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Abstract: In the pursuit of China’s carbon peak and carbon neutrality objectives, county-level areas
assume a pivotal role in orchestrating diverse initiatives for low-carbon development. However,
empirical evidence is limited. This paper aims to fill this gap by exploring the driving factors of
carbon peak and carbon peak path at the county level, using Shandong Province as a case study.
Employing data related to economic development, industrial structure, land utilization, energy con-
sumption, and emission characteristics, a principal component analysis (PCA) was utilized to extract
the following five driving factors of carbon peak: green transformation, urbanization, industrial
construction, energy consumption, and environmental constraints. Subsequently, K-means clustering
identified five cluster areas: (1) agricultural transformation pending area, (2) low-carbon lagging area,
(3) industrial transformation area, (4) low-carbon potential areas, and (5) low-carbon demonstration
area. Based on these areas, this study further elucidates spatial combination models of carbon peak
within the urban system, spanning central cities, coastal cities, resource-based cities, and agricultural
cities. The paper enhances comprehension of the integral role county-level areas play in achieving
China’s carbon reduction objectives. By providing nuanced insights into diverse developmental
trajectories and spatial interactions, the study contributes to effective low-carbon strategy formulation.
The findings underscore the importance of considering specific county attributes in urban areas to
devise precise optimization strategies and trajectories, ultimately facilitating the realization of carbon
peak goals.

Keywords: carbon emission; driving factors; differentiated peak paths; cluster analysis; county;
Shandong

1. Introduction

The greenhouse effect and ecological environmental issues resulting from carbon
emissions have presented significant challenges to sustainable development in recent
years [1,2]. China, in particular, has experienced rapid industrialization and urbanization
since the 1980s, resulting in substantial socioeconomic progress. However, this growth has
been accompanied by a continuous increase in the scale and intensity of carbon emissions [3,4].
China has held the title of the world’s largest CO2 emitter since 2007, contributing to a
staggering 28% of global carbon emissions in 2019 [5]. Consequently, China’s forthcoming
endeavors to curtail emissions will play a pivotal role in the global pursuit of limiting global
warming to 1.5 ◦C [6]. Acknowledging the escalating importance of carbon reduction, China
has established ambitious targets, aiming to peak CO2 emissions before 2030 and achieve
carbon neutrality by 2060 [7]. Given regional variances, burden-sharing complexities, policy
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innovation, and the enhancement of local competitiveness and development, individual
provinces have emerged as key actors in realizing the dual carbon strategy within this
strategic framework [8,9]. Therefore, it is imperative to gain a scientific understanding of the
spatial disparities and evolutionary trends in regional carbon emissions, accounting for the
diverse development objectives and priorities of different stakeholders. This knowledge
is vital for formulating effective strategies for carbon control and emission reduction,
particularly in light of the dual challenges posed by economic growth and future “dual
carbon” targets.

In response to the increasingly pressing global issue of climate change, which has
garnered significant international attention, scholars have made substantial progress in
addressing the challenges of carbon reduction. In the early stages of this research, a primary
focus was on accurately predicting the scale of carbon emissions. This involved the devel-
opment of diverse measurement methods and frameworks to assess and quantify various
aspects related to carbon emissions [10–13]. Subsequent studies delved into regional carbon
emission measurements, using them to comprehensively examine the multifaceted factors
contributing to variations in carbon emissions. Researchers, for instance, constructed vari-
ous frameworks to investigate the role of carbon emissions, analyzing driving factors such
as population, per capita GDP, energy consumption intensity, and carbon intensity [13]. No-
tably, these studies identified an inverted ‘U’ curve relationship between GDP and carbon
emissions, signifying diminishing marginal benefits of carbon emissions as the economy
reaches a certain level of growth [14]. Analyses of energy consumption characteristics across
different countries have revealed that energy intensity plays a significant role in controlling
carbon emissions [15]. Additionally, researchers have identified population growth as a
driver of carbon emissions scale, particularly in urban areas with significant population ag-
glomeration [16]. Panel statistics analysis has underscored the pivotal role of the secondary
industry in urban carbon emissions, emphasizing the optimization of industrial structure
as a crucial pathway toward achieving low-carbon development [17]. Furthermore, various
measures, such as the promotion of industrial structure rationalization, the adoption of
innovation development strategies, and the enhancement of technological innovation, have
proven to be effective in reducing carbon emissions [18].

As China’s carbon reduction efforts have garnered global attention, an increasing vol-
ume of research has been dedicated to understanding various aspects of carbon emissions
within the country. This includes studying carbon emissions from different industries,
regions, and energy consumption patterns [19]. Additionally, scholars have delved into the
exploration of the technological, policy, and economic factors necessary for transitioning
China’s energy production and consumption towards a low-carbon trajectory [20,21]. More-
over, researchers have examined the establishment and development of carbon market
mechanisms in China [21,22] and evaluated the effectiveness and impact of China’s carbon
reduction policies [23,24]. Many of these studies have relied on regional and provincial
panel data to offer empirical evidence through heterogeneity analysis across provinces and
thus support provincial energy transition and industrial upgrading policies. As carbon
reduction research continues to advance in terms of spatial and temporal granularity, an
increasing number of studies are examining the spatial distribution and evolutionary char-
acteristics of regional carbon emissions from a space–time perspective. These endeavors
aim to unveil the effects and influences of human activities on carbon emissions by scru-
tinizing factors such as city size, economic development patterns, level of international
cooperation [25], urban land use, industrial structure, consumption behavior [26], and the
selection of action paths for reducing carbon emissions [27].

