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Abstract: The quest for energy efficiency in buildings has placed a demand for designing and
modeling energy-efficient buildings. In this study, the thermal energy performance of a tropically
adapted passive building was investigated in the warm tropical climate of Malaysia. Two mock-up
buildings were built to represent a “green”, made of clay brick double-glazed passive building
and a conventional, made of concrete “red” building. The mean indoor temperature of the passive
building was found to be always lower than that of the red building throughout the experiment
during different weather constellations. Our research builds upon existing work in the field by
combining multiple linear regression models and distribution models to provide a comprehensive
analysis of the factors affecting the indoor temperature of a building. The results from the fitted
multiple linear regression models indicate that walls and windows are critical components that
considerably influence the indoor temperature of both passive buildings and red buildings, with the
exception of passive buildings during the hot season, where the roof has a greater influence than the
window. Furthermore, the goodness-of-fit test results of the mean indoor temperature revealed that
the Fréchet and Logistic probability models fitted the experimental data in both cold and hot seasons.
It is intended that the findings of this study would help tropical countries to devise comfortable,
cost-effective passive buildings that are green and energy efficient to mitigate global warming.

Keywords: passive building; green building; energy saving; thermal comfort; windows; regression
analysis; probability distribution; logistic distribution; Fréchet distribution

1. Introduction

For more than a century, the use of fossil fuels, along with uneven and unsustain-
able energy and land use, has resulted in 1.1 ◦C of global warming over pre-industrial
levels [1]. Natural catastrophes are on the rise because of climate change and increasingly
severe weather patterns, endangering both the environment and people globally. In 2019,
energy, industry, transportation, and buildings accounted for around 79% of global GHG
emissions, while agriculture, forestry, and other land use (AFOLU) accounted for 22% [1].
Furthermore, building operations in 2021 accounted for 27% of all energy sector emissions
and 30% of the world’s final energy consumption, with 8% of those emissions coming
directly from buildings and 19% coming indirectly via the generation of power and heat
those structures utilized [2]. Therefore, urban energy planning and management should
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focus on developing a solid framework of principles for reducing building energy use
patterns. While minimum performance standards and building energy codes are becoming
more comprehensive and stringent, and more efficient and renewable energy technologies
are being adopted in buildings, the International Energy Agency (IEA) claims that the
construction industry needs to transform more quickly to meet the Net Zero Emissions by
2050 Scenario [2]. To attain this goal, research on practical solutions for energy-efficient
building design that caters to its surroundings and natural climate is required to mitigate
their environmental impacts.

The primary objective of every building is to provide essential comfort in the indoor
environment. Increased humidity and heat absorption from external temperature, partic-
ularly in hot and arid climate regions, will result in discomfort and an increase in active
cooling demand, as well as HVAC-related energy usage. By 2050, about two-thirds of
homes worldwide will have air conditioners [3]. Most of the contributions come from the
world’s hotter regions, namely China, India, and Indonesia, which together account for
more than half of the total. The highest upper space limit (USL) of worldwide tropical
standards for thermal comfort, according to the American Society of Heating, Refrigerat-
ing, and Air-Conditioning Engineers (ASHRAE), is 26.1 ◦C (without velocity) or 28.6 ◦C
(with velocity of bearable 0.7 m/s effects in −2.5 ◦C). The heat transmitted into or lost
from a building fluctuates according to the temperature shift from day to night, as well as
variations in the weather, such as heating using sunlight and cooling using wind or rain.
Understanding the thermal response of the building envelope to the external environment
is crucial to preserve indoor thermal comfort or, at the very least, to minimize cooling
demand in tropical climates.

The concept of passive building has been around for several decades in creating energy-
efficient buildings that require minimal heating and cooling systems. Its common tactics
for creating a comfortable indoor atmosphere include non-mechanical methods of passive
solar design, insulation, and induced ventilation techniques [4]. Passive solar design
entails optimizing the orientation and shading using roof cover, overhangs, awnings, trees,
vegetation, etc. It was discovered that solar passive design based on the thermophysical
characteristics and design of building envelopes may successfully eliminate two-thirds
of the discomfort [5]. Insulating materials could also be applied to the outside face of
a wall or roof such that the thermal mass of the wall is poorly linked with the outside
source and firmly coupled with the inside. Sustainable biopolymer composites have been
researched with the use of organic fibers like coir [6,7]. A coir–cement composite used as
an insulator was found to reduce thermal conductivity by 0.16–0.19 W/mK [8]. Further,
induced ventilation techniques including solar chimney and air vents are beneficial to
exhaust hot air from the building at a quick rate.

The mean indoor temperature under free-running natural ventilation normally ranges
from 27 ◦C to 37 ◦C [9]. Monitoring indoor temperature is essential for assessing building
thermal efficiency (i.e., thermal transmittance (U-value) of the building envelope) and
potentially upgrading the energy-efficient options towards energy conservation. There are
several effective methods and technologies available for these purposes. One common ap-
proach involves using temperature sensors such as thermocouples, resistance temperature
detectors (RTDs), and thermistors, which provide accurate readings based on electrical
changes. Additionally, infrared (IR) thermometers offer non-contact temperature measure-
ment using thermal radiation detection. Meanwhile, deploying wireless sensor networks
such as IoT sensors throughout the building allows real-time temperature monitoring
and data transmission to a central hub for analysis. However, this typically comes with a
significantly elevated cost.

The simulation technique is a useful tool for the designers to achieve an optimum
thermal performance of the localized buildings under a given thermal climate. Energy
modeling and optimization were utilized to find the best solution based on the pre-defined
design requirements [10]. In another study, a re-designed school building, which used pas-
sive design strategies rather than active design strategies, had a lower final energy than the
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original school design, which used active design strategies [11]. The findings support the
hypothesis that excessive use of active methods in construction may be counterproductive,
and passive building design techniques should be prioritized since they are more energy
efficient than active solutions. Micro-site analyses in relation to thermal impacts on the
building performance can be easily achieved by using physical modeling techniques [12].
In order to investigate the thermal simulation of a full-sized passive solar building using
scale models, researchers constructed a simplified single test room, and several test units
of half and quarter-scale were used. Using the thermal scaling technique, all the analyses
of the test results suggested that it is quite feasible to simulate the thermal performance
of full-scale passive buildings. Thus, one of the simple ways to simulate the thermal
performance of the building is to take a single-room, small-scale physical model under
computer-simulated weather and solar radiation conditions [13]. It aids in determining the
overheating time and appropriate mitigating methods, such as a moveable sunshade [14].

