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Abstract: As a green and sustainable trip mode, shared bicycles play an essential role in completing
short-distance trips in cities. This paper proposes a method to analyze the impact of the urban
built environment on the distribution of shared bicycles in a small-scale space. First, the Fishnet
function of ArcGIS is utilized to divide the study area into grids of 500 m x 500 m. Then, three
indicators are proposed to describe the characteristics of the urban built environment, including
point of information (POI) comprehensive index, the intensity of public transportation coverage,
spatial accessibility, providing them the ways to be assigned to the grids. Finally, the multivariable
linear regression model and support vector regression (SVR) models are applied to reveal the impacts
of built environment factors on the spatial distribution of shared bicycles. Results show that SVR
models based on linear kernel function, Gaussian radial basis kernel function, and Polynomial
kernel function can achieve better analysis results. The SVR model based on the Gaussian radial
basis function shows higher explanatory power (adjusted R? = 0.978) than the multivariable linear
regression model (adjusted R? = 0.847). This paper can aid in understanding the demand and supply
of shared bicycles and help operators or governments to improve service quality.

Keywords: shared bicycle; support vector regression; built environment; space syntax

1. Introduction

Shared bicycles can not only provide convenient trip services for urban residents,
but also can help them to obtain access to public transportation. They play a vital role in
improving the efficiency of short-distance trips, solving the first and last mile travel problem
of urban traffic, and alleviating a city’s traffic stress [1,2]. However, while sharing bicycles
facilitates residents’ trips and improves trip efficiency, there is also an imbalance between
supply and demand. For example, few bicycles are in areas with high demand, while too
many are in areas with low demand [3]. When shared bicycles are placed, only the area’s
land use is generally considered, so areas such as commercial districts, subway stations,
and bus stations tend to put more bicycles [4]. However, although the land use of some
areas is the same, the demand for bicycles may be quite different. This is because different
urban built environments have different levels of adaptability to shared bicycles; however,
land use is only one factor. A series of factors reflecting the urban built environment, such
as the accessibility of road network, the distribution of POI, and public transport coverage,
will affect the use of shared bicycles. In this study, we discuss the impact of urban built
environment factors on the spatial distribution of shared bicycles and explore their usage.
The findings of this paper guide the understanding of the demand and supply of shared
bicycles and improve service quality.

The studies related to public bicycle trips mainly focus on predicting demand [5],
scheduling optimization [6], cycling OD identification [7], and path selection [8]. The first
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two types of studies mainly focus on docked public bicycles and pay less attention to
dockless shared bicycles. The practical significance of the research on OD identification and
path selection is to guide bicycle network planning, and there is little research on operation
and management. The characteristics of the urban built environment are the critical factors
affecting the use of public bicycles [9-12]. This study shows that bicycle trips are affected
by the 3D elements of urban form, namely density, diversity of land use, and urban design.
Density mainly refers to the density of public transport stations, kinds of POI density, shared
bicycle station density, etc.; it mostly indicates land-use diversity. Design mostly represents
urban spatial structure design. Based on this, some scholars gradually expanded the urban
built environment elements to “5D” and added “destination accessibility” and “distance
to transit”. Later, some studies incorporated “demand management” into influencing
factors to form “6D”. Indicators related to population statistics have gradually entered the
vision of relevant researchers and put forward “7D”. Weliwitiya [13] set a linear model
to analyze the impact of a built environment on the utilization rate of bicycles. It was
found that the density of non-motorized lanes and the passenger flow of subway have a
positive impact on it. Noland et al. [14] used the public bicycle operation data of New York
City to determine that the utilization rate of the public bicycle is related to factors such as
population density, distance from bus stops, and catering outlets. In addition, some studies
have proved that mixed land use can reduce travel distance and improve the utilization
rate of shared bicycles [15,16]. For example, commercial places mixed with public buildings
positively impact the use of shared bicycles [17]. The higher the density of catering outlets
and shopping outlets near the station, and the closer the station to the subway station,
the greater the number of public bicycles used [18,19]. With the gradual development of
studies, more scholars have been analyzing the impact of the urban built environment
on shared bicycles from aspects such as infrastructure [20], population density [21], land
use [22,23], and traffic accessibility [24].