In summary, research on carbon emissions at the provincial level has provided valu-
able insights into regional characteristics and underlying influences. Additionally, studies
examining spatiotemporal patterns and evolution across multiple regions, scales, and
timeframes are gaining prominence. However, it is crucial to recognize two key limitations.
Firstly, using cities as spatial analysis units might overlook variations in socioeconomic and
industrial development within cities and counties. While micro-county units are considered
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more appropriate for studying resource utilization and administration, research focused on
them remains scarce, potentially restricting our comprehension of local carbon emission
dynamics. Secondly, the absence of comprehensive analysis on dominant factors driving
carbon peak scenarios hampers the classification of regional carbon peak types and formu-
lation of differentiation paths for carbon emission peak types. Addressing these limitations
represents a significant enhancement to the current research within urban contexts. This
effort will lead to a deeper understanding of carbon emissions at a more intricate and
granular level, thereby facilitating the development of effective carbon reduction strategies.
Furthermore, a comprehensive analysis of the predominant factors influencing carbon
emissions will provide substantial support for categorizing, formulating, and executing
emission peak trajectories across diverse regions.

In this study, Shandong Province serves as an illuminating case study, offering a
comprehensive microcosm of substantial significance. Being one of China’s economic
powerhouses, Shandong exemplifies the intricate interplay between economic growth
and its corresponding environmental consequences. The province’s unique composition
encompasses a wide range of industrial, agricultural, and residential activities across
various counties, including urban, suburban, and rural areas. These activities work in
synergy to contribute to its overall carbon emissions. The unveiling of the intricate carbon
emission patterns within this distinctive geographic context is pivotal, not only for crafting
localized mitigation strategies but also for yielding invaluable insights into broader trends.
The primary focus of this paper is to comprehensively address the closely interrelated
influencing factors of the carbon peak pathway. To achieve this, we establish an evaluation
index system for carbon peak trends, which incorporates key elements such as population,
economy, land usage, and carbon emissions. The framework is established using principal
component analysis (PCA) and k-means cluster analysis. Specifically, two key questions
will be answered: (1) What are the key factors driving carbon peak? (2) What is the spatially
differentiated pattern of carbon peak features, and how does the typical spatial combination
model manifest in different types of cities? (3) What are the pathways to achieve different
types of carbon peaks, considering their varying levels of development and differences in
industrial structure?

2. Methodology and Data
2.1. Study Area and Data Source

Shandong Province, situated along the eastern coast of China, was selected as the
study area. It is important to note that Shandong has consistently reported carbon emis-
sions per capita and intensity figures that surpass the national average. As a province
with a large population and considerable economic importance, Shandong stands out due
to its diverse industrial landscape, high levels of energy consumption, and significant agri-
cultural activities, all of which contribute significantly to its substantial carbon emissions.
The administrative division of Shandong Province consists of 17 prefecture-level cities and
139 county-level administrative divisions, encompassing both counties and county-level cities.

This study utilized four data sources. Firstly, vector data for administrative divi-
sions were acquired from the map of Shandong (http://www.sdmap.gov.cn/ (accessed
on 8 August 2023)). Secondly, socioeconomic data primarily from the 2018 Shandong
Statistical Yearbook, along with relevant statistical yearbooks and communiqués at the
municipal level, were supplemented. District gross national product (GDP) was revised
using data from the fourth economic census. Thirdly, data on land use status and change
were based on the latest results of the third land survey. Fourth, data on carbon emissions
in 2017 were obtained by processing energy data from the China Bureau of Statistics us-
ing the apparent energy consumption estimation method. Finally, county-level energy
consumption data for the year 2017 was sourced from the study conducted by Chen et al.
(2022). (https://figshare.com/articles/dataset/City-_and_county-level_spatio-temporal_
energy_consumption_and_efficiency_datasets_for_China_from_1997_to_2017/19196780/1
(accessed on 8 August 2023)) [28].

http://www.sdmap.gov.cn/
https://figshare.com/articles/dataset/City-_and_county-level_spatio-temporal_energy_consumption_and_efficiency_datasets_for_China_from_1997_to_2017/19196780/1
https://figshare.com/articles/dataset/City-_and_county-level_spatio-temporal_energy_consumption_and_efficiency_datasets_for_China_from_1997_to_2017/19196780/1
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2.2. Data and Methods
2.2.1. Hotspot Analysis of Carbon Emissions: Getis–Ord Statistic

We initially performed a normality test on carbon emissions at the county level in
2017. The results of this test indicated that carbon emissions did not conform to a normal
distribution. This deviation from normality made them suitable for the application of the
Getis–Ord Gi* statistics. Subsequently, we employed the Getis–Ord statistic to identify
hotspots of carbon emissions. This statistical test is designed to determine whether clusters
of emissions are statistically significant. The resulting z-scores signify either high or low
values of neighboring features. High z-scores do not necessarily indicate statistically
significant hotspots. To be classified as a statistically significant hotspot, a feature should
exhibit both a high z-score and be surrounded by other features with high z-scores. A
positive z score indicates a hotspot, and the larger the z scores, the more intense the
clustering, while a z score indicates a cold spot and the smaller the z score indicates a more
intense clustering of low values (cold spot). The Getis–Ord General G and Getis–Ord local
statistics are given as Equations (1) and (2):

G(d) =
∑n

i=1 ∑n
j=1 wijxixj

∑n
i=1 ∑n

j=1 xixj
(1)

G*
i (d) =

∑n
j=1 wijxi

∑n
j=1 xi

(2)

where n is the number of spatial units, xi is the attribute value for feature i, xj is the attribute
value for feature j, and wij is the spatial weight between feature i and j.