However, all the abovementioned simulation methods involve tedious calculations,
which in turn increase computation time. Furthermore, practical experimentation in a
real-world situation is required to validate the concept. The purpose of this study is to
determine the effect of passive architectural design on the indoor or indoor temperature
in a real mock-up residential structure modeled after a passive building (PB). PB was
built by using a passive building enclosure design, which includes the use of sustainable
materials in the construction of roofs, floors, walls, and windows. The focus is to observe
how they interact with one another within the system rather than analyzing the impact of
separate components. The tropical thermal comfort USL of 28.6 ◦C was used as the tropical
residential thermal comfort (TRTC) benchmark.

In recent years, there have been notable advancements in the field of statistical analy-
sis within environmental studies, particularly in the utilization of probability distribution
models [15]. These statistical models have proven to be valuable decision-support tools for
assessing temperature patterns. The use of probability distribution models in the statistical
modeling of extreme hydrological and climatic phenomena has a long history and is one
of the latest advances in the statistical analysis of environmental studies. For instance,
several researchers compared many probability distributions to find the one that best fits
the empirical datasets. A study in Australia showed that the normal and generalized
extreme value distributions fit the yearly maximum temperature data the best [16]. Further-
more, probability distribution models were also applied to model the monthly maximum
temperatures in Bangladesh [17,18] and the average daily maximum temperature of South
Africa [19] and Thailand [20]. Another study applied five probability models, such as the
Weibull, Gumbel, Cauchy, Logistic, and normal distribution, to determine the best fit for
the temperature data [21]. The daily maximum and minimum temperatures of three cities
were modeled using a mixture Gaussian distribution [22]. In another study, five probability
distributions, such as log-normal, Gumbel, logistic, Weibull, and log-logistic distributions,
were applied over a range of temperatures [23]. Moreover, five probability distributions,
including gamma, Gumbel, log-normal, normal, and Weibull distributions were applied to
model the annual maximum temperature in the Northwest Himalayan region of India [24].

Further, distribution modeling is important and influential in the fields of rainfall and
food frequency analysis. Many researchers have estimated extreme rainfall events and
flood occurrences. For instance, a study focused on modeling excessive daily rainfall in
several locations in Italy [25]. When compared to light-tailed distributions, their results
showed that heavy-tailed distributions offer a more precise estimate of the maximum daily
rainfall values. In another study, two types of distributions, namely Gumbel extreme value
type-I and Log Pearson type-III, were applied to model the magnitude and frequency of
food events in Narmada River, India [26]. In another research, three different probability
distributions were employed for modeling the peak discharge of the Jhelum River [27].
In a study to model the monthly rainfall data in Brazil [28], eight probability models and
six goodness-of-fit tests included the Akaike information criterion. Additionally, they em-
ployed the maximum likelihood method to estimate the parameters of the distributions. A
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study was carried out on food frequency analysis at the Ume River in Sweden to determine
the maximum water flow for various future timeframes or return periods [29].

Moreover, many researchers in the field of wind energy have used probability distri-
butions to analyze and model many aspects of its generation and utilization. For instance,
distribution models were employed to evaluate the hourly wind speed data from various
locations in Pakistan [30]. Similarly, wind speed data recorded in Slovakia were used
to determine the best-fitting distribution [31]. Groundwater quality is essential for the
health of humans, animals, and plants. In the field of groundwater monitoring, researchers
extensively use probability distributions to analyze and model groundwater data for effec-
tive monitoring. For instance, five probability distributions were employed to assess the
calcium concentrations of groundwater data in Kano State, Nigeria [32]. A similar study
was conducted to evaluate the chemical parameters of groundwater using six probability
distributions, such as normal, log-normal, gamma, Weibull, logistic, and log-logistic dis-
tributions [33]. The following studies can be referred to for more probability distribution
modeling works [34–52].

In the present study, three distribution models, namely Fréchet, Gamma, and Logistic
distributions, were utilized to model the mean indoor temperature PB and RB temperatures
during cold and hot seasons in Malaysia. To the best of the authors’ knowledge, this is the
first ever reported comparative statistical study of the influence of passive green design in
its entirety on indoor temperature using three probability distributions and a significant
number of goodness-of-fit tests. The primary objectives and justification of this study are
as follows:

(i) to investigate the impact of passive architectural design on indoor temperature regu-
lation within a physical mock-up of a residential structure that closely emulates the
principles of a passive building (PB).

(ii) to evaluate and compare the thermal performance of the PB and RB mock-ups using a
descriptive-analytical approach, focusing on the utilization of multiple linear regres-
sion (MLR) models and distribution models. By leveraging MLR models, the study
aims to identify key variables that significantly influence indoor temperature varia-
tions, shedding light on the effectiveness of passive design elements. Furthermore,
distribution models will enable the exploration of temperature distribution patterns
within the mock-up, unveiling insights into the spatial dynamics of temperature
control of residential buildings in warm tropical climates.

(iii) to provide an in-depth understanding of the intricate relationships between various
architectural factors and indoor temperature fluctuations. Using this multifaceted
approach, the study endeavors to advance our comprehension of how passive archi-
tectural design strategies impact indoor thermal comfort, fostering informed decision-
making for sustainable building design practices.

The rest of the paper is structured as follows. Section 2 describes the experiment
methodologies and statistical analysis conducted. Section 3 presents the results and discus-
sion. Finally, Section 4 provides the conclusion of the study.

2. Materials and Methods

Figure 1 describes the methodologies employed in this work. The experimental data
sets were collected in Malaysia, which consisted of PB and RB temperature variations
in cold and hot seasons. To acquire a “bird’s eye view” of the experimental outcomes,
statistical descriptive analysis using a boxplot was used. Next, correlation analysis was
employed to determine the relationship between building enclosures’ temperatures. A
multiple linear regression model was built in order to estimate the indoor temperature
across the wall, roof, floor, and window temperatures. R-squared and adjusted R-squared
values were used to evaluate the performance of the implemented models, and then
graphical representations of the important model parameters were presented. Finally,
three important probability distributions, Fréchet, Gamma, and Logistic distributions, are
employed to assess the mean indoor temperatures of PB and RB in cold and hot seasons.
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The log-likelihood, Akaike information criterion (AIC), Bayesian information criterion
(BIC), and Kolmogorov–Smirnov (K-S) tests are employed to determine the best fit of the
probability distribution model for the mean indoor temperature.
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2.1. Mock-Up Buildings Setup

The project entails the creation of two mock-up buildings: (i) a passive building (PB)
to symbolize a “green” design building made of clay bricks and (ii) a red building (RB)
with a conventional building made of concrete with conventional design. Each mock-up
with proportions of 3 m high, 3 m wide, and 3 m deep was built as a life lab or room where
a person may stand, sit, and even sleep. The average window-to-wall ratio is 31% east,
south, and west and 0% north. The PB walls are constructed of double-layer clay bricks.
Meanwhile, the RB portrays the common, typical control unit of a standard low-cost house
made of basically sand–cemented bricks or concrete. Further details of the design of both
buildings are provided in Table 1 below.