In general, the studies on the impact of the urban built environment on shared bicycles
have not yet formed a complete theoretical method system. Most existing studies either
take the whole study area as the analysis unit to analyze the relationship between the
distribution of shared bicycles and the built environment, or make a horizontal comparison
between different areas, which cannot focus on the smaller spatial scale, such as the
street level.

Meanwhile, in terms of research methods, most of the existing studies rely on linear
regression models to analyze the built environment’s impact on the distribution of shared
bicycles, such as multiple linear regression [25,26] and least squares regression models [27].
However, the regression effect of these models is not very good, and the regression coef-
ficients of most studies are between 0.5 and 0.7. These linear regression models cannot
measure the complex relationship between the distribution of shared bicycles and influ-
encing factors, nor can they analyze the impact of different built environments on the
distribution of shared bicycles in a small-scale space.

This paper uses Spatial Syntax theory and ArcGIS software 10.3 to assign the urban
built environment elements and shared bicycle borrowing and returning location data
on the urban spatial grid network. It describes the spatial distribution of shared bicycles
with the grid as a unit, obtains spatial geographic information data, analyzes the spatial
distribution characteristics of shared bicycles, and discusses the influencing factors. The
road network axis map is drawn and imported into Space Syntax software DepthMap
X0.7.0 to obtain the accessibility index of the road network, which is used to accurately
analyze the impact of the road network on the distribution of shared bicycles. By combining
the factors influencing the distribution of shared bicycles, prediction models based on SVR
are proposed to explore the rules between the built environment and the distribution of
shared bicycles. It provides a basis for the rational planning of shared bicycle parking areas
and is of great significance to improving shared bicycles’ operating status and service level.

The remainder of this paper is organized as follows: In Section 2, the situation of the
study area and the collection methods employed to obtain the required research data are
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introduced. In Section 3, the extraction method of urban built environment factors and its
assignment method in the grid are proposed, and the SVR model is introduced to explore
how an urban built environment affects the distribution of shared bicycles. In Section 4,
the analysis results of the model are given, and the effectiveness of the proposed model is
verified. Finally, a summary of our findings is concluded in Section 5.

2. Data
2.1. Study Area

When selecting the study area, it is necessary to consider the specific usage of shared
bicycles in the area. It requires a relatively stable state regarding the number of shared
bicycle users and cycling behavior. Shanghai is one of the four municipalities directly under
the central government in China, and it is also the center of our economy, culture, trade,
science, and technology. It has a superior geographical location and dense population, and
is perfectly developed. Shared bicycles are developing well in Shanghai; the number of
daily active vehicles of shared bicycles is stable at 450,000 to 550,000, the daily turnover rate
of bicycles is about 5.0 times, and the user’s riding behavior is stable. Therefore, this paper
selects downtown Shanghai as the study area based on this condition, as shown in Figure 1.
The research area includes seven significant districts, Yangpu District, Putuo District,
Hongkou District, Jingan District, Changning District, Xuhui District, and Huangpu District,
with about 266 km? and more than 7 million people by 2020.

Yangpu
| Jingan | -
; Hongkou'

Putuo

: " Huangpu
Changning \

Xuhui

Downtown Shanghai (Study Area)

Whole area of Shanghai

Figure 1. Study area.

2.2. Data Collection
2.2.1. Shared Bicycle Travel Data

This paper obtained 8,453,497 shared bicycle riding records within a week in down-
town Shanghai, including bicycle ID, time information, and longitude and latitude infor-
mation. The steps required to convert the GPS data of shared bicycles into borrowing and
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returning quantity data include the following: 1. Calculate the GPS data of the shared
bicycles’ parking position into a data table according to the time information; 2. Compare
the bicycle IDs in the two adjacent time tables of ¢, using ¢ + 1 to eliminate data with the
same ID. If data with a different ID exist in the statistical area at time t but are not in the
statistical area at time ¢ + 1, the bicycle was being borrowed; otherwise, the bicycle was
being returned; 3. Compare the longitude and latitude information of the data with the
same ID. If the longitude and latitude of the bicycle change during the period (¢, f + 1), it is
the case that the bicycle that has been used. The data at time ¢ are included in the bicycle
borrowing statistics table, and the data at time ¢ + 1 are included in the bicycle returning
statistics table. The specific operation process is shown in Figure 2.