2.2.2. Influencing Indicators System for Carbon Peak

Based on the existing literature [17,18,29], this paper selects influencing factors closely
related to carbon emissions and carbon peak and constructs the carbon peak trend evalua-
tion index system. As presented in Table 1, the index system encompasses the following
12 indicators: per capita carbon emissions, population size, economic level, and industrial
structure (regional GDP, per capita GDP, government budget, residents’ savings depository
balance, second industry, territorial industry), land use (land), and energy consumption and
environmental protection (energy consumption, PM2.5). From a theoretical standpoint, the
variables do not strictly adhere to an absolute normal distribution. However, considering
that the kurtosis absolute value is less than 10 and the skewness absolute value is less than
3, and when examining the normal distribution plot, it can be reasonably characterized as
broadly conforming to a normal distribution.

Table 1. Carbon peak evaluation index system.

NO. Indicator Description Mean Std. Dev. Max Min Kurtosis Skewness

X1 Per capita carbon
emissions

The amount of carbon
dioxide emissions produced
by an individual on average

(metric tons per person)

0.09 0.05 0.41 0.01 7.38 2.13

X2 Population size

The total count of
individuals living in a given
area or region. (Number of

individuals)

74.49 31.42 175.63 21.91 0.66 0.92
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Table 1. Cont.

NO. Indicator Description Mean Std. Dev. Max Min Kurtosis Skewness

X3 Construction
land

The percentage of land area
dedicated to construction or

urban development. (%)
0.19 0.14 0.95 0.06 3.18 3.32

X4 Government
general budget

The total amount of money
spent by the local

government from the
general budget.

(CNY 100 million)

53.43 32.95 23.10 18.65 9.83 2.70

X5
Residents’

savings deposit
balance

The total balance of savings
deposits held by urban and
rural residents, measured in

CNY 10 thousand.
(CNY 100 million)

340.37 227.36 1173.12 90.74 2.30 1.26

X6 Regional GDP

The total value of goods and
services produced within a
specific region, measured in

the local currency.
(CNY 100 million)

441.91 331.63 2765.69 84.10 6.93 3.10

X7 Per capita GDP

The average value of goods
and services produced per

person within a given
region, measured in the
local currency. (Unit of
currency per person)

7.28 5.55 34.62 1.79 5.68 2.13

X8 Secondary
industry

The percentage contribution
of the secondary industry

(manufacturing,
construction) to the overall

economic output. (%)

0.45 0.10 0.66 0.08 1.42 −0.91

X9 Tertiary industry

The percentage contribution
of the tertiary industry

(services, commerce) to the
overall economic output. (%)

0.50 0.12 0.89 0.28 1.14 1.09

X10 Energy
consumption

The quantity of standard
coal consumed per CNY

10 thousand of GDP (tons of
standard coal per CNY

10 thousand GDP)

1.58 0.80 6.06 0.06 9.20 2.33

X11 PM2.5 emissions

The overall quantity of
particulate matter with a
diameter of 2.5 µm or less

released into the
atmosphere in a year

(10 thousand metric tons)

5.69 2.68 13.65 0.11 0.151 −0.80

X12
Environmental

protection
penalty

The total count of legal
cases or instances where

penalties have been
imposed for violating

environmental protection
regulations. (Count)

17.27 32.37 198.00 0.00 9.28 2.80
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2.2.3. Identifying Key Factors Driving Carbon Peak: PCA

The carbon emission level is a complex and extensive system with multiple interacting
factors and significant differences exist among its elements. Principal component analysis
(PCA) [30] aims to identify a few new variables (principal components) that are independent
of each other through variable transformation, with minimal information loss. These new
variables represent a linear combination of the original variables, reflecting the information
contained in the original variable index to the greatest extent while being independent of
each other. In this study, principal component analysis was conducted for the 12 indicators,
and the principal components with a cumulative contribution rate of 85% and above
were extracted as the main factors influencing carbon peak. Given that a large number of
variables make any worthwhile judgment and interpretation impossible, the method of
Quartimax rotation in PCA that yields the most interpretable results was applied to the
matrix. The composite score of the main factor was then calculated as follows:

z1 = l11x1 + l21x2 + . . . + lp1xp
z2 = l12x1 + l22x2 + . . . + lp2xp

zm = l1mx1 + l2mx2 + . . . + lpmxp

(3)

In this context, zm represents the score of the m-th principal component, xp denotes the
standardized value of the p-th original variable, and lpm stands for the loading coefficient
of the p-th original variable in the m-th principal component.

2.2.4. Segmenting Carbon Peak Area Systems: K-Means

The principal components obtained from principal component analysis are saved as
variables, and the principal element score is calculated using Formula (3). Subsequently, the
K-means clustering algorithm is applied to cluster the dominant factors, with three to eight
different clustering schemes attempted. The cluster schemes with shorter class spacing are
selected, and the results are visualized in ArcGIS to analyze the spatial distribution of the
carbon peak area.

The Kruskal–Wallis test (K–W test) is employed to examine whether there are signifi-
cant differences in the overall distributions of multiple independent samples. In this context,
it is used to assess the various components across different clustering areas. The signifi-
cance level, denoted as α, is set to 0.05. If the p-value from the test is less than 0.05, the null
hypothesis is rejected, indicating that there is a significant difference in the visitation rates
of tourists from different household life cycles at the 0.05 significance level. Conversely, if
the p-value is greater than 0.05, it suggests that there is no significant difference.