For the purposes of the experiment, we closed the single-glazed windows in the RB
in order to assess the influence of the double-glazed windows of PB. In each building,
we obtained five distinct temperatures, including wall, roof, floor, window, and indoor
temperature, to test the interplay of all building enclosures toward the indoor temperature
in a system of a tropically adapted from the passive house.

The surface temperatures were measured using a robust and practical infrared ther-
mometer (VOLTCRAFT IR 500-12D, Conrad Electronic International GmbH & CoKg
Durisolstraße, Wels, Austria) with a pistol grip for contactless measurement of tempera-
tures. The surface temperatures of each building envelope include interior walls, windows,
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roofs, and floor surfaces. This equipment was sourced from Conrad Electronic International
GmbH & CoKg Durisolstraße, 24600 Wels, Austria. Three readings were taken manually
from 5 measurement points of each surface and were noted down to calculate the aver-
age to reduce the impact of small fluctuations or measurement errors. Meanwhile, the
indoor temperature was measured using a digital VOLTCRAFT K202 thermometer sensor
equipped with a datalogger and positioned in the middle of the room, with all windows
and doors firmly closed. The Voltcraft thermometers were properly calibrated according to
the manufacturer’s instructions and kept clean and free from any debris or contaminants.
For both surface temperature and indoor temperature, the time interval is 30 min, taken
every day for 12 h from 8 am to 8 pm for 2 months of the hot season and cool season.

Table 1. Architectural design of mock-up passive building (PB) and red building (RB).

Building Type
/Enclosures Passive Building (PB) Red Building (RB)
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Wall Clay brick, double wall with 2 cm gap. Sand–cemented brick, single wall.

Roof Red clay brick tiles (15 mm). Metal cladding roof (coated).

Floor Wood wool cement board. Wood wool cement board.

Window Double glazing with UPVC window frame and external shutters. Single glazing with aluminum window frame.

Other features

• Almost airtight
• High insulation capability walls
• Ventilated and insulated roof (5 cm Duralite ceiling)
• Solar panels for LED lighting

• Open air (closed for experiment)
• Uninsulated wall
• Uninsulated roof (0.42 mm metal deck)
• Fluorescent lights

The mock-up buildings are located in Selangor, Malaysia, at the British–Malaysian
Institute of Universiti Kuala Lumpur (BMI-UniKL) with a tropical climate. The experiment
was carried out across a number of months, which can be categorically divided into two
categories: (i) hot/dry season (March to April 2016), with most cloudy-sunny days and
little to no significant rain interception, and (ii) cold season (October to November 2016)
with the monsoon season’s most rainy days.

2.2. Statistical Analysis
2.2.1. Descriptive Analysis

The properties of a dataset were enumerated and described using descriptive statistics
to provide an overview of the experiment results. Box plots are particularly useful for
highlighting the dataset’s median, quartiles, and outliers. They were used to examine the
distributions of the RB and PB datasets across the hot and cold seasons, as well as to assess
a dataset’s central tendency, dispersion, and skewness.

2.2.2. Correlation Analysis

Correlation is a technique that measures the nature, degree, and extent of association
existing between two continuous variables. Karl Pearson’s correlation coefficient (r) is
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a measure of the degree of relationship between two variables θ and η [53], which is
expressed as given in Equation (1).

r =
n
(

n
∑

i=1
θiηi

)
−
(

n
∑

i=1
θi

)(
n
∑

i=1
ηi

)
√√√√[

n
n
∑

i=1
θ2

i −
(

n
∑

i=1
θi

)2
]

.

[
n

n
∑

i=1
η2

i −
(

n
∑

i=1
ηi

)2
] , (1)

where n is the number of observations, and the r values are between −1 and 1; a positive
value indicates a positive relationship, while a negative value is a negative association of
variables. A value r = 0 is an indicator of a negligible relationship between variables [54].
The study by [55] designated the correlation values as ‘moderate’ and ‘strong’ concerning
the r values of 0.5–0.7 and >0.7, respectively. The correlation value (r < 0.5) values implies a
weak correlation.

This technique was applied to correlate groundwater pollutants in the investigated areas.
The correlation of groundwater parameters is computed to identify the contribution amount
of association of each parameter contributed to the groundwater contamination [56].

2.2.3. Regression Analysis Using Multiple Linear Regression Model

Regression analysis is used to develop a mathematical relationship between dependent
and independent variable(s). Here, regression analysis was applied to establish a predictive
relation between the indoor temperature of four other building enclosure temperatures,
such as wall, roof, floor, and window, for cool and hot seasons. An important parameter in
estimating a good fit for the model is the coefficient of determination or simply adjusted
R-squared. The adjusted R-squared number of properties makes it a more suitable measure
of goodness-of-fit than R-squared [57]. The choice of dependent and independent variables
in a regression model is crucial. A multiple linear regression approach is used to develop
a relationship between the indoor temperature as the dependent variable and building
enclosure temperatures, namely wall, roof, floor, and window as the independent variables.

Basically, while developing the model, we iteratively analyze the variables for

i. Normality of distribution
ii. Extreme values
iii. Multiple collinearity
iv. Homoscedasticity (even distribution of residuals)
v. p-value of coefficients and R-squared/F-statistic of the model.

In addition, we split the data into training and validation samples. We used 80% for
training and 20% for validation.

The multiple regression model can be implemented as follows:

η = ω0 + ω1θ1 + ω2θ2 + . . . + ωkθk + ε, (2)

where η = dependent variable,

ωi = regression parameters, i = 1, 2, . . . , n,
θi = independent variables, i = 1, 2, . . . , n,
ε = error term assumed to be i.i.d N

(
0, σ2).

More details on the regression model are provided in [58,59].
Let η1, η2, . . . , ηn be n dependent observations on η. Then, each of observations ηi can

be written as
ηi = ω0 + ω1θi1 + ω2θi2 + . . . + ωkθik + ε, (3)
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where θij is the jth independent variable for the ith observation, i = 1, 2, . . . , n. It is some-
times advantageous to introduces matrices to study the linear equation. Let θ0 = 1. define
the following matrices:

θ =



θ0 θ11 θ12 . . θ1k
θ0 θ21 θ22 . . θ2k
. . . . . .
. . . . . .
. . . . . .