Data table at time t Data table at time t+1

Included in the Lending
Vehicle Table

'

‘ Compare bike number data

Is the latitude and
longitude the same

Are the bike numbers
the same

change in latitude and
longitude is greater tha

Is it the data at time t

the data at titne t+1

'

Included in the retum
vehicle form

Figure 2. Calculation method of borrowing and returning position of shared bicycle.

2.2.2. Urban Built Environment Data

POl is used as an emerging data source in the study;, as it can efficiently represent the
situation of the urban built environment. To analyze the built environment’s impact on the
distribution of shared bicycles, this paper obtains the vector boundary data, bus line and
station data, rail transit line and station data, and POI data of downtown Shanghai in 2020
from Baidu Maps.
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3. Methodology
3.1. Extraction of Urban Built Environment Factors

Using ArcGIS software 10.3 to analyze the nuclear density, the spatial distribution of
the shared bicycles in the downtown Shanghai can be obtained, as shown in Figure 3.
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Figure 3. Spatial distribution of shared bicycles in downtown Shanghai.

As shown in Figure 3, the shared bicycles in downtown Shanghai on weekdays and
weekends are relatively similar in spatial distribution and present an aggregation state.
From the perspective of administrative divisions, the areas with higher shared bicycle
density are Yangpu District, Huangpu District, Putuo District, and Hongkou District. At
the street level, shared bicycles are concentrated in public transport stations, shopping
areas, office buildings, education institutions, catering, and other service industries, as well
as locations with high road accessibility.

According to the distribution characteristics of shared bicycles and the research in
the existing literature, the urban built environment influence factors are divided into three
aspects: building function, public transportation convenience, and road network conditions.
They are characterized by the POI comprehensive index, intensity public transport coverage,
and spatial accessibility.

3.2. Assign Values to the Network Grid

In order to analyze the impact of public transport and road network coverage, the
paper uses the Fishnet function of ArcGIS software to divide the study area into 1297 grids
of 500 m x 500 m. By assigning built environment factors to grid cells, we can analyze the
relationship between the urban built environment and the spatial distribution of shared
bicycles on a small-scale space.

This paper innovatively proposes three built environment indicators, including the POI
comprehensive index, the intensity of public transport coverage, and spatial accessibility.
Then, their characterization methods and assignment methods on the grid. Among them,
the POI comprehensive index takes into account two aspects of POI density and land-use
diversity. Firstly, the POI density indexes that have no significant impact on shared bicycles
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are screened and excluded by SPSS, and then the comprehensive impact of various POI
indexes is calculated by the entropy weight method. The intensity of public transport
coverage is used to express the impact of public transport on shared bicycles. The research
object of this paper is the dockless shared bicycle, and the research area is divided into a
grid of 500 m x 500 m. The impact of traffic stations in the adjacent grid may be ignored by
simply using indicators such as station density. Therefore, the index of public transport
coverage intensity is proposed. The spatial accessibility index is used to express the impact
of urban spatial structure on the distribution of shared bicycles. Previous studies mostly
used road network density, non-motor vehicle density, and other indicators. This paper
creatively introduces the concept of Spatial Syntax and uses the indicators of Spatial Syntax
to quantify spatial accessibility.

3.2.1. POI Composite Index

Point of Interest (POI) data, representing building functions and geographic location
information, can characterize the spatial distribution of urban land use to a certain extent.
Eight categories of POI data closely related to residents’ daily life were selected, and the
Pearson correlation analysis method in IBM SPSS Statistics 24.0 software was used to
explore the relationship between these categories and the distribution of shared bicycles.
The results are shown in Table 1.

Table 1. Analysis of the correlation between the POIs and the distribution of shared bicycles.