The clustering process involves the random selection of K samples as initial cluster
centers, calculating the distance or similarity between samples using formula (2), and
then allocating the samples to homogenous clusters based on the principle of the nearest
center distance.

d
(

X′mj, X′nj

)
= ∑q

K=1

(
X′mj − X′nj

)2
(4)

In this context, K represents the number of categories, q denotes the dimensions of
cluster indicators, and X′mj and X′nj refer to the standard values for the j indicators of units
in group m and group n, respectively.

3. Results
3.1. Spatial Pattern of Carbon Emissions at the County Level

In this study, we employed the natural breaks method to examine the spatial distribu-
tion of the carbon emissions at the county level in Shandong for the year 2017, as depicted
in Figure 1a. The findings revealed that there is an east–west pattern of carbon emissions,
with the highest emissions observed in east coast cities. Carbon emissions in each city
exhibit a looped pattern, featuring lower emissions in the inner city, substantial increases
in the surrounding counties, and subsequent declines in the outermost counties. Moreover,
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the global spatial autocorrelation results demonstrated that the Getis–Ord General G value
for carbon emissions was greater than 0 and passed the significance test, signifying the
presence of spatial autocorrelation in this study. Then, using Getis–Ord GI* analyses, we
found that carbon emissions exhibited a notable spatial clustering pattern. As illustrated in
Figure 1b, the hot spots are situated in the northeast, specifically in Dongying, Qingdao,
and Weihai. These counties rely on coastal cities to leverage port trade and have developed
industries with high carbon emissions, notably in the petrochemical sector. On the other
hand, the cold spots are dispersed in the outermost counties of inland cities in the west and
center, primarily encompassing rural areas with comparatively lower socio-economic levels.
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(b) cold and hot spot of carbon emissions.

3.2. Driving Factors of Carbon Peak at the County Level

The 12 variables presented in Table 1 after nine iterations when a Quartimax rotation
method was selected. The Kaiser–Meyer–Olkin (KMO) measure resulted in a value of
0.696, and the Bartlett spherical assay p-value was 0.000, both meeting the criteria for factor
analysis (KMO > 0.5, p < 0.05). Subsequently, five common factors were extracted based on
the principle of eigenvalue > 1 and cumulative interpretation of over 80% (Table 2).

Table 2. Principal component weight results.

Component Eigenvalues Percentage of
Variance (%)

Cumulative Variance
Explanation Rate (%)

Component 1 3.38 28.168 28.168
Component 2 2.622 21.851 50.018
Component 3 1.856 15.463 65.481
Component 4 1.284 10.699 76.18
Component 5 1.189 7.454 83.635

To improve the interpretability of the common factor on the carbon peak at the county
level, we applied rotation to the load matrix, resulting in the rotated component matrix
presented in Table 3. In general, the components derived from the PCA encompass urban-
ization, industrial economy, energy consumption, and other classical factors that influence
carbon emissions during socio-economic development. Additionally, these factors include
characteristic indicators that reveal the trend of low-carbon transformation in the region
such as ecological conservation and green innovation.



Sustainability 2023, 15, 13520 8 of 18

Table 3. Rotated component matrix.

NO. Indicator Component 1 Component 2 Component 3 Component 4 Component 5

X1 Per capita carbon emissions −0.318 0.185 0.703 0.398 −0.370
X2 Population size 0.052 0.594 −0.725 −0.042 0.133
X3 Construction land 0.784 0.096 0.274 −0.298 0.091
X4 Government general budget 0.178 0.832 −0.002 −0.174 −0.100
X5 Residents’ savings deposit balance −0.027 0.801 −0.087 0.211 0.171
X6 Regional GDP 0.012 0.730 0.159 −0.545 −0.129
X7 Per capita GDP 0.311 0.478 0.682 −0.182 −0.173
X8 Secondary industry −0.874 0.046 0.103 −0.080 0.166
X9 Tertiary industry 0.880 0.218 0.025 0.010 −0.058

X10 Energy consumption −0.044 −0.070 0.057 0.935 −0.033
X11 PM2.5 emissions −0.106 0.018 −0.150 −0.023 0.952
X12 Environmental protection penalty −0.510 0.264 −0.705 0.140 −0.025

Component 1 can be named “Green Transformation Component”. It is characterized
by its high correlations with certain indicators, notably X3 construction land (0.784), X9
tertiary industry (0.880), and X8 secondary industry (−0.874), while X1 per capita carbon
emissions (−0.318) exhibits a relatively low correlation. These indicators collectively signify
a shift in counties away from traditional industrialization pathways towards more energy-
efficient and low-carbon service sectors. Based on the component scores (Figure 2a), a
notable loop effect was observed in each city, with the highest scores found in the central
counties and gradually decreasing towards the outer areas. This observation highlights
that the impact of green transformation was most pronounced in the urban core areas.

Component 2 can be named the “Urbanization Component”. It is characterized by
its high correlations with indicators, notably X2 population size (0.594), X4 government
general budget (0.832), X5 residents’ savings deposit balance (0.801), and X6 regional GDP
(0.730). These correlations unveil patterns of urbanization closely associated with the size
of regional population concentrations and levels of economic affluence. An examination
of the component scores (Figure 2b) reveals that the eastern urban counties exhibit higher
levels of urbanization compared to their western counterparts. Within each city, most of
these counties comprise newly developed urban areas and enjoy certain advantages in
terms of overall population and socio-economic development.