θ0 θn1 θn2 . . θnk

 , η =



η1
η2
.
.
.

ηn

 ,

ω =



ω0
ω1
.
.
.

ωn

 , and ε =



ε1
ε2
.
.
.

εn

.

(4)

Thus, the n equations representing the linear equations can be rewritten in the matrix
form as η = θω + ε.

2.2.4. Probability Distributions of Mean Indoor Temperature

Uncertain phenomena refer to outcomes that cannot be precisely predicted with cer-
tainty. Seasonal variations contribute to the uncertainty associated with events like extreme
temperatures. Developing suitable probability distribution models that address uncertain-
ties is essential for accurately characterizing such events. These models serve as valuable
future reference guides for monitoring temperature changes in any study area of interest.
In this study, we focus on the mean indoor temperature readings, denoted as the random
variable X, and define it using specific probability distribution functions. The probability
distributions used in this research study include the Fréchet, gamma, and logistic distribu-
tions. Brief reviews of these distributions are discussed in the following paragraphs.

(i) Fréchet Distribution

A random variable X is a Fréchet distribution with the shape parameter α and the rate
parameter β if its pdf is given by:

f (x; α, β) = αβαx−α−1 exp−
(

β

x

)α

, x > 0; α > 0, β > 0. (5)

The mean and variance of the Fréchet distribution are, respectively given as:

E(X) = β Γ
(

1− 1
α

)
for α > 1 and Var(X) = β

(
Γ
(

1− 2
α

)
−
(

Γ
(

1− 1
α

))2
)

for α > 2.

(ii) Gamma Distribution

A random variable X is a Gamma distribution with the shape parameter α and the
rate parameter β, if its pdf is given by:

f (x; α, β) =
βα

Γ(α)
xα−1 exp−(βx), x > ∞, α > 0, β > 0. (6)

The mean and variance of the Gamma distribution are, respectively given as:

E(X) =
α

β
and Var(X) =

α

β2
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(iii) Logistic Distribution

A random variable X is said to follow a Logistic distribution with the location parame-
ter µ and the scale parameter s, if its pdf is given by:

f (x; µ, s) =
exp−

(
x−µ

s

)
s
(

1 + exp−
(

x−µ
s

))2 , x ∈ R, µ ∈ R, s > 0. (7)

The mean and variance of the logistic distribution are, respectively given as:

E(X) = E
(

µ + s
(

x− µ

s

))
and Var(X) =

s2π2

3
. (8)

2.2.5. Probability Distribution Tests

In statistical hypothesis testing, one assesses whether sample data are derived from
a population that follows a predicted probability distribution. This involves selecting a
model to fit a probability distribution to a given dataset. The model selection process
relies on various statistical tests or empirical observations. Once a model is chosen, the
parameters of the selected distribution are estimated using parameter estimation methods.
The performance of the candidate model on the dataset is then evaluated using one or more
fitness-of-fit tests, as described by [60]. This allows for the selection of a fitted distribution
that can reasonably serve as a distributional model for the given dataset.

In this study, we apply three probability distributions (Fréchet, Gamma, and Logistic)
to the mean indoor temperatures. We employ log-likelihood, Akaike information crite-
rion (AIC), Bayesian information criterion (BIC), and Kolmogorov–Smirnov (K-S) tests
to determine the best fit of the probability distribution model(s). The parameters of each
model are estimated using the maximum likelihood test. Goodness-of-fit measures are
computed to compare the fitted models and identify the best fits. The log-likelihood rep-
resents the value of the calculated log-likelihood function based on maximum likelihood
parameter estimation. The model with higher log-likelihood values and smaller AIC and
BIC values for each selected fitting distribution is considered the best-suited model [61].
Additionally, p-values are calculated from the K-S statistic for each model to determine if
the candidate distribution adequately describes the dataset. A p-value below 0.05 suggests
that the mean indoor data sets are unlikely to be derived from the selected distribution
with 95% confidence.

3. Results and Discussion

This section highlights the descriptive statistics of the collected data along with data
visualization. The outcomes of the correlation analysis and multiple regression models are
then presented.

3.1. Descriptive Statistics

Table 2 shows the statistical descriptions of PB in cold and hot seasons. In each
building, there are five distinct temperatures: the wall, roof, floor, window, and indoor. The
mean indoor temperature is 27.1 ◦C, whereas the other building enclosure temperatures
range from 27.8–28.5 ◦C. The roof demonstrates the highest max temperature of 33.9 ◦C
compared to the rest. In the meantime, during the hot season, the mean indoor temperature
is much warmer than the cold season, at 30 ◦C, which is above the allowable thermal
comfort level of 28.6 ◦C. The same is true for the other building enclosure temperatures,
which lie between 30–32 ◦C. Once more, the roof shows the greatest maximum temperature,
which is 38.4 ◦C, in comparison to the rest. This suggests that among the building enclosure
components, the roof may be one of the most important contributors that considerably
influence the indoor temperature of PB.
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Table 2. Descriptive Statistics of PB in Cold Season and Hot Season.

Temperature
(◦C)/Building Enclosure Min. Q1 Median Mean Q3 Max. Variance Skewness Kurtosis

Cold Season

Wall 25.00 27.30 27.90 27.81 28.45 31.60 0.97 0.04 1.22

Roof 24.70 27.50 28.30 28.46 29.30 33.90 2.34 0.76 1.29

Floor 23.30 27.30 28.00 27.82 28.75 30.10 1.82 −1.17 1.50

Window 24.80 27.60 28.50 28.49 29.40 31.10 1.67 −0.40 −0.10

Indoor 23.40 26.60 27.30 27.1 27.90 29.50 1.11 −0.53 0.20

Hot Season

Wall 25.80 29.32 30.80 30.48 31.90 34.50 3.62 −0.29 −0.53

Roof 24.10 30.32 32.25 32.04 34.25 38.40 9.36 −0.23 −0.31

Floor 25.6 29.4 30.9 30.6 32.0 34.4 3.42 −0.27 −0.56

Window 26.00 30.12 32.20 31.62 33.40 37.10 6.17 −0.32 −0.70

Indoor 24.4 28.8 30.0 30.0 31.0 33.5 3.26 −0.15 0.01

Meanwhile, Table 3 provides statistical descriptions of RB during cold and hot seasons.
The mean indoor temperature is much higher than that of PB, at 29.7 ◦C. The other building
enclosure’s temperatures are similar, hovering about 30 ◦C. Once more, the roof registers the
highest maximum temperature (36.2 ◦C), but this time, it is closely followed by the window
(35.9 ◦C) and the wall (35.6 ◦C). During the hot season, the mean indoor temperature is well
above 30 ◦C. The roof reaches 34.1 ◦C, while the other building enclosure temperatures are
all over 31 ◦C. Additionally, the roof’s maximum temperature of 42 ◦C is exceptionally high,
followed by window (39.3 ◦C) and wall (38.6 ◦C). This suggests that the most significant
factors that significantly affect the indoor temperature of the RB may be the roof, window,
and wall.