Unstandardized Standardized

POI Correlation Coefficient Coefficient Significance

Accommodation service 0.606 19.181 0.074 0.002

Medical institutions 0.41 6.609 0.054 0.007

Sports and leisure 0.659 0.151 0.001 0.973
Residential 0.644 17.436 0.262 0
Financial services 0.647 11.02 0.103 0
Educational institution 0.572 8.511 0.117 0
Public utilities 0.588 22.792 0.087 0
Catering services 0.736 717 0.32 0

As the result of data analysis shows, in addition to medical institutions, the other
seven types of POI data have a significant correlation with the shared bicycle borrowing
and returning quantity. The correlation value is relatively close, generally between 0.6
and 0.8. This paper introduces the POI comprehensive index to reflect the comprehensive
impact of multiple POI data. It can reduce the data analysis dimension and be obtained by
weighted summation of the above seven types of POI, The calculation method is:

n
A= Z wiX; (1)
i=1

where x; is the number of POl i, and w; is the weight of the POL Its value is determined by
the entropy method, and the specific calculation method is as follows:
Standardize POI data:

min
X — X;
x; = max l min (2)
XiU X

where xg is the standardized treatment result of POI i.
Calculate the weight:

_ 4 3)

Yj=1d;

D;
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where @; is the weight coefficient of index 7, and d i is the information utility, which can be
calculated based on information entropy E;:

dj=1-E )

- Z?llrijl"(fij) )
nn
where E; is the information entropy of group j, and r;; is th proportion of the sample value
i in index j.

The weight calculation results of POI are shown in Table 2. Since the POI data contain
geographic information, the weighted POI comprehensive value can be assigned directly

to the grid cell.

Table 2. Summary of weight calculation results of entropy method.

. . o1e Weight

POI Information Entropy  Information Utility Coefficient
Accommodation service 0.8848 0.1152 15.12%
Medical institutions 0.8717 0.1283 16.84%
Residential 0.9251 0.0749 9.83%
Financial services 0.8702 0.1298 17.03%
Educational institution 0.8942 0.1058 13.88%
Public utilities 0.8962 0.1038 13.62%
Catering services 0.8957 0.1043 13.69%

Through Pearson analysis in SPSS, this paper analyzes the correlation between the POI
composite index and the number of shared bicycles. The result shows that the correlation
between them is 0.603, and that the intensity of public transport coverage can explain the
distribution of shared bicycles.

3.2.2. Intensity of Public Transport Coverage

According to relevant surveys, 69% of shared bicycle trips in Shanghai are designed to
connect with public transport. Therefore, the intensity of public transport coverage has an
important impact on the distribution of shared bicycles. Since the grid cell scale is small,
only the grid cell at the station’s location will be assigned by simply using the number of
public transport stations, which is inconsistent with the actual situation. The parameter
of public transportation coverage intensity is introduced in the study to characterize the
spatial grid unit’s convenience of public transportation connection.

Apr(iy = L Qjj
Qi = 1,  Gridiisin the service coverage of site j (6)
Y0, Gridiisoutof the service coverage of site j

where A, ;) is the intensity of public transport coverage of grid i. According to the
coverage rate of the public transport network in downtown Shanghai, the service radius of
the conventional bus station is set to 300 m, and the service radius of the rail transit station
is set to 800 m. Calculate the affected area of the bus stations and rail transit stations in
the unit grid, and record them as the intensity of bus coverage and the intensity of rail
transit coverage, respectively. Considering the difference in service level and the attraction
of passenger flow between rail transit and conventional buses, the conversion coefficient
of rail transit stations is introduced. Take the ratio of the transportation capacity of rail
transit and conventional bus per unit time as the conversion factor, record it as y. Then is
the following is obtained:

Apriy = 1Y), QijRj +)_QijB; )
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where R; and B;, respectively, indicate the coverage of rail transit stations and bus stations.
Figure 4 shows the assignment results of the public transportation coverage intensity
of the grid network in downtown Shanghai. The data in picture (c) are the sum of pictures

(a) and (b).

N N
A Intensity of rail transit coverage A Intensity of bus transit coverage

legend legend
B 0.00-16.60 B 0.00-43.18
P 16.60-57.76 ) 431811206
1577610895 10 112.06-193.83
| 1089516281 [ 1938329211
16281-22322 1292.11-400.78
[ 2232229972 | 1400.78-520.08
1007 299.72-406.80 [0 52008-669.11
P 406.80-545.16 ) 669.11-906.09
QOS2 3 4\ W 545 1675814 e e i il B ©06.09-1335.79
@) (b)

N
A Intensity of public transport coverage

legend

I 0.00-18.41
I 18.41-183.92
[ 183.92-499.80
[ 1 499.80-973.89
[ 973.89-1815.52
[ 181552284598

[ 2845.98-3907.65
0051 2 3 4 I 3907.65-5725.33
. —_Miles I 5725.33-15640.19

(0)

Figure 4. The intensity of grid network public transportation coverage.
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Through Pearson analysis in SPSS, this paper analyzes the correlation between the
intensity of public transport coverage and the number of shared bicycles. The result
shows that the correlation between them is 0.786, and that the intensity of public transport
coverage can explain the distribution of shared bicycles.