Component 3 can be named the “Industrial Construction Component”. It exerts
a discernible positive influence on indicators such as X1 per capita carbon emissions
(0.703) and X7 per capita GDP (0.682). Moreover, the indicator X8 secondary industry
(0.103) demonstrates a relatively high positive correlation. Conversely, indicators such as
X2 population size (−0.725) and X12 environmental protection penalty (−0.705) exhibit
negative impacts. These patterns unveil an industry-centric development model within
the region, accompanied by associated carbon emissions and environmental pollution
challenges. Based on the component scores (Figure 2c), it becomes evident that the level of
industrial development in the counties of eastern and northern cities generally surpasses
that in the southern and western regions. This discrepancy is particularly pronounced
in the majority of counties in northern and eastern cities, such as Dongying, Yantai, and
Weihai, as well as in parts of Jinan and Zibo in central cities.

Component 4 can be named the “Energy Consumption Component” with X10 energy
consumption (0.935) being the only significant positive factor. Additionally, X3 construc-
tion land (−0.298), X6 regional GDP (−0.545), and X7 per capita GDP (−0.182) serve as
significant negative indicators. These findings highlight the substantial challenges asso-
ciated with achieving sustainable development due to serious structural and efficiency
problems in the utilization of energy resources in the examined areas. When examining
the component scores (Figure 2d), it becomes apparent that the overall spatial pattern of
energy consumption and industrial construction components displays a degree of conver-
gence, implying a reliance of industrial construction on energy consumption. However,
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the energy consumption and industrial construction in Jinan, Weihai, and Qingdao do not
exhibit consistency, suggesting that the counties in these cities are largely free from high
energy consumption.
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Component 5 can be named the “Environmental Constraints Component” character-
ized mainly by X11 PM2.5 emissions (0.952) with dominant influence, and the negative
indicator X1 per capita carbon emissions (−0.370) with relatively high coefficients. These
findings indicate a close relationship between the regional carbon emissions problem and
the ecological environment. Based on the component scores (Figure 2e), the environmen-
tal restriction level is highest in the west and south, particularly in certain counties of
Liaocheng, Heze, and Jining. Notably, these regions exhibit lower levels of socio-economic
development, indicating that the industrial development of these counties is more chal-
lenging and has a more pronounced ecological impact.

In general, PCA extracted 5 components, including urbanization, industrial con-
struction, and energy consumption, which are classical influencing factors that reflect the
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long-term social and economic development and accumulation in the region [15,17,19].
Additionally, the components of green transformation and environmental constraints depict
the region’s capacity to transform and develop in line with China’s ecological civilization
principles, especially following the introduction of carbon-neutral strategies [31,32].

3.3. Carbon Peak path at the County Level

The carbon emission peak characteristics of county-level regions in Shandong Province
can be categorized into five cluster areas (Table 4, Figure 3). The spatial pattern of the
carbon peak is illustrated in Figure 4.

Table 4. Identification of clusters.

Cluster Area

Component 1 Component 2 Component 3 Component 4 Component 5
Green

Transformation
component

Urbanization
Component

Industrial
Construction
Component

Energy
Consumption
Component

Environmental
Constraints
Component

Agricultural transformation
Pending area −0.19 −0.52 −0.23 0.03 −0.25

Low-carbon lagging area −0.03 0.27 −0.35 0.06 2.36
Industrial transformation area −0.02 0.71 1.36 2.48 −0.23

Low-carbon potential area −0.43 1.32 0.13 −0.63 −0.36
Low-carbon demonstration area 2.61 −0.27 0.69 −0.96 −0.27
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Cluster I, referred to as the “Agricultural Transformation Pending Area”, comprises
79 counties, accounting for 58.1 percent of the total. These areas are primarily concentrated
in eastern Shandong Province, with the majority located in inland regions. At the city level,
they are mainly situated in peripheral urban and rural fringe areas. The scores of these
areas are relatively balanced, but they all remain at a low level, particularly exhibiting
the lowest scores for urbanization component (Component 2), which further highlights
the underdeveloped status of regional development. Additionally, the subpar scores for
industrial construction component (Component 3) and the green transformation component
(Component 1) indicate structural obstacles associated with a single economic structure
and a weak industrial base.
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Cluster II, referred to as the “Low-Carbon Lagging Area”, comprises 15 counties,
accounting for 11 percent of the total. These areas are primarily located in the western part
of Shandong Province, with some scattered in the central area. Although the urbanization
component (Component 2) score falls within the middle range, indicating an average level
of socio-economic development in the affected areas, the notably low score for the industrial
construction component (Component 3), along with high scores for energy consumption
component (Component 4) and environmental constraints component (Component 5),
indicates that the traditional industrial structure is the primary factor influencing regional
carbon emissions and environmental protection.

Cluster III, referred to as the “Industrial Transformation Area”, comprises 11 counties,
accounting for 8.1 percent of the total. These areas are typically situated in coastal port
cities in eastern Shandong Province. The scores for industrial construction component
(Component 3) and energy consumption component (Component 4) in this category are
significantly higher than in other types, indicating that the leading industrialization process
has contributed to a good level of economic development in the region. However, it is
crucial to highlight that the elevated score for the environmental constraints component
(Component 5) also signifies their significant reliance on the secondary sector, where
the scale and intensity of industrial carbon emissions are significantly higher than in
equivalent units, leading to a sharp contradiction between environmental pollution and
ecological protection.