Table 3. Descriptive Statistics of RB in Cold Season and Hot Season.

Temperature
(◦C)/Building Enclosure Min. Q1 Median Mean Q3 Max. Variance Skewness Kurtosis

Cold Season

Wall 24.90 28.35 30.40 30.00 31.55 35.60 5.45 0.04 1.22

Roof 24.70 28.95 30.80 30.61 32.20 36.20 7.07 0.76 1.30

Floor 25.00 27.80 29.20 29.12 30.40 34.20 3.46 −1.17 1.50

Window 25.60 28.75 31.00 30.79 32.45 35.90 6.32 −0.40 −0.10

Indoor 25.30 28.15 30.20 29.68 31.25 33.20 4.65 −0.53 0.20

Hot Season

Wall 25.70 30.60 32.90 32.61 35.00 38.60 8.83 0.04 1.22

Roof 24.0 32.2 34.5 34.1 36.6 42.0 12.90 0.76 1.30

Floor 26.00 30.20 31.90 31.81 33.30 36.80 4.31 −1.17 −0.53

Window 26.10 32.30 34.30 33.76 35.80 39.30 7.21 −0.40 −0.10

Indoor 26.0 29.2 31.9 31.6 33.9 37.3 7.79 −0.53 0.20

Following that, Figures 2 and 3 provide the boxplots of the PB and RB datasets for
cold and hot seasons, respectively. It can be observed that the plots are more spread in RB
compared with PB, which indicates a more significant outdoor overheating effect on RB
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compared to PB. As presented in our previous study [62], RB’s indoor temperature profile
frequently mimics that of the outdoor temperature, particularly on sunny-cloudy days,
whereas the well-insulated, almost airtight, and optimally shaded PB is always cooler than
RB during the daytime. Additionally, outliers that fall outside the whiskers of the boxplot
are more visible in the boxplots of PB during the cold and hot seasons and RB during the
hot seasons. Outliers can have a significant impact on statistical analyses and can bias the
results of statistical models. Due to this, it is necessary to remove these extreme values
using Cook’s distance approach, which quantifies the impact of individual data points on a
regression model and is covered in more detail in the next section.
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3.2. Correlation Analysis of PB and RB Temperature Datasets

Figure 4 shows the results from correlation analysis, which indicated that most of
the assessed temperatures were positively correlated with one another at a 1% level of
significance. In the cold season, PB’s indoor temperature was significantly correlated with
window temperature (r = 0.76), wall temperature (r = 0.75), floor temperature (r = 0.64), and
roof temperature (r = 0.53). The wall temperature shows a strong and positive correlation
with window (r = 0.72), floor (r = 0.69), and roof temperature (r = 0.68). The examined
roof temperature exhibits a positive correlation with window temperature (r = 0.59) and
a moderate correlation with floor temperature (r = 0.44). Additionally, the analyzed floor
temperature indicates a strong and positive correlation with window temperature (r = 0.72).
These temperature parameters were positively correlated with one another based on a 1%
level of significance.
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Similarly, in the hot season, as shown in Figure 5, the examined indoor temperature
was strongly correlated with wall temperature (r = 0.80), floor temperature (r = 0.76), roof
temperature (r = 0.72), and window temperature (r = 0.70). The wall temperature reveals
a significant and strong correlation with floor (r = 0.94), window (r = 0.88), and roof tem-
perature (r = 0.68). The investigated roof temperature exhibits a positive correlation with
window temperature (r = 0.74) and a strong correlation with floor temperature (r = 0.73).
Additionally, the assessed floor temperature indicates a significant and positive correla-
tion with window temperature (r = 0.91). These temperature parameters were positively
correlated with one another based on a 1% level of significance.

In the same vein, Figure 6 shows the results from correlation analysis for RB during the
cold season. Figure 6 shows that the indoor temperature was significantly correlated with
wall temperature (r = 0.82), roof temperature (r = 0.80), window temperature (r = 0.79), and
floor temperature (r = 0.67). The wall temperature shows a strong and positive correlation
with floor (r = 0.76), window (r = 0.75), and roof temperature (r = 0.75). The investigated roof
temperature exhibits a strong and positive correlation with window temperature (r = 0.89),
and positive correlation with floor temperature (r = 0.62). Additionally, the measured floor
temperature indicates a positive correlation with window temperature (r = 0.59). These
temperature parameters were positively correlated with one another based on a 1% level
of significance.

Similarly, in the hot season, as shown in Figure 7, the examined indoor temperature
was strongly correlated with wall temperature (r = 0.84), window temperature (r = 0.81),
roof temperature (r = 0.66), and floor temperature (r = 0.65). The wall temperature reveals
a significant and strong correlation with window (r = 0.87), floor (r = 0.82), and roof
temperature (r = 0.70). The investigated roof temperature exhibits a positive correlation with
window temperature (r = 0.87) and a strong correlation with floor temperature (r = 0.60).
Additionally, the assessed floor temperature indicates a positive correlation with window
temperature (r = 0.72). These temperature parameters were positively correlated with one
another based on a 1% level of significance.
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3.3. Multiple Linear Regression Model

Table 4 provides the results of the multiple regression model for the dataset for PB
in the cold season. The p-value of the overall equation for indoor temperature (Indoor
T) is 2 × 10−16. By referring to the Pr(>|t|) values, it is evident that the roof and floor
temperatures are not significant since their values are more than 0.05. As a result, we
performed additional tests on the training data. The extreme values in the data were
removed using Cook’s distance, and we employed a stepwise selection of variables using
backward elimination. The variance inflation factor (VIF), which gauges how much a
predictor variable’s predicted regression coefficient is inflated by its correlation with other
predictor variables in the model, was also used to test for multicollinearity. A common
criterion for diagnosing significant collinearity is a VIF score greater than 5. In order to
produce a more precise and reliable regression model, strongly correlated variables with
VIF ≥ 5 will be eliminated from the final regression model. We will use the same strategy
for the other models listed in this section.