3.2.3. Spatial Accessibility

The influence of road network conditions on the distribution of shared bicycles es-
sentially reflects spatial accessibility on travel choices. This paper uses the index of Space
Syntax to reflect spatial accessibility. Space Syntax is a theory and method of urban spatial
analysis proposed by Bill Hillier in the 1980s [28]. It essentially divides space while follow-
ing the principle of graph theory, specifically abstract urban space, into intersecting line
segments. Formulas have been put forward to quantify the topological relationship between
line segments, explore the internal laws of spatial structure, and reveal the relationship
between human activities and spatial structure [29].

The analysis variables of the Spatial Syntax model include:

1.  Depth: This refers to the minimum number of steps required for a space to reach other
spaces and expresses the accessibility of the space in a topological sense. The higher
the depth value, the worse the accessibility, and the lower the intensity of human
activity. The mean depth (MD) is the mean of the minimum steps from a node to all
other nodes in the system. It is a description of the whole system. The calculation
formula is:

nod

j=14ij

MD; = Z—

®)
where dj; is the minimum number of topology steps between the nodes.

2. Integration: This indicates the degree of aggregation or dispersion between nodes
and other nodes in the entire system. If the integration value is greater than 1, the
cell space has a high degree of aggregation with all other spaces in the system. If it is
less than 1, it indicates that the nodes show a trend of mutual dispersion. When the
value is between 0.4 and 0.6, the layout of spatial objects is relatively scattered. The
calculation formula is as follows:

I — ”(logz(nsﬂ_ ) +1
= - 1)(MD; - 1)

©)

3. Choice: This indicates the frequency of the shortest topological distance between
nodes of the spatial unit in the system, and measures the advantages of the spatial
unit as the shortest travel path, which reflects the possibility of the space being
traversed. The node with a higher choice degree is more likely to be traversed by
people. The calculation formula is as follows:

Ci=) x (10)

where ) x; represents the sum of the spatial unit’s times in the shortest topological
distance between the two nodes.

Referring to the road network data of downtown Shanghai in 2020, the road network
axis map is drawn in ArcGIS software 10.3 based on the principle of “longest and least” and
imported into DepthMap X0.7.0 for data analysis to obtain the variable values of Spatial
Syntax. Finally, the obtained road network index values are fed back to ArcGIS software
10.3 and assigned to the road network axis. The calculation method of spatial accessibility
of unit grid cells is as follows:

_ LARL,
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where A,45(;) is the accessibility value of grid i, AR; is the accessibility value of the road
axis j in the grid, and L; is the length of the road axis j.

In Spatial Syntax, the n-step topological distance and 3-step topological distance are
representative, so they are selected for analysis. Through the Pearson correlation analysis
in the SPSS, the correlation between the Spatial Syntax index and the spatial distribution of
the shared bicycles is shown in Table 3. The integration (Rn) has the highest correlation
with the shared bicycles, so the integration (Rn) is selected to reflect the spatial accessibility.
After drawing the road network axis map of downtown Shanghai, 26,926 road axes were
obtained. The result is shown in Figure 5.

Table 3. Correlation between Spatial Syntactic variables and shared bicycles.

Index Integration (Rn)  Integration (R3) ]I;Ie epatrlll Choice (Rn) Choice (R3)
Correlation 0.527 ** 0.492 ** 0.070 * 0.229 ** 0.309 **
*p <0.05 *p<0.01.
N 5
l Integration degree
\
" !
legend
- 0.56-0.83
0.83-0.97
0.97-1.11
0051 2 3 4
- — —\iles 1.11-1.25
1.25-1.49
(a) Road network axis map (b) Integration (Rn)

Figure 5. Analysis results of spatial accessibility in downtown Shanghai.