Cluster IV, referred to as the “Low-Carbon Potential Area”, consists of 22 counties,
accounting for 16.2 percent of the total. This category is primarily concentrated in the
outskirts of Jinan and Qingdao, the most developed cities in Shandong Province, with some
scattered in the central areas of the main cities in the east and south. The urbanization
component (Component 2) scores in these areas are the highest, aligning with their long-
term development factors, such as population, capital, and land agglomerations, reflecting
their favorable social and economic conditions. Although the low scores for environmental
constraints component (Component 5) and energy consumption component (Component 4)
partly indicate the trend of green transformation through regional industrial structure
upgrading and efficient energy utilization, the very low score for green transformation
component (Component 1) indicates that regional development is still in the transitional
stage of structural optimization.

Cluster V, referred to as the “Low-Carbon Demonstration Area”, consists of 9 counties,
accounting for 6.6 percent. These areas are all located in the urban centers of leading cities
in the province, including Jinan, Qingdao, Yantai, and Weifang. Compared to other types,
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this cluster shows higher scores for industrial construction component (Component 3)
and the green transformation component (Component 1), while exhibiting a significant
negative influence of energy consumption component (Component 4) and environmental
constraints component (Component 5). These findings suggest that the region has success-
fully departed from the traditional path of urbanization and industrialization and currently
finds itself in the latter stages of the “inverted U-shaped” relationship between economic
development and carbon emissions. As a result, this cluster area has achieved a remarkable
level of economic development with low carbon emissions. The low-carbon model in this
region is evidently effective, as the transformation of the industrial structure has largely
been accomplished, and a clear decoupling of carbon emissions from economic growth
is observed.

In general, areas with a high level of low-carbon development, such as the low-carbon
demonstration area and low-carbon potential area, show the potential to reach peak emis-
sions in the near future. These areas should capitalize on their demonstrating functions
and play a pivotal role in promoting low-carbon development in their surrounding re-
gions [33]. On the other hand, regions mainly driven by industrial and agricultural sectors,
facing challenges in achieving peak emissions, share common difficulties stemming from
traditional urbanization and industrial development models. These challenges comprise
resource dependency, energy waste, and backward industries [14,34].

4. Discussion
4.1. Typical Spatial Combination Model of Carbon Peak Based on Urban System Division of Labor

At the county level, the spatial pattern of carbon peak exhibits distinct typical spa-
tial combination models (Figure 5). This study provides valuable insights for further
delineating the characteristics of inner-city types, thus supplementing existing research
conducted at the urban and provincial levels [27,35]. When viewed from the city-level
typology perspective, it aligns with the division of labor within the urban system, under-
scoring the significant influence of the urban spatial development model on carbon dioxide
emissions and the need for a comprehensive understanding of low-carbon sustainable
development [36].
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In its long-term development trajectory, Shandong Province has established a dual-
core development pattern with Jinan and Qingdao as the central cities. Jinan is striving to
position itself as a financial, logistics, science, technology, and innovation center, focusing
on the headquarters economy, service economy, high-end equipment manufacturing, and
high-tech industries. On the other hand, Qingdao is leveraging its advantages in openness,
aligning with the national Belt and Road strategy, and prioritizing the development of
modern service industries, advanced manufacturing, and emerging marine sectors, with
the aim of becoming a globally competitive coastal city. As a result, both cities have effec-
tively decoupled social and economic development from carbon emissions, establishing
themselves as the “low-carbon demonstration zones” at their core, encircled by “low-carbon
spheres of influence”, with the “Agricultural Transformation Pending Area” situated at
their periphery.

In addition to the construction of dual-core development pattern, the spatial pattern of
carbon peak in Shandong Province is also influenced by geographical conditions. Shandong
Peninsula is located in the transition area between land and sea. The region has different
development conditions and resource endowments, which leads to different development
paths in the region. For instance, certain coastal cities have leveraged port trade advantages
to progressively cultivate leading industries with high carbon emissions, notably in the
petrochemical sector [37]. In the northern region, Dongying is primarily reliant on the
Shengli Oilfield, which stands as China’s most significant domestic crude oil source. Since
the 1960s, it has progressively developed related industrial clusters [38]. Furthermore,
coastal cities such as Yantai, Qingdao, and Rizhao have capitalized on China’s reform and
opening-up policies, along with the forces of economic globalization. These cities have
emerged as pivotal locations for national overseas crude oil imports and have established
multiple storage and transportation facilities and processing zones, centered around their
core trade functions [39]. Their distinctive spatial combination model revolves around
the concept of “Low Carbon Potential Area”, which is surrounded by the “Industrial
Transformation Area” and the “Agricultural Transformation Pending Area”. While some
counties have made notable economic development progress, and a few exhibit potential
for a transition toward a low-carbon economy, the majority of counties face significant
challenges associated with industrial transformation.

Shandong Province encompasses several resource cities in its central and western
regions, including Taian, Linyi, and Zibo, which boast abundant mineral and agricultural
resources. These cities play pivotal roles in industries such as coal, steel, and agricultural
products, thereby contributing to the local economy’s growth. While certain cities have
achieved notable progress in low-carbon development, resulting in a framework with
“Low Carbon Potential Area” at its core, surrounded by “Low Carbon Lagging Area” and
“Agricultural Transformation Pending Area”. On the other hand, some cities still adhere to
conventional dynamics of “Industrial Transfer Pending Area” at their core, with an array
of “Agricultural Transfer Pending Area” zones surrounding them. In general, these cities
grapple with multifaceted challenges in their pursuit of low-carbon development, primarily
attributable to their economic structure, energy reliance, and environmental pressures.