Indoor T = ω0 + ω1 ×Wall + ω2 × Roo f + ω3 × Floor + ω4 ×Window (9)

Table 4. Results of multiple linear regression model for PB in cold season.

Parameter Estimate Std. Error t-Statistic Pr(>|t|)

Intercept 3.65197 1.62601 2.246 0.0267

Wall 0.47071 0.09073 5.188 9.79 × 10−7

Roof −0.05037 0.04568 −1.103 0.2726

Floor 0.10162 0.07029 1.446 0.1511

Window 0.31725 0.06920 4.584 1.21 × 10−5

R-squared: 0.6727, Adjusted R-squared: 0.6608. F-statistics: 97.873, p-value: 2.2 × 10−16 < 1%, p < 0.05.

Table 5 shows the fitted regression model for indoor temperature after dropping the
roof and floor due to the high p-value. The F-statistic value increases from 98 to 107,
indicating a considerable improvement in the overall fit of the regression model. The root
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means squared error (RMSE) for the model on the training and validation sets are 0.8879
and 0.7738, respectively.

Indoor T = ω0 + ω1 ×Wall + ω4 ×Window (10)

Table 5. Results of fitted multiple linear regression model for PB in cold season.

Parameter Estimate Std. Error t-Statistic Pr(>|t|)

Intercept 3.73469 1.66021 2.249 0.0265

Wall 0.49196 0.07896 6.230 9.37 × 10−9

Window 0.34256 0.06010 5.700 1.07 × 10−7

R-squared: 0.6658, Adjusted R-squared: 0.6596. F-statistics: 106.6, p-value: 2.2 × 10−16.

Meanwhile, Table 6 depicts the results of the multiple regression model for the dataset
for PB in the hot season. For this model, the floor is clearly not significant due to the
Pr(>|t|) value more than 0.05. Therefore, it is removed from the final model, along with
the window, which is less significant in comparison to the wall and roof, and the results of
the newly fitted regression are displayed in Table 7. The model’s F-statistic value increases
from 89 to 119. The root means squared error (RMSE) for the model on the training and
validation sets are 0.8642 and 0.74532, respectively.

Indoor T = ω0 + ω1 ×Wall + ω2 × Roo f + ω3 × Floor + ω4 ×Window (11)

Table 6. Results of multiple linear regression model for PB in hot season.

Parameter Estimate Std. Error t-Statistic Pr(>|t|)

Intercept 5.92368 1.50454 3.937 0.000136

Wall 0.80307 0.13789 5.824 4.56 × 10−8

Roof 0.27326 0.0375 6.246 6.05 × 10−9

Floor −0.06152 0.15574 −0.395 0.693490

Window −0.23035 0.08456 −2.724 0.007375

R-squared: 0.739, Adjusted R-squared: 0.7307. F-statistics: 88.5, p-value: 2.2 × 10−16, p < 0.05.

Table 7. Results of fitted multiple linear regression model for PB in hot season.

Parameter Estimate Std. Error t-Statistic Pr(>|t|)

Intercept 5.71005 1.39928 4.081 7.91 × 10−5

Wall 0.76423 0.09636 7.931 1.01 × 10−12

Roof 0.26986 0.04275 6.313 4.28 × 10−9

R-squared: 0.7382, Adjusted R-squared: 0.7325. F-statistics: 118.7, p-value: 2.2 × 10−16.

Table 7 depicts the fitted regression model for indoor temperature after dropping
floor and window due to multicollinearity and VIF ≥ 5. The F-statistic value increases
from 88.5 to 118.7, indicating a considerable improvement in the overall fit of the regres-
sion model. The RMSE for the model on the training and validation sets are 0.8943 and
0.8271, respectively.

Indoor T = ω0 + ω1 ×Wall + ω2 × Roo f (12)

Table 8 illustrates the results for RB in the cold season. It is observed that the floor and
window temperatures are not significant in this model; hence, it should be dropped from
the final model. However, after removing the outliers, the window becomes significant.
Table 9 reveals the newly fitted regression model for indoor temperature with wall and
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window temperatures with a significantly improved F-statistic value of 228 compared to
85 from the original model. The root means squared error (RMSE) for the model on the
training and validation sets are 0.8289 and 0.7078, respectively.

Indoor T = ω0 + ω1 ×Wall + ω2 × Roo f + ω3 × Floor + ω4 ×Window (13)

Indoor T = ω0 + ω1 ×Wall + ω4 ×Window. (14)

Table 8. Results of multiple linear regression model for RB in cold season.

Parameter Estimate Std. Error t-Statistic Pr(>|t|)

Intercept 4.38802 1.59529 2.751 0.00693

Wall 0.37787 0.08082 4.675 8.17 × 10−6

Roof 0.25043 0.08743 2.864 0.00498

Floor 0.07889 0.08199 0.962 0.33801

Window 0.12987 0.08806 1.475 0.14303

R-squared: 0.7498, Adjusted R-squared: 0.741; F-statistics: 84.67, p-value: 2.2 × 10−16 = p < 0.05, meaning significant.

Table 9. Results of fitted multiple linear regression model for RB in cold season.

Parameter Estimate Std. Error t-Statistic Pr(>|t|)

Intercept 3.17044 1.25488 2.526 0.013

Wall 0.54096 0.05558 9.734 2 × 10−16

Window 0.33546 0.05123 6.548 2.08 × 10−9

R-squared: 0.8096, Adjusted R-squared: 0.8061. F-statistics: 227.5, p-value: 2.2 × 10−16.

Table 10 gives the results for RB in the hot season. The equation of indoor temperature
is significant at 1% levels of significance. Again, the F-statistic value for the newly fitted
regression model dramatically increases from 89 to 211 after eliminating the roof and floor
due to multicollinearity, as shown in Table 11. In both seasons, the final F-statistic values
for MLR models estimate the indoor temperature of RB nearly twice those of PB. The root
means squared error (RMSE) for the model on the training and validation sets are 0.7998
and 0.6865, respectively.

Indoor T = ω0 + ω1 ×Wall + ω2 × Roo f + ω3 × Floor + ω4 ×Window (15)

Indoor T = ω0 + ω1 ×Wall + ω4 ×Window (16)

Table 10. Results of multiple linear regression model for RB in hot season.