The integration (Rn) of the road network in downtown Shanghai presents the char-
acteristics of the single-center structure. The core area is the junction of Jingan District,
Hongkou District, and Huangpu District. The roads with high integration degrees are
concentrated near the bund on the west side of the Huangpu River, forming the accessibility
center of the road network in downtown Shanghai.

3.3. Support Vector Regression Model

At present, the regression prediction methods of shared bicycle demand mainly in-
clude multivariable linear regression model, geographically weighted regression, and
regression prediction models based on machine learning, such as support vector machine,
random forest, and SP neural network. Because there is a nonlinear relationship between
the spatial distribution of shared bicycles and their influencing factors, and the distribu-
tion of shared bicycles changes periodically, this paper attempts to use the SVR model to
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establish the relationship between the spatial distribution of shared bicycles and the urban
built environment. As an efficient machine learning method, SVR can take into account
the complexity and learning ability of the model and minimize empirical errors. It has
advantages in small-sample data and nonlinear conditions [30].

The idea of SVR is to map the data to the high-dimensional feature space through
nonlinear mapping and to carry out linear regression in the high-dimensional feature space
to achieve the effect of linear regression in the original space. The regression estimation
function is:

f(x) =wo(x) +b (12)

where w is the weight vector, and b is a constant.

Suppose x; is the urban built-up environmental factor affecting the distribution of
shared bicycles, y; is the number of shared bicycles, and set the training dataset {x;,y;},i =
1,2,...n. The insensitive loss function is introduced into the constrained optimization
problem, which can be expressed as:

-1 2 L *
min |||l +C‘Zl(€i+§i )
=

vi—wo(x) —b< et g (13)
st.Q w(x)+b—y; <e+(;
gil gl’* >0

n
where %Hsz is the regularization part, 'Zl({;’i + &;*) is the experience risk, C is the penalty
=
factor, and ¢;* is the slack variable.

We can transform the optimization problem of the above formula into a dual problem
by using the Lagrange multiplier method, then introduce the kernel function k(xl-, xj) , from
which we obtain:

n n n

min{% Y o(w* =) (a7 —aj)k(xi, xp) — X (0" —aq)yi + L (a7 + zx,-)s} ”

i,j=1 i=1 i=1
n

st ¥ (a" —a;) =0, a;* <C,0<
i=1

1

where a;, a;*, B;, and B;* are Lagrange multipliers. a; and a;* can be obtained by solving
the quadratic programming problem.
The final regression function expression is:

f(x) =) (a;" —aj)k(x;,x)+0b (15)

M-

I
—

1

In solving the problem of SVR, the selection of kernel function is the key problem. Gen-
erally, there are three types of kernel functions: (a) Linear kernel function: k(x;, x) = x;ex;
(b) Polynomial kernel function: k(x;, x) = [(x,», xj> + 1]q; and (c) Gaussian radial basis

kernel function: k(x;, x) = exp (— HXI;%HZ

This paper sets the grid as the analysis cell. Input the POI comprehensive index, the
intensity of public transport coverage, spatial accessibility, and shared bicycle data during
peak hours (7:30 a.m. to 8:30 a.m. and 17:30 p.m. to 18:30 p.m.) in downtown Shanghai
in a week. The data within Xinhua Road, Changning District, Shanghai, were selected as
the prediction sample set. The rest of the data were selected as the training sample set. In
this paper, the root mean square error (RMSE) and the coefficient of determination (R?) are

used to test the prediction effect. The calculation formulas are as follows:

n

1
RMSE = [~ 3 (vi* — i) (16)
i=1
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* 2
1{2 —-1-— 2121(]/i “'l/i) (]77)
— 2
Yic1 (i = vi)

where y;* is the forecast value of shared bicycle demand, y; is the measured value of shared
bicycle, y; is the sample mean of shared bicycle demand, and 7 is the number of samples in
the prediction sample set.

The multiple linear regression method is introduced as a comparative experiment
to compare and analyze the advantages and disadvantages of SVR and traditional linear

regression methods. The calculation formula is as follows:
Yi = o+ Pr1x1 + Pox2 + -+ + BuXm (18)

where Y; is the number of shared bicycles, x1, x, . . ., X is the influencing factors of sharing
bicycles, By is a constant, and B1, B2, ..., Bm is the regression coefficient.