The western region of Shandong Province lies within the Huang-Huai Hai impact
plain, renowned for its favorable agricultural conditions and historical significance as a
crucial grain production hub in China. Within these agricultural cities, the prevailing feature
consistently consists of the “Low-Carbon Lagging Areas”, encircled by a concentrated and
contiguous expanse of the “Agricultural Transformation Pending Area”. This agricultural
sector is characterized by density and continuity, yet it also grapples with the challenge of
transitioning agricultural production patterns.

In general, this typical model, based on various divisions of labor, provides valuable
insights into the distinct characteristics and potential of different counties within the
city. Such an approach is indispensable for comprehending carbon emission patterns
and effectively achieving carbon reduction targets. Particularly, when examining carbon
emissions through the lens of urban-rural duality, the introduction of this typical model
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serves as a crucial complementary tool [39,40]. Traditional urban and rural dual structures
may not adequately account for the functional orientation and development of certain
counties. By delving into the specific attributes and potential of different counties, we
can more accurately identify the primary sources and impacts of carbon emissions, thus
enabling the formulation of targeted strategies effective carbon emission reduction.

4.2. Exploring Differentiated Paths for Peak Optimization and Policy Implications

By considering the differences in resource endowments and developmental stages,
we can assess the influencing factors of carbon emissions in different counties and their
evolving trends. This analysis provides valuable support for the classified design and
implementation of carbon peak paths. By understanding these factors and their interplay,
policymakers can devise targeted strategies to achieve carbon peak goals efficiently and
effectively in different counties.

The low-carbon demonstration areas are primarily situated in the central regions of
central cities. The low-carbon model implemented in this area is operating effectively
and should serve as a catalyst for promoting low-carbon development in the surrounding
counties. These counties should prioritize decoupling carbon emissions from economic
growth in order to achieve regional emissions peak targets. This can be accomplished by
fostering green industries, adopting clean energy sources, disseminating energy-saving and
emission-reduction technologies, strengthening carbon market mechanisms, and providing
incentives for businesses to take actions that reduce emissions.

The low-carbon potential areas have substantial potential for low-carbon development
but have yet to achieve its carbon peak targets. These counties are typically located on the
outskirts of a central city or at the core of a coastal or resource city. It means that they are
influenced by the low-carbon demonstration area and contribute to the radiation effect
for low-carbon development in the surrounding region. These counties need innovative
solutions to address energy demand during rapid urbanization and industrialization.
This involves transforming high-energy consumption and high-emission development
patterns, encouraging green production practices among businesses, and establishing green
supply chains.

The low-carbon lagging areas are typically situated on the outskirts of resource cities or
at the core of agricultural cities. These areas will continue to prioritize social and economic
development in the foreseeable future. However, as these regions undergo industrial
upgrading, their existing resource-intensive development model is likely to intensify the
conflict between economic growth and carbon emissions. This, in turn, will necessitate
increased efforts for carbon reduction and achieving emissions peak targets. To effectively
tackle this challenge, it is advisable for these regions to capitalize on their latecomer
advantages and expedite their peak process through the implementation of innovative
policies and market-driven mechanisms that foster low-carbon transformation and optimize
industrial economies, thereby circumventing the conventional industrialization path of
“pollute first, treat later”. Additionally, these regions should address the complex task
of ensuring economic stability and employment, taking cautionary measures to prevent
potential issues such as economic downturns and population outflows while concurrently
pursuing their low-carbon development objectives.

The industrial transformation areas are typically located on the outskirts of coastal
cities or at the core of resource cities. In these areas, there is often a prevailing development
model characterized by “high emissions for high economic returns”. This model tends to
prioritize immediate economic growth while overlooking the environmental consequences
linked to high energy consumption. This approach may result in short-term financial
gains, but it is unsustainable in the long term and can impede progress toward carbon
emissions reduction goals and peak targets. Furthermore, it exposes these regions to
vulnerabilities and risks related to sustainable development, including heavy reliance
on specific industries and environmental pollution. To address these challenges, these
regions should shift their focus in economic development and low-carbon governance.
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This shift involves reducing dependence on particular industries and improving energy
efficiency. It requires active government intervention through policy support and guidance.
Outdated, low-profitability, and highly pollutant industries should be phased out, while
emerging, low-carbon industries should be nurtured and expanded. This comprehensive
approach will contribute to improving the region’s natural environment and building a
more sustainable economic foundation for urban development.

As for the agricultural transformation pending area are typically located on the out-
skirts of various cities. These areas often face unique challenges due to their special status
in the context of food security strategies, which may impose limitations on urban expansion
and industrial development due to strict farmland protection policies. This complexity adds
to the challenge of reversing the current situation of backward development. Therefore,
it is advisable for these regions to focus on their regional endowments. While promoting
orderly urbanization and industrialization, they should simultaneously strengthen the
protection of agriculture and natural ecological environments around cities. Utilizing
the “carbon sink” function and ecological compensation benefits of green landscapes and
natural environments can create new driving forces for regional development.

