial attacks and
interference scenarios;

(2) Improve the interpretability and trustworthiness of AI algorithms so that their decision-
making processes can be understood and verified. Improve the reliability and accept-
ability of AI systems through the development of explanation mechanisms, trans-
parency frameworks, and model visualization methods;

(3) Development of database technology: Database techniques are used to create training
datasets containing data on the marine environment of various types, sizes, and
situations. The data may include information regarding the position and speed of the
ship, the currents, waves, water depths, weather conditions, as well as many other
factors. AI systems can make accurate predictions and decisions by synthesizing these
diverse data sets;

(4) Using artificial intelligence and machine learning, decision-support systems can
analyze data on the marine environment and make recommendations for action based
on the specific circumstances of a ship. A system such as this can assist ships in
making collective decisions to avoid collisions and provide an additional level of
safety;

(5) Developing a data-sharing and collaboration platform will allow ships to share and
access real-time marine environmental data, as well as promote information sharing
and collaboration. The ships will be able to better understand the dynamics of the
surrounding ships and make corresponding decisions, thereby improving overall
navigational safety.

5. Limitations of the Article

Using a time-tracing approach, this paper examines the development of active collision
avoidance at sea as well as some cases of passive and active collision avoidance. The main
AI algorithms applied to active collision avoidance techniques are reviewed on this basis in
order to provide an overview of the potential of AI approaches to the maritime collision
problem. During the review and discussion, some limitations of the development of this
field are highlighted, as well as some directions for research, but the review of this paper is
biased toward current research status in artificial intelligence algorithms, with a limited
focus on real-world application cases. As a result, there are some limitations to the scope of
the article.
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