4. Results

After assigning the research data to the grid, the correlation analysis results show
that the POI comprehensive index, the intensity of public transport coverage, and spatial
accessibility significantly impact the spatial distribution of shared bicycles. The Linear
kernel function, Gaussian radial basis function, and Polynomial kernel function are used
to construct the SVR model. The forecast accuracies of the SVR models under these three
kernel functions are obtained by training these models, as shown in Figures 6-8.

The root means square error and coefficient of determination of the SVR models based
on the three kernel functions and the Multivariable linear regression model are shown

in Table 4.

Comparison of Forecasting Results
Coefficient of Determination R?=0.94263

500
\ True Value
- . Forecasting
Value

400/ A

[}
{=1
=)

Forecasting Results
S
=
=]

[
{=1
S

5 10 15 20 2 30 3 10
Forecasting Sample

-100*
0

Figure 6. Forecast accuracy of Linear kernel function model.
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Figure 8. Forecast accuracy of Polynomial kernel function.
Table 4. Predictive effects of each model.
Model RMSE R?
Linear kernel function 27.2999 0.94263
Gaussian radial basis kernel function 14.3416 0.97797
Polynomial kernel function 27.2912 0.96643
Multivariable linear regression model 67.3542 0.847

As shown in the figures, the X axis stands for forecasting sample, that is, the grid
cell serial number, while the Y axis stands for forecasting results, that is, the number of
shared bicycles in each grid cell. The results show that the SVR models based on these
three kernel functions have achieved high forecast accuracy. The model based on the
Gaussian radial basis function has the minimum errors and the best fitting effect. The
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RMSE value measured by the model is 14.3416, which means that the average error between
the predicted quantity of shared bicycles and the true value is about 14 vehicles in a unit
fishing net of 500 m x 500 m. The value of R? is 0.97797, indicating that the prediction
model can explain 97.797% of the distribution of shared bicycles. The RMSE obtained by
the multiple linear regression model is 67.3542, and R? is 0.847, which is not as good as
the former. The study found that the shared bicycle SVR model based on the Gaussian
radial basis function can better explain the impact of urban built environment factors on
the spatial distribution of shared bicycles.

5. Discussion and Conclusions
5.1. Discussion

This study provides a new perspective for investigating the impacts of the built
environment on shared bicycles in a small-scale space, taking Shanghai as a case study.
The main contribution of this study is threefold. First, the Fishnet function of ArcGIS was
utilized to divide the study area into grids of 500 m x 500 m, and a method to calculate
the borrowing and returning position of shared bicycles was proposed based on time-
varying GPS data. Second, the built environmental factors are represented by building
function, public transportation convenience, and road network conditions, and then the
conditions are assigned to the grid. Third, SVR models are applied to explore the nonlinear
relationship between the usage of shared bicycles and contributing factors.

The results show that the POI comprehensive index, the intensity of public transport
coverage, and spatial accessibility significantly affect the spatial distribution of shared
bicycles. The SVR model based on the Gaussian radial basis function is more effective in
unveiling the complex and nonlinear relationship between shared bicycle usage and built
environment elements than traditional linear models. In addition, the study finds that
environmental factors, such as financial institutions and residential, have a more significant
impact on shared bicycles than others.

5.2. Conclusions

Although this paper analyzes the nonlinear relationship between urban built envi-
ronment factors and shared bicycle distribution in small-scale space, there are still some
limitations. First, Shanghai was taken as the case study; therefore, the conclusion may not
be universal. In the future, this research method can be extended to carry out case studies in
different cities. Second, this paper mainly considers the impact of urban built environment
on shared bicycles. Although this paper comes to the conclusion that environmental factors
such as financial institutions and residential have a more significant impact on shared
bicycles than other factors, considering that the population density of such POI areas is
high, the impact of population density of various POls may also play an important role in
the demand and supply of shared bicycles. The influence of individual characteristics and
sociodemographic attributes of residents may be ignored.

The spatial distribution law of shared bicycles has practical significance in understand-
ing the supply and demand of shared bicycles in different built environment areas. In the
next stage, the site selection of shared bicycle stations can be studied on this basis.
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