Parameter Estimate Std. Error t-Statistic Pr(>|t|)

Intercept 5.44434 2.39445 2.274 0.0247

Wall 0.65590 0.11703 5.605 1.28 × 10−7

Roof −0.05332 0.07931 −0.672 0.5026

Floor −0.19274 0.13453 −1.433 0.1545

Window 0.37757 0.14484 2.607 0.0103

R-squared: 0.7419, Adjusted R-squared: 0.7336. F-statistics: 89.13, p-value: 2.2 × 10−16.
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Table 11. Results of fitted multiple linear regression model for RB in hot season.

Parameter Estimate Std. Error t-Statistic Pr(>|t|)

Intercept 1.65056 1.56040 1.058 0.292

Wall 0.51587 0.08406 6.137 1.33 × 10−8

Window 0.39278 0.09571 4.104 7.79 × 10−5

R-squared: 0.792, Adjusted R-squared: 0.7882. F-statistics: 211.3, p-value: 2.2 × 10−16.

3.4. Probability Distributions of Mean Indoor Temperature

One of the key objectives of this study was to examine which probability distribution
provides the best fit to the mean indoor temperature of PB and RB during the cold and hot
seasons investigated in the warm tropical climate of Malaysia. The probability distributions
under consideration include Fréchet, Gamma, and Logistic distributions. The results of
fitting three selected distributions (Fréchet, Gamma, and Logistic) to the mean indoor
temperature for PB are presented in Table 12. Several statistical measures, including
log-likelihood, AIC, BIC, K-S, and p-values, were used to assess the goodness of fit for
each distribution. The fitted Fréchet model exhibits the maximum log-likelihood value
among the Gamma and Logistic models for the indoor temperature during the cold season.
Conversely, the fitted Logistic model demonstrates the highest log-likelihood value for the
indoor temperature during the hot season. Consequently, the Fréchet model is considered
the best fit for modeling the indoor temperature in the cold season, while the logistic model
is the most suitable for the hot season.

Table 12. Estimated parameters, Log-likelihood, AIC, BIC, and K-S for mean indoor temperature for
PB in the cold season and hot season, along with competing distributions.

Distribution Fréchet Gamma Logistic

Cold Season

Parameter
Estimates

α = 30.2437 α = 8.9564 µ = 7.2292

β = 27.6562 β = 3.9574 s = 0.6011

Log-likelihood −217.0127 −212.9071 −216.8822

AIC 655.7011 663.8857 656.5951

BIC 661.8763 670.0608 662.7703

K-S 0.0465 0.0894 0.0508

p-value 0.8945 0.6453 0.7856

Hot Season

Parameter
Estimates

α = 29.9975 α = 7.4619 µ = 9.9935

β = 23.4563 β = 3.5462 s = 1.5634

Log-likelihood −326.151 −325.8505 −328.2975

AIC 654.3021 665.7011 646.5951

BIC 660.4773 667.8763 652.7703

K-S 0.0516 0.0665 0.0508

p-value 0.6585 0.5643 0.9023

To further validate the appropriateness of the fitted distributions, visual inspection us-
ing frequency histogram plots was employed. Figure 8 showcases the frequency histogram
plots overlaid with the fitted density functions of the Fréchet, Gamma, and Logistic models.
The plots clearly indicate that the Fréchet model provides a suitable fit for modeling the
indoor temperature during the cold season. Figure 9 shows that the logistic model closely
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matches the indoor temperature during the hot season. This visual inspection further
supports and confirms the conclusions drawn from the numerical measures.
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Meanwhile, Table 13 displays the outcomes of fitting three chosen continuous distribu-
tions (Fréchet, Gamma, and Logistic) to the mean indoor temperature data for RB. Various
statistical measures, such as log-likelihood, AIC, BIC, K-S, and p-values, were employed
to evaluate the goodness of fit for each distribution. The Fréchet model demonstrates
the highest log-likelihood value among the Gamma and Logistic models for the indoor
temperature during the cold season. Conversely, for the hot season, the Logistic model
exhibits the highest log-likelihood value. These findings indicate that the Fréchet model is
the most appropriate fit for modeling the indoor temperature during the cold season, while
the Logistic model is the preferred choice for the hot season.



Sustainability 2023, 15, 13647 19 of 25

Table 13. Estimated parameters, Log-likelihood, AIC, BIC, and K-S for mean indoor temperature for
RB in the cold and hot seasons, along with competing distributions.

Distribution Fréchet Gamma Logistic

Cold Season

Parameter
Estimates

α = 16.6813 α = 6.7654 µ = 9.8039

β = 30.6473 β = 3.3546 s = 1.2726

Log-likelihood −322.5338 −316.7914 −325.7333

AIC 655.7011 663.8857 656.5951

BIC 661.8763 670.0608 662.7703

K-S 0.0465 0.0893 0.0508

p-value 0.9045 0.6543 0.8756

Hot Season

Parameter
Estimates

α = 31.6564 α = 8.2930 µ = 5.6524

β = 12.6748 β = 4.0599 s = 1.6586

Log-likelihood −395.6401 −395.1029 −400.9553

AIC 655.7011 656.5951 654.3021

BIC 661.8763 662.7703 660.4773

K-S 655.7011 656.5951 654.3021

p-value 0.7564 0.6453 0.8543

To further validate the suitability of the fitted distributions, a visual inspection using
frequency histogram plots is conducted. Figure 10 illustrates the frequency histogram plots
overlaid with the fitted density functions of the Fréchet, Gamma, and Logistic models. The
plots clearly illustrate that the Fréchet model provides a favorable fit for modeling the
indoor temperature during the cold season. Figure 11 shows that the logistic model closely
aligns with the indoor temperature during the hot season. This visual assessment provides
additional support and reinforces the findings obtained from the numerical measures.
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3.5. Discussion

Overall, it can be deduced from the multiple regression model results that the wall
and window majorly influence the indoor temperature of both PB and RB (except for PB in
the hot season). The F-statistic values for MLR models to forecast RB indoor temperature
are much higher (almost double that of PB) after considering only two factors, wall, and
window, and omitting the remaining less significant variables. Windows and walls form the
majority of a building’s façade; therefore, they play a critical role in maintaining the thermal
comfort of a building by preventing the transfer of heat between the interior and exterior
environments. Window-to-wall ratio (WWR) is one of the most influencing factors on the
energy performance of a building [63]. The study conducted by [64] has established that a
WWR of 0.24 is considered ideal to allow optimum indoor daylight and natural ventilation.
However, a higher value of WWR could create overheating in the building. Therefore,
a careful selection of optimal WWR that balances thermal and visual comfort is critical.
Further, the type of material used for the walls, as well as their thickness and insulation,
can have a significant impact on the amount of heat that is transferred. For example,
materials used in this study with high thermal conductivity, such as sand brick, can allow
heat to transfer more easily than materials with lower thermal conductivity, such as clay
bricks with double layers. PB has shown a great example of thermal protection against
overheating by employing low thermal conductivity materials with a smaller increment of
indoor temperature, 10% lower compared to RB during peak days of the hot season.