5. Conclusions

County-level areas, as pivotal units responsible for coordinating diverse initiatives and
driving low-carbon development, play a fundamental role in the realization of China’s car-
bon peak and carbon neutrality objectives. Additionally, they serve as a vital complement
to ongoing research conducted at the city level. This paper leverages disparities in resource
endowments and developmental stages to analyze the magnitude, composition, and evolv-
ing patterns of carbon emissions across various regions. The goal is to provide support for
the classification design and implementation of peak emission paths in various areas.

Firstly, the driving factors of carbon peak encompass the green transformation com-
ponent, urbanization component, industrial construction component, energy consump-
tion component, and environmental constraints component. These factors span a broad
spectrum of social, economic, and environmental dimensions, offering a comprehensive
understanding of the contributing elements to the surge in carbon surge. This analysis
enhances readers’ grasp of the intricacies of the issue and reflects a region’s development
over different periods and spatial contexts. Urbanization and industrial construction il-
lustrate the trajectory of economic and social progress, while energy consumption relates
to the regional energy structure and technological advancement. The transition towards
green practices and environmental constraints are linked to future directions and potential
limitations. This consideration of the spatiotemporal dimension underscores the gradual
evolution of carbon emission patterns, necessitating the assessment of effects and influences
across multiple stages [41,42].

Secondly, the carbon emission peak characteristics of county-level regions in Shandong
Province can be classified into five cluster areas. Based on this classification, different paths
and strategies for low-carbon development are delineated as follows. The “Low-Carbon
Demonstration Area” and “Low-Carbon Potential Area” are strategically designed to pi-
oneer the promotion of environmentally friendly development in neighboring regions
and to facilitate a systematic transition towards achieving the carbon emission peak. In
the case of “Low-Carbon Lagging Area”, it is crucial to place paramount attention on
social and economic development. Accelerating the achievement of emission peak targets
achievement the advantages of backward development, deploying innovative policies, and
market-oriented mechanisms to facilitate the transition towards low-carbon practices and
optimizing industrial economies. Ensuring economic stability and safeguarding employ-
ment are imperative steps to mitigate potential challenges such as economic downturns
and population decline. Additionally, the “Agricultural Transformation Pending Area”
and “Industrial Transformation Area” belong to the category of regions facing significant
challenges in achieving the carbon emission peak. These challenges are often rooted in con-
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ventional urbanization and industrialization, and they encompass issues such as resource
dependency, energy inefficiency, and a lagging pace of industrial development.

Thirdly, typical spatial combination models of carbon peak at the county level, based
on the division of labor within the urban system, were identified. The division of labor
within the urban system encompasses central cities, eastern coastal cities, central and
western resource-based cities, and agricultural cities. The carbon mixing patterns exhibited
by these cities demonstrate the influence of urban positioning on carbon trajectories. In
central cities, coastal cities, and certain developed resource-based cities, a typical spatial
combination model emerges: the core of the central city serves as the focal point for either
low-carbon demonstration or potential areas, encompassed by low-carbon lagging areas
or industrial transformation areas undergoing development. This distributional model
can be interpreted through the lens of Hirschman’s trickle-down effect in regional eco-
nomics [43]. Urban centers tend to function as “polarized” zones characterized by low
energy consumption, minimal emissions, and high value-added industries. Consequently,
advanced development factors like green production, innovative technologies, and low-
carbon concepts diffuse to influence less developed regions. This developmental trajectory
aims to shift from isolated and imbalanced growth patterns towards interconnected and
harmonized systems. In terms of the under-development and traditional agricultural cities,
the core comprises the “Low-Carbon Lagging Area” and the “Industrial Transformation
Area”, surrounded by the “Agricultural Transformation Pending Area”. In these cities, the
transition to a low-carbon economy often coincides with high energy consumption and
emissions due to their reliance on energy sources such as coal, oil, and gas. Traditional
economic frameworks constrict cities’ sustainable development and impede the realization
of low-carbon economic growth. Consequently, there’s a surge in environmental pressures,
leading cities to grapple with severe environmental issues such as air pollution and water
scarcity. Addressing these challenges necessitates increased investment in green technolo-
gies and low-carbon innovation in the future. This investment is crucial for bridging the
gap in technological upgrading and advancing the trajectory of low-carbon development.

The identification of typical models at the micro level, which concentrates on low-
carbon development at the county level while considering the distinct attributes and
potential of diverse regions within cities, serves as a robust complement to prior investiga-
tions conducted at the city and provincial levels [17,27]. This underscores the importance
of understanding the fundamental patterns of variation within cities in order to achieve the
overarching goal of carbon peak. Precise optimization strategies and trajectories must be
devised by comprehensively comprehending these variations.

This study has limitations. Firstly, it relies on cross-sectional data, which cannot effec-
tively capture the evolving driving factors and spatial pattern of carbon peak. Longitudinal
studies conducted over time would be more influential in uncovering the dynamic trends in
carbon emissions, including changes in carbon-intensity factors. Second, while conducting
studies within provincial administrative units has its advantages for management and
policy formulation, it may overlook cities located on the periphery of the administrative
region. This could result in missing significant spatial interactions with neighboring cities
or districts in adjacent provinces. Conducting larger-scale studies can mitigate the con-
straints imposed by boundary effects and provide a more comprehensive understanding.
Thirdly, certain interpretations of carbon emissions remain at a qualitative level, such as
the influence of trade on coastal carbon emissions. Conducting quantitative studies in
future research endeavors could enhance the precision of these effects, further substantiat-
ing our findings. Lastly, the traditional k-means method does not account for the spatial
dependence present within the geographical clusters. In subsequent research, we intend to
integrate advanced spatial clustering methods to holistically address spatial dependence.
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