Windows is another important factor that can affect the indoor temperature of a
building. They allow light to enter the building and can provide natural ventilation, but
they can also allow heat to enter or escape depending on their orientation, size, and the type
of glazing used. For example, windows that face the sun can allow significant transmission
of solar radiation, which can significantly inflate building cooling loads compared to those
that face away from the sun. Additionally, the type of glazing used can impact the amount
of heat transfer. PB is equipped with double glazing with UPVC window frame and
external shutters, making it more effective at reducing heat transfer than single glazing
with aluminum window frame of RB. The indoor temperature of PB was discovered to
be consistently lower than that of RB during the course of the 7-day testing under typical
sunny-cloudy weather conditions in our prior study. The double-glazed windows built in
PB can withstand the radiation impact of sunshine better than the single-glazed windows
installed in RB, resulting in 7% lower window inner surface temperature in PB than in RB. In
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addition to double-glazed windows, highly advanced smart windows like electrochromic
(EC) windows are gaining popularity and are reported to have significant potential for
energy savings and a comfortable environment for people to see outside of a structure [65].
They are made of materials that can be easily switched between a transparent state and a
state that is opaque, translucent, and reflective and can be used to regulate the flow of light
and radiant heat into or out of a building or other space.

In general, a case-specific analysis based on all the relevant parameters is imperative
for the effective implementation of passive energy conservation measures for a given
building in a given climate. In warm, humid climates specifically, the reported overall
energy savings from incorporating a combination of passive designs range from 10% to
60% [66–68]. Integrating passive building design with a cool roof or green roof can further
enhance energy performance. The highest average energy savings reported by cool roofs
were 36% in tropical climates [69]. Cool roof, albeit having a higher U-value (0.53 W/m2K)
than green roof (0.31 W/m2K), has higher energy performance attributed to the significantly
higher solar reflectance. However, from a sustainability or aesthetic perspective, a green
roof would be preferable [70].

Recent advancements in technology and materials have made it more accessible and
affordable. However, one must ensure that the cost could justify the monetary benefit
of energy saving. For example, the insulation gained from the use of insulation plaster
such as (ECM 2) and EPS plaster was found to be not economically viable. On the other
hand, a steel-reinforced EPS-concrete structure was proposed as a viable, sustainable
alternative for conventional pure cement-based structures with an R-value almost eight
times higher than that of the normal concrete panel [71]. Extensive studies have proved
the promising potential of phase change material (PCM) for energy conservation and
thermal management of buildings [72,73]. Aside from the economic factor, one must
consider the social, cultural, and environmental implications of contemporary architectural
design [74], preferably employing as many locally sourced materials as possible to provide
a comprehensive and sustainable approach towards the passive building. Vertical greenery
systems or green façades on building envelopes could be considered to provide natural
shade, cooling, insulation, and wind barrier benefits [75] in conjunction with a rooftop
photovoltaic system to fully utilize the available local renewable energy to increase building
energy efficiency [76].

Our results indicated the superiority of Fréchet and Logistic distributions. The Fréchet
distribution is found to be the best model for the mean indoor temperature series of
PB and RB during the cold season, followed by Logistic and Gamma distributions. On
the other hand, our analysis revealed that the logistic distribution provided the best fit
for the mean indoor temperature series of PB and RB during the hot season, followed
by Fréchet and Gamma distributions. Meanwhile, the Gamma distribution provided
the worst fit among all the competing distributions for the mean indoor temperature
series of PB and RB during the cold and hot seasons. In another study in Australia, the
normal and generalized extreme value distributions provided the best fit to the annual
maximum temperature data [16]. Meanwhile, another study in India found that the normal
distribution gives the best fit, followed by Log-normal and Gamma distributions to model
the annual maximum temperature [24]. In a separate study conducted in Nigeria, it was
determined that for modeling the groundwater pollutant concentrations, the odd beta
prime Fréchet distribution provided the most accurate fit [77].

4. Conclusions

In this research, we examined the thermal energy performance of a passive building de-
signed for tropical conditions in the warm climate of Malaysia. Throughout various weather
conditions, the passive building consistently maintained a lower mean indoor temperature
compared to the reference building. The outcomes of the multiple regression analysis
demonstrated significant correlations between indoor temperature and wall/window tem-
peratures during colder periods and between indoor temperature and roof/wall/window
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temperatures during hotter periods. Notably, clay bricks exhibited superior insulation
properties compared to sand bricks, proving especially effective in tropical settings where
managing heat and ensuring energy efficiency are paramount. Moreover, their durability
and resistance to weathering and moisture make them well-suited for tropical climates,
which often experience heavy rainfall and humidity that can impact building materials.
However, initial costs may exceed those of sand bricks, and specialized construction ex-
pertise is often required for proper installation and support. The same is true for the
double-glazed windows used in PB, which have been shown to give far better insulation
than single-glazed windows but are relatively more expensive. Thus, a thorough evaluation
of the advantages and disadvantages of these materials should inform decision-making.
Optimal material choices should consider factors such as regional climate, budgetary
constraints, and desired energy efficiency. By incorporating advanced technologies and en-
vironmentally conscious practices, creating comfortable living and working environments
becomes feasible. Environmentally friendly procedures, comfortable living, and working
environments are achievable.

In addition, the findings from the probability distributions exhibited that the Fréchet
distribution gave the best fit to the mean indoor temperature series of green and red
buildings during the cold season, followed by the Logistic and Gamma distributions. On the
other hand, the Logistic distribution provided the best fit for the mean indoor temperature
series of green and red buildings during the hot season, followed by the Fréchet and
Gamma distributions. It is intended that the findings of this study would guide tropical
countries to devise comfortable, cost-effective passive buildings that are green and energy
efficient to mitigate global warming. Moving forward, our future studies will employ the
r-largest order statistics approach to model the average maximum daily temperatures of
passive buildings. This approach is essential for evaluating the potential risks associated
with extreme temperatures, and its outcomes will contribute to the development of climate-
resilient infrastructure and efficient passive cooling systems.
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